首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 635 毫秒
1.
We have developed a modelling system for predicting the traffic volumes, emissions from stationary and vehicular sources, and atmospheric dispersion of pollution in an urban area. This paper describes a comparison of the NOx and NO2 concentrations predicted using this modelling system with the results of an urban air quality monitoring network. We performed a statistical analysis to determine the agreement between predicted and measured hourly time series of concentrations at four permanently located and three mobile monitoring stations in the Helsinki Metropolitan Area in 1996–1997 (at a total of ten urban and suburban measurement locations). At the stations considered, the so-called index of agreement values of the predicted and measured time series of the NO2 concentrations vary between 0.65 and 0.82, while the fractional bias values range from −0.29 to +0.26. In comparison with corresponding results presented in the literature, the agreement between the measured and predicted datasets is good, as indicated by these statistical parameters. The seasonal variations of the NO2 concentrations were analysed in terms of the relevant meteorological parameters. We also analysed the difference between model predictions and measured data diagnostically, in terms of meteorological parameters, including wind speed and direction (the latter separately for two wind speed classes), atmospheric stability and ambient temperature, at two monitoring stations in central Helsinki. The modelling system tends to overpredict the measured NO2 concentrations both at the highest (u⩾6 m s−1) and at the lowest wind speeds (u<2 m s−1). For higher wind speeds, the modelling system overpredicts the measured NO2 concentrations in certain wind direction intervals; specific ranges were found for both monitoring stations considered. The modelling system tends to underpredict the measured concentrations in convective atmospheric conditions, and overpredict in stable conditions. The possible physico-chemical reasons for these differences are discussed.  相似文献   

2.
This paper evaluates the relative impact on air quality of harbour emissions, with respect to other emission sources located in the same area. The impact assessment study was conducted in the city of Taranto, Italy. This area was considered as representative of a typical Mediterranean harbour region, where shipping, industries and urban activities co-exist at a short distance, producing an ideal case to study the interaction among these different sources. Chemical and meteorological field campaigns were carried out to provide data to this study. An emission inventory has been developed taking into account industrial sources, traffic, domestic heating, fugitive and harbour emissions. A 3D Lagrangian particle dispersion model (SPRAY) has then been applied to the study area using reconstructed meteorological fields calculated by the diagnostic meteorological model MINERVE. 3D short term hourly concentrations have been computed for both all and specific sources. Industrial activities are found to be the main contributor to SO2. Industry and traffic emissions are mainly responsible for NOx simulated concentrations. CO concentrations are found to be mainly related to traffic emissions, while primary PM10 simulated concentrations tend to be linked to industrial and fugitive emissions. Contributions of harbour activities to the seasonal average concentrations of SO2 and NOx are predicted to be up to 5 and 30 μg m−3, respectively to be compared to a overall peak values of 60 μg m−3 for SO2 and 70 μg m−3 for NOx. At selected urban monitoring stations, SO2 and NOx average source contributions are predicted to be both of about 9% from harbour activities, while 87% and 41% respectively of total concentrations are predicted to be of industrial origin.  相似文献   

3.
A particle measurement campaign was conducted in a suburban environment near a major road in Kuopio, Central Finland from 3 August to 9 September 1999. The mass concentrations of fine particles (PM2.5) were measured simultaneously at distances of 12, 25, 52 and 87 m from the centre of a major road at a height of 1.8 m, using identical samplers. The concentration measurements were conducted during 16 daytime hours (from 6.00 a.m. to 10.00 p.m.) for 27 days. Traffic flows and relevant meteorological parameters were measured on-site; meteorological measurements from a nearby synoptic weather station were also utilised. We also suggest a preliminary model for predicting the concentrations of PM2.5 and apply this model in order to analyse the measured data. The regionally and long-range transported contribution was evaluated on the basis of a semi-empirical mathematical model utilising as input values the daily sulphate, nitrate and ammonium measurements at the EMEP stations (Co-operative programme for monitoring and evaluation of the long-range transmission of air pollutants in Europe). The influence of primary vehicular emissions from the nearest roads was evaluated using a roadside emission and dispersion model, CAR-FMI, in combination with a meteorological pre-processing model, MPP-FMI. The contribution of non-exhaust particulate matter emissions (including resuspension of particulate matter from road surfaces) was estimated simply to be directly proportional to the concentrations originating from primary vehicular emissions. Comparison of the predicted results and measurements yields information on the relative importance of various source categories of the measured concentrations of PM2.5. The regionally and long-range transported contribution, the primary and non-exhaust vehicular emissions, and other sources were estimated to contribute on average 41±6%, 33±6% and 26±7% of the observed PM2.5 concentrations, respectively. The model presented could also be applied in other European cities for analysing the source contributions to measured fine particulate matter concentrations.  相似文献   

4.
Shanghai Meteorological Administration has established a volatile organic compounds (VOCs) laboratory and an observational network for VOCs and ozone (O3) measurements in the city of Shanghai. In this study, the measured VOCs and O3 concentrations from 15 November (15-Nov) to 26 November (26-Nov) of 2005 in Shanghai show that there are strong day-to-day and diurnal variations. The measured O3 and VOCs concentrations have very different characterizations between the two periods. During 15-Nov to 21-Nov (defined as the first period), VOCs and O3 concentrations are lower than the values during 22-Nov to 28-Nov (defined as the second period). There is a strong diurnal variation of O3 during the second period with maximum concentrations of 40–80 ppbv at noontime, and minimum concentrations at nighttime. By contrast, during the first period, the diurnal variation of O3 is in an irregular pattern with maximum concentrations of only 20–30 ppbv. The VOC concentrations change rapidly from 30–50 ppbv during the first period to 80–100 ppbv during the second period. Two chemical models are applied to interpret the measurements. One model is a regional chemical/dynamical model (WRF-Chem) and another is a detailed chemical mechanism model (NCAR MM). Model analysis shows that the meteorological conditions are very different between the two periods, and are mainly responsible for the different chemical characterizations of O3 and VOCs between the two periods. During the first period, meteorological conditions are characterized by cloudy sky and high-surface winds in Shanghai, resulting in a higher nighttime planetary boundary layer (PBL) and faster transport of air pollutants. By contrast, during the second period, the meteorological conditions are characterized by clear sky and weak surface winds, resulting in a lower nighttime PBL and slower transport of air pollutants. The chemical mechanism model calculation shows that different VOC species has very different contributions to the high-ozone concentrations during the second period. Alkane (40 ppbv) and aromatic (30 ppbv) are among the highest VOC concentrations observed in Shanghai. The analysis suggests that the aromatic is a main contributor for the O3 chemical production in Shanghai, with approximately 79% of the O3 being produced by aromatic. This analysis implies that future increase in VOC (especially aromatic) emissions could lead to significant increase in O3 concentrations in Shanghai.  相似文献   

5.
Sulphate size distributions were measured at the coastal station of Mumbai (formerly Bombay) through 1998, during the Indian ocean experiment (INDOEX) first field phase (FFP), to fill current gaps in size-resolved aerosol chemical composition data. The paper examines meteorological, seasonal and source-contribution effects on sulphate aerosol and discusses potential effects of sulphate on regional climate. Sulphate size-distributions were largely trimodal with a condensation mode (mass median aerodynamic diameter or MMAD 0.6 μm), a droplet mode (MMAD 1.9–2.4 μm) and a coarse mode (MMAD 5 μm). Condensation mode sulphate mass-fractions were highest in winter, consistent with the high meteorological potential for gas-to-particle conversion along with low relative humidity (RH). The droplet mode concentrations and MMADs were larger in the pre-monsoon and winter than in monsoon, implying sulphate predominance in larger sized particles within this mode. In these seasons the high RH, and consequently greater aerosol water in the droplet mode, would favour aerosol-phase partitioning and reactions of SO2. Coarse mode sulphate concentrations were lowest in the monsoon, when continental contribution to sulphate was low and washout was efficient. In winter and pre-monsoon, coarse mode sulphate concentrations were somewhat higher, likely from SO2 gas-to-particle conversion. Low daytime sulphate concentrations with a large coarse fraction, along with largely onshore winds, indicated marine aerosol predominance. High nighttime sulphate concentrations and a coincident large fine fraction indicated contributions from anthropogenic/industrial sources or from gas-to-particle conversion. Monthly mean sulphate concentrations increased with increasing SO2 concentrations, RH and easterly wind direction, indicating the importance of gas-to-particle conversion and industrial sources located to the east. Atmospheric chemistry effects on sulphate size distributions in Mumbai, indicated by this data, must be further examined.  相似文献   

6.
The Metropolitan Area of Buenos Aires (MABA) is the third mega-city in Latin America. Atmospheric N emitted in the area deposits to coastal waters of de la Plata River. This study describes the parameterizations included in DAUMOD-RD (v.3) model to evaluate concentrations of nitrogen compounds (nitrogen dioxide, gaseous nitric acid and nitrate aerosol) and their total (dry and wet) deposition to a water surface. This model is applied to area sources and CALPUFF model to point sources of NOx in the MABA. The models are run for 3 years of hourly meteorological data, with a spatial resolution of 1 km2. Mean annual deposition is 69, 728 kg-N year?1 over 2 339 km2 of river. Dry deposition contributions of N-NO2, N-HNO3 and N-NO3? to this value are 44%, 22% and 20%, respectively. Wet deposition of N-HNO3 and N-NO3? represents 3% and 11% of total annual value, respectively. This very low contribution results from the rare occurrence of rainy hours with wind blowing from the city to the river. Monthly dry deposition flux estimated for coastal waters of MABA varies between 7 and 13 kg-N km?2 month?1. These results are comparable to values reported for other coastal zones in the world.  相似文献   

7.
The new National Ambient Air Quality Standard for ozone in the US uses 8 h averaging for the concentration. Based on the 1993 ambient data for Southern California, 8 h averaging has a moderate tendency to move the location of the peak ozone concentration east of the location of the peak 1 h ozone concentration. Reducing the area-wide peak 8 h ozone concentration to 80 ppb would require an effective reduction of the area-wide peak 1 h ozone concentration to around 90 ppb. The Urban Airshed Model with improved numerical solvers, meteorological input based on a mesoscale model and an adjusted emissions inventory was used to study the effect of reactive organic gases (ROG) and NOx controls on daily-maximum and peak 8 h ozone concentrations under the 26–28 August 1987 ozone episodic conditions in Southern California. The NOx disbenefit remains prominent for the case of 8 h ozone concentration but is somewhat less prominent, especially when areal ozone exposure is considered, than the case for 1 h ozone concentration. The role of two indicators – O3/NOy and H2O2/HNO3 – for NOx- and ROG-sensitivity for 1 and 8 h ozone concentrations were also studied. In general, the indicator trends are consistent with model predictions, but the discriminating power of the indicators is rather limited.  相似文献   

8.
Statistically significant downward trends in measured UK annual mean PM10 concentrations have been observed at eight out of the nine urban background monitoring sites between the start of monitoring in 1992 or 1993 and 2000.Site-specific projections of the individual components of measured PM10 concentrations have been derived for the period 1992–2000 at three monitoring sites from receptor modelling results for 1999 monitoring data. Measured annual average PM10 concentrations declined to between 71% and 66% of the 1992 values during this period at the sites studied. The largest contributions to the decline in total PM10 are from secondary particles at London Bloomsbury (40%, 3.4 μg m−3, tapered element oscillating microbalance (TEOM)), stationary sources at Belfast Centre (53%, 4.6 μg m−3, TEOM) and roadside traffic emissions at Bury Roadside (49%, 5.0 μg m−3, TEOM). The good agreement between the projected total PM10 concentrations and measured values for the years 1992–2000 indicate that the combination of the receptor model and the site-specific projections provide a suitably robust method for predicting future PM10 concentrations and the quantification of the impact of possible future policy measures to reduce PM10 concentrations. The good agreement between the projections and measured concentration also provides a useful verification of the trends in emissions inventory estimates for the 1990s.Projections of estimated PM10 concentrations have also been calculated for the London Bloomsbury site for the period from 1970 to 1991. Annual mean concentrations are predicted to have been in the range from 30 to 35 μg m−3, TEOM from 1977 to 1991 but much higher at values between 39 and 46 μg m−3, TEOM in the early 1970s.  相似文献   

9.
Carbonyl sulphide (COS) concentrations in air and dissolved in seawater were determined during a cruise in summer 1997 in the northeast Atlantic Ocean. Seawater characteristics and meteorological parameters were monitored. Dissolved COS concentrations throughout the entire cruise exhibited a strong diel cycle with maximum concentrations in late afternoon and minimum concentrations at sunrise. This is in good agreement with the theory that COS is photochemically produced from dissolved organic matter during the day and removed by hydrolysis. The overall mean concentration of dissolved COS was 23.6 pmol dm-3; the daily mean varied according to water mass characteristics and was highest in upwelling areas owing to increased dissolved organic matter. Atmospheric COS concentrations, varying from about 450 to 800 pptv with an average value of 657 pptv, showed some dependency on air mass history and local COS flux from the sea surface. The exchange of COS between the ocean and the atmosphere depended on dissolved COS concentrations and wind speed. The daily integrated flux was always from the sea into the air, and the average was 1.3±0.8 g COS km-2 d-2. The collected data were used to test a mixed layer box model and a one-dimensional model, both describing the behaviour of COS in seawater. We found that the one-dimensional model simulates the data more closely, especially during the night.  相似文献   

10.
In this paper, a new method to calculate the average spatial distribution of air pollutants based on diffusive sampling measurements and artificial neural networks evaluation is presented. Most established methods like interpolation algorithms are inflexible or limited in considering important distribution parameters such as emission sources or land use. Of special interest are air quality measurements since they provide a direct view on the actual pollutant level. With diffusive samplers, the average concentration of many gaseous species over a large area can be determined simultaneously. During a project in Cyprus, NO2 diffusive samplers were exposed at 270 sites in six month-long campaigns throughout one year providing the database for the model described in this paper. A multilayer perceptron was trained with the NO2 measurement data and distribution parameters like population density and meteorological parameters using a 1 × 1 km grid covering Cyprus. The best fit could be achieved with an emissions inventory including previously simulated concentration plumes and population density data as input nodes for the neural network, resulting in realistic maps of the annual average distribution of NO2 in Cyprus.  相似文献   

11.
In this study, air pollutants, including ozone (O3), nitrogen oxides (NOx = NO + NO2), carbon monoxides (CO), sulfur dioxide (SO2), and volatile organic compounds (VOCs) measured in the Yangtze River Delta (YRD) region during several air flights between September/30 and October/11 are analyzed. This measurement provides horizontal and vertical distributions of air pollutants in the YRD region. The analysis of the result shows that the measured O3 concentrations range from 20 to 60 ppbv. These values are generally below the US national standard (84 ppbv), suggesting that at the present, the O3 pollutions are modest in this region. The NOx concentrations have strong spatial and temporal variations, ranging from 3 to 40 ppbv. The SO2 concentrations also have large spatial and temporal variations, ranging from 1 to 35 ppbv. The high concentrations of CO are measured with small variations, ranging from 3 to 7 ppmv. The concentrations of VOCs are relatively low, with the total VOC concentrations of less than 6 ppbv. The relative small VOC concentrations and the relative large NOx concentrations suggest that the O3 chemical formation is under a strong VOC-limited regime in the YRD region. The measured O3 and NOx concentrations are strongly anti-correlated, indicating that enhancement in NOx concentrations leads to decrease in O3 concentrations. Moreover, the O3 concentrations are more sensitive to NOx concentrations in the rural region than in the city region. The ratios of Δ[O3]/Δ[NOx] are ?2.3 and ?0.25 in the rural and in the city region, respectively. In addition, the measured NOx and SO2 concentrations are strongly correlated, highlighting that the NOx and SO2 are probably originated from same emission sources. Because SO2 emissions are significantly originated from coal burnings, the strong correlation between SO2 and NOx concentrations suggests that the NOx emission sources are mostly from coal burned sources. As a result, the future automobile increases could lead to rapid enhancements in O3 concentrations in the YRD region.  相似文献   

12.
This paper reports altitude-resolved concentrations of sulfur dioxide (SO2) and particulate matter up to 10 microns in diameter (PM10) in the planetary boundary layer of major urban centers during extreme pollution episodes. The concentration of SO2 was observed continuously from November 24, 2004, to December 4, 2004, in Beijing during the heating period. Fluorescence SO2 analyzers were used to measure the atmospheric SO2 concentrations. Four SO2 analyzers were placed at 4 different levels (8 m, 47 m, 120 m, and 280 m) of the 325-m high meteorological observation tower of the Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences. A maximal SO2 concentration of 172.3 ppb was measured during this pollution episode, and SO2 concentration increased with altitude and reached its maximal value at ~50 m. The study also analyzed the meteorological situation before, during, and after the pollution episode.  相似文献   

13.
The gas phosphine (PH3) is a part of an atmospheric link of the phosphorus cycle on earth. Previous research reported the terrestrial lower tropospheric PH3 at night in the 1 ng m−3 range in remote areas, with the peak of 100 ng m−3 in populated areas, and at daytime even lower concentrations in the pg m−3 range. The data of the global marine atmospheric PH3 are still very sparse.This study presents surprisingly high concentrations of PH3 in the order of 0.1–1 μg m−3 in many of 32 samples of the marine atmosphere in the latitudinal range from 30°N to 65°S (the cruise of research ship Xuelong from Shanghai Harbor, China, to Antarctica). The highest concentrations were measured near coastal areas of Eastern Asia and Western Australia. A significant correlation exists between marine atmospheric PH3 concentration and air temperature at 22:00 (local time). PH3 concentrations at different latitudes strongly decline with daylight intensity according to a logarithmic relationship. These surprisingly high concentrations of the readily oxidizable PH3 in the air indicate hitherto unknown but important PH3 emission sources in marine environment. More work is necessary to evaluate the sources of atmospheric PH3 from marine biosphere.  相似文献   

14.
Ozone and related trace gases (CO, NOx, and SO2) were measured from June 1999 to July 2000 at a rural site in the Yangtze Delta of China, a region of intensive anthropogenic activity. Elevated ozone levels were frequently observed during the study period, with the highest frequency in late spring and early summer. Over a 1 yr period, 21 d were found to have ozone concentrations exceeding the new US 8-h 80 ppb health standard. Calculation of the “SUM06” exposure index also shows relatively high (>15 ppm h) values for each season except winter. At these levels ozone may have adverse effects on human health as well as agricultural crops. Analysis of meteorological data shows that the high ozone days were associated with large-scale stagnation, intense solar radiation, and minimum rainfall. Large-scale back trajectories indicate a slow-moving/re-circulating airmass during the episodic days. Examination of chemical data shows that the observed daytime high ozone concentrations were due to downward mixing of ozone-rich air, in situ photochemical formation, and in some cases, advection to the site of aged plumes. The very high CO levels (and high CO to NOx ratios) were found to coincide with many of the ozone episodes, suggesting a contribution from sources of emission involving incomplete combustion. It is suggested that the burning of biomass (e.g., biofeuls and crop residues) may be an important source for the observed high CO and O3 values.  相似文献   

15.
Semi-continuous measurements of ambient mercury (Hg) species were performed in Detroit, MI, USA for the calendar year 2003. The mean (±standard deviation) concentrations for gaseous elemental mercury (GEM), particulate mercury (HgP), and reactive gaseous mercury (RGM) were 2.2±1.3 ng m−3, 20.8±30.0, and 17.7±28.9 pg m−3, respectively. A clear seasonality in Hg speciation was observed with GEM and RGM concentrations significantly (p<0.001) greater in warm seasons, while HgP concentrations were greater in cold seasons. The three measured Hg species also exhibited clear diurnal trends which were particularly evident during the summer months. Higher RGM concentrations were observed during the day than at night. Hourly HgP and GEM concentrations exhibited a similar diurnal pattern with both being inversely correlated with RGM. Multivariate analysis coupled with conditional probability function analysis revealed the conditions associated with high Hg concentration episodes, and identified the inter-correlations between speciated Hg concentrations, three common urban air pollutants (sulfur dioxide, ozone, and nitric oxides), and meteorological parameters. This analysis suggests that both local and regional sources were major factors contributing to the observed temporal variations in Hg speciation. Boundary layer dynamics and the seasonal meteorological conditions, including temperature and moisture content, were also important factors affecting Hg variability.  相似文献   

16.
The assessment of the wind blown dust emission for Europe and selected regions of North Africa and Southwest Asia was carried out using a mesoscale model. The mesoscale model was parameterized based on the current literature review. The model provides data on PM10 emission from several dust reservoirs (anthropogenic, agriculture, semi- and natural) with spatial resolution of 10 × 10 km and temporal resolution of 1 h. The spatial variability of PM10 emission depends on soil texture, land cover/land use as well as meteorological conditions. Lands covered with water or permanently wet were excluded from the model. The land covered with vegetation is treated as dust reservoir whose dust emission capacity depends on the type of vegetation and cover. The dust reservoirs are divided into reservoirs with stable and unstable surface. The changes of emission in time depend on meteorological parameters.The wind blown dust emission should be treated as a non-continuous spatio-temporal process. The emissions are estimated with high uncertainty. The estimated PM10 yearly total load emitted by wind from the European territory is highly differentiated in space and time and is equal to 0.74 Tg. The total load of PM10 emitted by wind from North African and Southwest Asian land surface located in the vicinity of European boundaries is assessed as nearly 50% (0.43 Tg) of the total load estimated for the whole Europe.The average yearly PM10 emission factor for Europe was estimated at 0.139 Mg km?2.The PM10 emission from agricultural areas is estimated at 52% of the total wind blown emission from the domain of the European Union project “Improving and applying methods for the calculation of natural and biogenic emissions and assessment of impacts to the air quality” - NatAir.PM10 emission factor for natural areas of Europe is estimated at 0.021 Mg km?2. Appropriate factors for agricultural areas and anthropogenic areas are 0.157 Mg km?2 and 0.118 Mg km?2, respectively. The latter two factors are probably underestimated due to omitting in the model of other dust emission mechanisms than aeolian erosion.  相似文献   

17.
Carbonaceous aerosol particles were observed in a residential area with wood combustion during wintertime in Northern Sweden. Filter samples were analyzed for elemental carbon (EC) and organic carbon (OC) content by using a thermo-optical transmittance method. The light-absorbing carbon (LAC) content was determined by employing a commercial Aethalometer and a custom-built particle soot absorption photometer. Filter samples were used to convert the optical signals to LAC mass concentrations. Additional total PM10 mass concentrations and meteorological parameters were measured. The mean and standard deviation mass concentrations were 4.4±3.6 μg m−3 for OC, and 1.4±1.2 μg m−3 for EC. On average, EC accounted for 10.7% of the total PM10 and the contribution of OC to the total PM10 was 35.4%. Aethalometer and custom-built PSAP measurements were highly correlated (R2=0.92). The hourly mean value of LAC mass concentration was 1.76 μg m−3 (median 0.88 μg m−3) for the winter 2005–2006. This study shows that the custom-built PSAP is a reliable alternative for the commercial Aethalometer with the advantage of being a low-cost instrument.  相似文献   

18.
Concentrations of different species of mercury in arctic air and precipitation have been measured at Ny-Ålesund (Svalbard) and Pallas (Finland) during 1996–1997. Typical concentrations for vapour phase mercury measured at the two stations were in the range of 0.7–2 ng m−3 whereas particulate mercury concentrations were below 5 pg m−3. Total mercury in precipitation was in the range 3–30 ng l−1. In order to evaluate the transport and deposition of mercury to the arctic from European anthropogenic sources, the Eulerian transport model HMET has been modified and extended to also include mercury species. A scheme for chemical conversion of elemental mercury to other species of mercury and deposition characteristics of different mercury species have been included in the model. European emission inventories for three different forms of Hg (Hg0, HgCl2 and Hgp) have been implemented in the numerical grid system for the HMET model.  相似文献   

19.
From January 1996 to June 1997, we carried out a series of measurements to estimate emissions of PM10 from paved roads in Riverside County, California. The program involved the measurement of upwind and downwind vertical profiles of PM10, in addition to meteorological variables such as wind speed and vertical turbulent intensity. This information was analyzed using a new dispersion model that incorporates current understanding of micrometeorology and dispersion. The emission rate was inferred by fitting model predictions to measurements. The inferred emission factors ranged from 0.2 g VKT-1 for freeways to about 3 g VKT-1 for city roads. The uncertainty in these factors is estimated to be approximately a factor of two since the contributions of paved road PM10 emissions to ambient concentrations were comparable to the uncertainty in the mean value of the measurement. At this stage, our best estimate of emission factor lies between 0.1 and 10 g VKT-1; there is some indication that it is about 0.1 g VKT-1 for heavily traveled freeways, and is an order of magnitude higher for older city roads. We found that measured silt loadings were poor predictors of emission factors.The measured emission factors imply that paved road emissions may contribute about 30% to the total PM10 emissions from a high traffic area such as Los Angeles. This suggests that it is necessary to develop methods that are more reliable than the upwind–downwind concentration difference technique.  相似文献   

20.
The concentrations of C1–C8 carbonyl compounds were measured at two urban sites in Hong Kong from October 1997 to September 2000. The daily total carbonyl concentrations were found to range from 2.4 to 37 μg m−3. Formaldehyde was the most abundant species, which comprised from 36 to 43% of the total detected carbonyls, followed by acetaldehyde (18–21%) and acetone (8–20%). The highest 24-hour average concentrations measured were 10 and 7.7 μg m−3 for formaldehyde and acetaldehyde, respectively. Seasonal and temporal variations in the concentrations of formaldehyde and acetaldehyde were not obvious, but lowest concentrations often occurred from June to August. The mean formaldehyde/acetaldehyde molar ratios at the two sites in summer (2.8±1.1 and 2.5±1.2) were significantly higher (p⩽0.01) than those in winter periods (1.9±0.6 and 2.0±0.6). The phenomena were explained by influences of both photochemical reactions and local meteorological conditions. Better correlations between formaldehyde and acetaldehyde, and between NOx and each of the two major carbonyls were obtained in winter periods indicating direct vehicular emissions were the principal sources. The ambient formaldehyde and acetaldehyde concentrations in the urban atmosphere of Hong Kong were within the normal ranges reported in the literature for other urban sites world-wide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号