首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sonic anemometer turbulence measurements were made at Summit, Greenland during summer 2004 and spring 2005. These measurements allow for the characterization of the variability of the atmospheric boundary layer at this site by describing seasonal and diurnal changes in sensible heat flux and boundary layer stability as well as providing estimates of mixing layer height. Diurnal sensible heat fluxes at Summit ranged from −18 to −2 W m−2 in the spring and from −7 to +10 W m−2 in the summer. Sustained stable surface layer conditions and low wind speeds occured during the spring but not during the summer months. Unstable conditions were not observed at Summit until late April. Diurnal cycles of convective conditions during the daytime (0700–1700 h local time) were observed throughout July and August. Boundary layer heights, which were estimated for neutral to stable conditions, averaged 156 m for the spring 2005 observations. Comparisons of the boundary layer characteristics of Summit with those from South Pole, Antarctica, provide possible explanations for the significant differences in snowpack and surface-layer chemistry between the two sites.  相似文献   

2.
The temporal and spatial distributions of boundary-layer ozone were studied during June 2000 at Summit, Greenland, using surface-level measurements and vertical profiling from a tethered balloon platform. Three weeks of continuous ozone surface data, 133 meteorological vertical profile data and 82 ozone vertical profile data sets were collected from the surface to a maximum altitude of 1400 m above ground.The lower atmosphere at Summit was characterized by the prevalence of strong stable conditions with strong surface temperature inversions. These inversions reversed to neutral to slightly unstable conditions between ∼9.00 and 18.00 h local time with the formation of shallow mixing heights of ∼70–250 m above the surface.The surface ozone mixing ratio ranged from 39 to 68 ppbv and occasionally had rapid changes of up to 20 ppb in 12 h. The diurnal mean ozone mixing ratio showed diurnal trends indicating meteorological and photochemical controls of surface ozone. Vertical profiles were within the range of 37–76 ppb and showed strong stratification in the lower troposphere. A high correlation of high ozone/low water vapor air masses indicated the transport of high tropospheric/low stratospheric air into the lower boundary layer. A ∼0.1–3 ppb decline of the ozone mixing ratio towards the surface was frequently observed within the neutrally stable mixed layer during midday hours. These data suggest that the boundary-layer ozone mixing ratio and ozone depletion and deposition to the snowpack are influenced by photochemical processes and/or transport phenomena that follow diurnal dependencies. With 37 ppb of ozone being the lowest mixing ratio measured in all data no evidence was seen for the occurrence of ozone depletion episodes similar to those that have been reported within the boundary layer at coastal Arctic sites during springtime.  相似文献   

3.
Articles have recently been published on aerosol size distributions and number concentrations in cities, however there have been no studies on transport of these particles. Eddy covariance measurements of vertical transport of aerosol in the size range 11 nm<Dp<3 μm are presented here. The analysis shows that typical average aerosol number fluxes in this size range vary between 9000 and 90,000 cm−2 s−1. With concentrations between 3000 and 20,000 cm−3 this leads to estimates of particle emission velocity between 20 and 75 mm s−1. The relationships between number flux and traffic activity, along with emission velocity and boundary layer stability are demonstrated and parameterised. These are used to derive an empirical parameterisation for aerosol concentration in terms of traffic activity and stability. The main processes determining urban aerosol fluxes and concentrations are discussed and quantified where possible. The difficulties in parameterising urban activity are discussed.  相似文献   

4.
Micrometeorological flux-gradient and nocturnal boundary layer methods were combined with Fourier transform infrared (FTIR) spectroscopy for high-precision trace gas analysis to measure fluxes of the trace gases CO2, CH4 and N2O between agricultural fields and the atmosphere. The FTIR measurements were fully automated and routinely obtained a precision of 0.1–0.2% for several weeks during a measurement campaign in October 1995. In flux-gradient measurements, vertical profiles of the trace gases were measured every 30 min from the ground to 22 m. When combined with independent micrometeorological measurements of water vapour fluxes, trace gas fluxes from the underlying surface could be determined. In the nocturnal boundary layer method the rate of change in mass storage in the 0–22 m layer was combined with fluxes measured at 22 m to estimate surface fluxes. Daytime fluxes for CO2 were −0.78±0.40 (1σ) mg CO2 m−2 s−1. Daytime fluxes of N2O and CH4 were very small and difficult to measure reliably using the flux-gradient technique, despite the high precision of the concentration measurements. Mean daytime flux for N2O was 17±48 ng N m−2 s−1, while the corresponding flux for CH4 was 47±410 ng CH4 m−2 s−1. The mean nighttime flux of CO2 estimated using the nocturnal boundary layer method was +0.15±0.05 mg CO2 m−2 s−1, in good agreement with chamber measurements of respiration rates. Nighttime fluxes of CH4 and N2O from the nocturnal boundary layer method were 109±69 ng CH4 m−2 s−1 and 2±3.2 ng N m−2 s−1, respectively, in good agreement with chamber measurements and inventory estimates based on the sheep and cattle stocking rates in the region. The suitability of FTIR-based methods for long term monitoring of spatially and temporally averaged flux measurements is discussed.  相似文献   

5.
This study quantifies the contribution through energy consumption, to the heat island phenomena and discussed how reductions in energy consumption could mitigate impacts on the urban thermal environment. Very detailed maps of anthropogenic heat in Tokyo were drawn with data from energy statistics and a very detailed digital geographic land use data set including the number of stories of building at each grid point. Animated computer graphics of the annual and diurnal variability in Tokyo's anthropogenic heat were also prepared with the same data sources. These outputs characterize scenarios of anthropogenic heat emission and can be applied to a numerical simulation model of the local climate. The anthropogenic heat flux in central Tokyo exceeded 400 W m−2 in daytime, and the maximum value was 1590 W m−2 in winter. The hot water supply in offices and hotels contributed 51% of this 1590 W m−2. The anthropogenic heat flux from the household sector in the suburbs reached about 30 W m−2 at night. Numerical simulations of urban climate in Tokyo were performed by referring to these maps. A heat island appeared evident in winter because of weakness of the sea breeze from Tokyo Bay. At 8 p.m., several peaks of high-temperature appeared, around Otemachi, Shinjuku and Ikebukuro; the areas with the largest anthropogenic heat fluxes. In summer the shortwave radiation was strong and the influence of anthropogenic heat was relatively small. In winter, on the other hand, the shortwave radiation was weak and the influence of anthropogenic heat was relatively large. The effects of reducing energy consumption, by 50% for hot water supply and 100% for space cooling, on near surface air temperature would be at most −0.5°C.  相似文献   

6.
A field experiment was conducted in August 1998 to investigate the concentrations of isoprene and isoprene reaction products in the surface and mixed layers of the atmosphere in Central Texas. Measured near ground-level concentrations of isoprene ranged from 0.3 (lower limit of detection – LLD) to 10.2 ppbv in rural regions and from 0.3 to 6.0 ppbv in the Austin urban area. Rural ambient formaldehyde levels ranged from 0.4 ppbv (LLD) to 20.0 ppbv for 160 rural samples collected, while the observed range was smaller at Austin (0.4–3.4 ppbv) for a smaller set of samples (37 urban samples collected). Methacrolein levels did not vary as widely, with rural measurements from 0.1 ppbv (LLD) to 3.7 ppbv and urban concentrations varying between 0.2 and 5.7 ppbv. Isoprene flux measurements, calculated using a simple box model and measured mixed-layer isoprene concentrations, were in reasonable agreement with emission estimates based on local ground cover data. Ozone formation attributable to biogenic hydrocarbon oxidation was also calculated. The calculations indicated that if the ozone formation occurred at low VOC/NOx ratios, up to 20 ppbv of ozone formed could be attributable to biogenic photooxidation. In contrast, if the biogenic hydrocarbon reaction products were formed under low NOx conditions, ozone production attributable to biogenics oxidation would be as low as 1 ppbv. This variability in ozone formation potentials implies that biogenic emissions in rural areas will not lead to peak ozone levels in the absence of transport of NOx from urban centers or large rural NOx sources.  相似文献   

7.
A simplified hybrid statistical-deterministic chemistry-transport model, is used in real time for the prediction of ozone in the area of Paris during Summer 1999. We present here a statistical validation of this experiment. We distinguish the forecasts in the urban area from forecasts in the pollution plume downwind of the city. The validation of model forecasts, up to 3 days ahead, is performed against ground based observations within and up to 50 km outside of Paris. In the urban area, ozone levels are fairly well forecast, with correlation coefficients between forecast and observations ranging between 0.7 and 0.8 and root mean square errors in the range 15–20 μg m−3 at short lead times. While the bias of urban forecast is very low, the largest peaks are somehow underestimated. The ozone plume amplitude is generally well reproduced, even at long lead times (root mean square errors of about 20–30 μg m−3), while the direction of the plume is only captured at short lead times (about 70% of the time). The model has difficulties in forecasting the direction of the plume under stagnant weather conditions. We estimate the model ability to forecast concentrations above 180 μg m−3, which are of practical relevance to air quality managers. It is found that about 60% of these events are well forecast, even at long lead times, while the exact monitoring station where the exceedance is observed can only be forecast at short lead times. Finally, we found that about half of the forecast error is due to the error in the estimation of the boundary conditions, which are forecast by a simple linear regression model here.  相似文献   

8.
Nocturnal chemistry can play an important role in determining the initial morning conditions for daytime chemistry in urban areas. However, the impact on daytime O3 levels is difficult to assess as the suppression of vertical trace gas transport leads to highly altitude dependent nocturnal chemistry, in particular with respect to the removal and conversion of nitrogen oxides (NOx) and volatile organic compounds (VOC). One-dimensional (1-D) chemical transport model calculations for different nighttime vertical stabilities and different ozone formation regimes (i.e. NOx- vs. VOC-sensitive) were performed assuming a 1000 m high daytime boundary layer and a growing nocturnal boundary layer reaching 200 m height at the end of the night. Exclusion of NO3 chemistry from the model leads to daytime O3 concentration changes from ?4% to +16% for different O3 sensitivities. In all cases strong nocturnal vertical concentration profiles of NOx, O3, NO3 and N2O5 and a dependence of these profiles on vertical stability were found at night. The nocturnal NOx loss averaged over the lowest 1000 m changes by 9–24% for different vertical stabilities and ozone sensitivities. The impact of nocturnal vertical stability leads to 7–12% difference in O3 concentration in the morning and ~0–2.5% in the afternoon.  相似文献   

9.
The effect of black carbon (BC) on climate forcing is potentially important, but its estimates have large uncertainties due to a lack of sufficient observational data. The BC mass concentration in the southeastern US was measured at a regionally representative site, Mount Gibbes (35.78°N, 82.29°W, 2006 m MSL). The air mass origin was determined using 48-h back trajectories obtained from the hybrid single-particle Lagrangian integrated trajectory model. The highest average concentration is seen in polluted continental air masses and the lowest in marine air masses. During the winter, the overall average BC value was 74.1 ng m−3, whereas the overall summer mean BC value is higher by a factor of 3. The main reason for the seasonal difference may be enhanced thermal convection during summer, which increases transport of air pollutants from the planetary boundary layer of the surrounding urban area to this rural site. In the spring of 1998, abnormally high BC concentrations from the continental sector were measured. These concentrations were originating from a biomass burning plume in Mexico. This was confirmed by the observations of the Earth probe total ozone mapping spectrometer. The BC average concentrations of air masses transported from the polluted continental sector during summer are low on Sunday to Tuesday with a minimum value of 256 ng m−3 occurring on Monday, and high on Wednesday to Friday with a maximum value of 379 ng m−3 occurring on Friday. The net aerosol radiative forcing (scattering effects plus absorption effects) per unit vertical depth at 2006 m MSL is calculated to be −1.38×10−3 W m−3 for the southeastern US. The magnitude of direct radiative forcing by aerosol scattering is reduced by 15±7% due to the BC absorption.  相似文献   

10.
A total of 16 boundary layer (BL) DMS flux values were derived from flights over the Southern Ocean. DMS flux values were derived from airborne observations recorded during the Aerosol Characterization Experiment (ACE 1). The latitude range covered was 55°S–40°S. The method of evaluation was based on the mass-balance photochemical-modeling (MBPCM) approach. The estimated flux for the above latitude range was 0.4–7.0 μmol m−2 d−1. The average value from all data analyzed was 2.6±1.8 μmol m−2 d−1. A comparison of the MBPCM methodology with several other DMS flux methods (e.g., ship and airborne based) revealed reasonably good agreement in some cases and significant disagreement in other cases. Considering the limited number of cases compared and the fact that conditions for the comparisons were far from ideal, it is not possible to conclude that major agreement or differences have been established between these methods. A major result from this study was the finding that DMS oxidation is a major source of BL SO2 over the Southern Ocean. Model simulations suggest that, on average, the conversion efficiency is 0.7 or higher, given a lifetime for SO2 of ∼1 d. A comparison of two sulfur case studies, one based on DMS–SO2 data generated on the NCAR C-130 aircraft, the other based on data recorded on the NOAA ship Discoverer, revealed qualitative agreement in finding that DMS was a major source of Southern Ocean SO2. On the other hand, significant disagreement was found regarding the DMS/SO2 conversion efficiency (e.g., 0.3–0.5 versus 0.7–0.9). Although yet unknown factors, such as vertical mixing, may be involved in reducing the level of disagreement, it does appear at this time that some significant portion of this difference may be related to systematic differences in the two different techniques employed to measure SO2. It would seem prudent, therefore, that further instrument intercomparison SO2 studies be considered. It also would be desirable to stage new intercomparison activity between the MBPCM flux approach and the air-to-sea gradient as well as other flux methods, but under far more favorable conditions.  相似文献   

11.
Canopy scale emissions of isoprene and monoterpenes from Amazonian rainforest were measured by eddy covariance and eddy accumulation techniques. The peak mixing ratios at about 10 m above the canopy occurred in the afternoon and were typically about 90 pptv of α-pinene and 4–5 ppbv of isoprene. α-pinene was the most abundant monoterpene in the air above the canopy comprising ≈50% of the total monoterpene mixing ratio. Measured isoprene fluxes were almost 10 times higher than α-pinene fluxes. Normalized conditions of 30°C and 1000 μmol m−2 s−1 were associated with an isoprene flux of 2.4 mg m−2 h−1 and a β-pinene flux of 0.26 mg m−2 h−1. Both fluxes were lower than values that have been specified for Amazon rainforests in global emission models. Isoprene flux correlated with a light- and temperature-dependent emission activity factor, and even better with measured sensible heat flux. The variation in the measured α-pinene fluxes, as well as the diurnal cycle of mixing ratio, suggest emissions that are dependent on both light and temperature. The light and temperature dependence can have a significant effect on the modeled diurnal cycle of monoterpene emission as well as on the total monoterpene emission.  相似文献   

12.
Continuous measurements of ozone vertical profiles, OVP, in the low troposphere (around 500–2400 m) using an unattended commercial ozone profiler DIAL, were conducted during June–July 2004 in Segovia, SG, a small city in the upper plateau located close to the foothills of the Guadarrama mountain range, Guadarrama, in the Central Massif. The data obtained over almost 37 complete days have enabled us to characterise the ozone vertical exchange, describe the phenomenology of the main ozone peaks, OP, recorded in the city and their relationship with ozone transport/formation from the gas precursor emissions of the greater Madrid area across Guadarrama. To achieve the last objective concurrent measurements of ground-level ozone in SG and a representative monitoring station upwind from Guadarrama, Buitrago de Lozoya, BL, have been used. 72.2% of the concurrent maximum diurnal ozone peaks exceeding the 95 percentile hourly value in SG (OPSG) and BL (OPBL) were linked to ozone transport and formation from the greater Madrid area towards Guadarrama. An estimate of the contribution of the greater Madrid area on OPSG yielded 28 μg m−3.The most prominent ozone vertical stratification was linked to the mixing height, MH, and a frequent nocturnal stable layer formed, NSL. Three small ozone enriched-layers were identified at mean heights of 500, 700 and 1000 m, respectively. Ozone tended to decline versus altitude. The hourly patterns of the three layers showed two peak occurrences of similar amplitude in the early morning, 7–8 h, and mid-afternoon, 14–16 h. A minimum was also observed during daytime, 10–11 h, its origin being attributed to a dilution process induced by the “chimney effect” caused by the slopes heating during this period.The comparison between OPSG, and the maximum diurnal ozone peaks in the first layer, OL1P, showed a satisfactory relationship, correlation coefficient, r, of the linear fit 0.77, and comparable mean values, 127 and 130 μg m−3, respectively, revealing the presence of an uniform ozone vertical distribution in the 500 m atmospheric layer above ground level during mid-afternoon.  相似文献   

13.
The heat wave from 1 to 16 August 2003 is considered in the city of Grenoble (French Alps). The modelling system (PREVALP) is based on several models operating on nested domains: MM5 for dynamics, CHIMERE for chemistry (18 km and 6 km grid size) and METPHOMOD for both dynamics and chemistry (2 km grid size). The analysis of the results shows that during the heat wave, the mixing layer is thicker, up to 3500 m agl, hence inducing transport of ozone to high altitude. Two regimes were diagnosed: (1) a freely developing convective layer, (2) a layer trapped under south wind which makes ozone precursors accumulate in the city. Local ozone production is estimated to be 40% of the plume maximum in case (2) and only 30% in case (1). Sensitivity analysis by step increase for temperature at the boundary of the inner domain shows the non-linearity of the response; in this case most of the effect comes from chemistry. By changing biogenic emission significant changes are observed in restricted areas.  相似文献   

14.
Even though dry deposition and air–water exchange of semivolatile organic compounds (SOCs) are important for surfaces in and around the urban areas, there is still no generally accepted direct measurement technique for dry deposition. In this study, a modified water surface sampler (WSS) configuration, including a filter holder and an XAD-2 resin column, was employed to investigate the polycyclic aromatic hydrocarbon (PAH) dry deposition in an urban area. The measured total (particle+dissolved) PAH fluxes to the WSS averaged to be 34 960±16 540 ng m−2 d−1. Average particulate PAH flux, determined by analyzing the filter in the WSS, was about 8% of the total PAH flux. Temporal flux variations indicated that colder months (October–April) had the highest PAH fluxes. This increase could be attributed to the residential heating as well as meteorological effects including lower mixing height. A high volume air sampler was concurrently employed to collect ambient air concentrations. The average total (gas+particle) atmospheric PAH concentration (456±524 ng m−3) was within the range of previously measured values at different urban locations. PAH concentrations in urban areas are more than two orders of magnitude higher than those measured in pristine areas and this result may indicate that urban areas have major source sectors and greater deposition rates are expected near to these areas. The average contribution of particle phase was about 10% in total concentration. Simultaneous particulate phase dry deposition and ambient air samples were collected in this study. Then, particulate phase apparent dry deposition velocities were calculated using the fluxes and concentrations for each PAH compound and they ranged from 0.1 to 1.2 cm s−1. These values are in good agreement with previously reported values.  相似文献   

15.
We present calculations to estimate potential changes to the local climate and photochemistry caused by pollutants (gases and particles) produced in Mexico City, and the implications for the regional scale when pollutants are exported to surrounding regions. Measured aerosol optical properties are used in a 2-stream delta-Eddington radiative transfer model (Slingo and Schrecker, 1982. Quarterly Journal of the Royal Meteorological Society 108, 407–426) to estimate net radiative fluxes and heating rates, while photolysis rates for nitrogen dioxide and ozone are estimated from a much more detailed model (Madronich, 1987. Journal of Geophysical Research 92, 9740–9752). The presence of highly absorbing aerosols in Mexico City leads to a 17.6% reduction in solar radiative flux at the surface when an optical depth of 0.55 is considered. Photolysis rates for nitrogen dioxide and ozone are reduced between 18 and 21% at the surface, while an increase of between 15 and 17% is predicted above the boundary layer, for local noon calculations.The non-uniform vertical structure of aerosol concentrations observed (Pérez Vidal and Raga, 1998. Atmosfera 11, 95–108) plays a significant role in determining localized regions of heating, i.e. stabilization at the top of the boundary layer that results in a temperature increase of 0.4K h−1 at that level. The presence of a 200 m-deep aerosol layer at the top of the boundary layer results in vertical profiles of the photolysis rates that are significantly different from the case where the aerosols are uniformly distributed in the mixed layer. At the bottom of the aerosol layer (about 1 km above the surface), the rates are about 28% lower than when there is a uniform aerosol distribution in the boundary layer. Finally, there is also an enhancement of photolysis rates at the top of the boundary layer that may lead to increased ozone production compared to the non-aerosol case.  相似文献   

16.
An ozone pollution episode typically at the mesoscale is studied for the period 17–20 July 1996 in the northern half of France. This episode has been documented through extra stations supplementing the regular French network in the southwest of the Paris region at large: the ozone threshold value of 90 ppb has been observed to be exceeded only at downwind rural stations at distances ranging between 25 and 110 km from downtown Paris. This episode has been simulated with the mesoscale model Meso-NH-C in which the meteorological model Meso-NH is coupled on-line with a chemistry module. Various assumptions are presented which must be made in order to run Meso-NH-C:  e.g. reduction of the chemical scheme to reduce the computational costs or definition of procedures to fill in the lack of emission inventory data. Meso-NH appears to realistically simulate the position, extent, average and peak ozone values within the pollution plume. Sensitivity analyses emphasize, in particular, the need for accurate simulation of the wind field to capture correct characteristics of this plume.  相似文献   

17.
The soil/plant/atmosphere exchange of carbonyl sulfide (COS) was investigated in an open oak woodland ecosystem at a rural site in northern California. Measurements of atmospheric concentrations of COS were made in June and in December 1994. We found a significant diel cycle with a drop of COS levels by approximately 150 ppt during the night in both seasons. The mean COS daytime background mixing ratios showed a distinct seasonal difference with 465±77 ppt in summer and 375±56 ppt in winter. The nighttime bulk COS flux into the ecosystem was estimated using a micrometeorological model. To address the observed depletion of COS during stable nocturnal boundary layer conditions, the potential of various ecosystem compartments to act as a sink for COS was investigated. Studies using dynamic enclosures flushed with ambient air excluded vegetation as an important sink during nighttime due to high stomatal resistance. Results from soil chamber measurements indicate that the soil can act as a dominant sink for atmospheric COS.  相似文献   

18.
A wind tunnel experiment was carried out to simulate stack gas diffusion within an unstable atmospheric boundary layer over a coastal region. The wind tunnel floor, 4 m leeward of the entrance of the test section, was heated to 90°C over a length of 6 m in the streamwise direction, and wind tunnel experiments were performed under the flat plate condition with a prototype-to-model length scale ratio of 1200. Three similarity criteria of flow fields in the wind tunnel and in atmosphere, viz., bulk Richardson number, surface Reynolds number and the ratio of the Peclet number to the Richardson number, were considered in the wind tunnel experiment. Tracer gas was released along the coastline at a height of 10 cm, which corresponded to 120 m in height in atmosphere. The obtained wind tunnel experimental results of ground level concentration were compared with 30-min average values of the field experiments, viz., the data from the Tokai 82 field experiment. The maximum ground level concentration and its location were accurately simulated when there was close similarity between the wind tunnel and atmospheric flow conditions. The maximum concentration increased and occurred closer to the source when the level of convection was relatively stronger in atmosphere.  相似文献   

19.
Altitude profiles of the mass concentrations of aerosol black carbon (BC) and composite aerosols were obtained from the collocated measurements of these quantities onboard an aircraft, over the urban area of Kanpur, in the Ganga basin of northern India during summer, for the first time in India. The enhancement in the mean BC concentration was observed at ∼1200 m in the summer, but the vertical gradient of BC concentration is less than the standard deviation at that altitude. The difference in the BC altitude profile and columnar concentration in the winter and summer is attributed to the enhanced turbulent mixing within the boundary layer in summer. This effect is more conspicuous with BC than the composite aerosols, resulting in an increase in the BC mass fraction (FBC) at higher levels in summer. This high BC fraction results in an increase in the lower atmospheric heating rate in both the forenoon, FN and afternoon, AN, but with contrasting altitude profile. The FN profile shows fluctuating trend with highest value (2.1 K day−1) at 300 m and a secondary peak at 1200 m altitudes, whereas the AN profile shows increasing trend with highest value (1.82 K day−1) at 1200 m altitude.  相似文献   

20.
Long-term observations of the nitrate radical concentration and supporting parameters in the continental boundary layer at the rural site Lindenberg near Berlin, Germany, were performed using differential optical absorption spectroscopy (DOAS). Average nighttime NO3 levels were 4.6 ppt, while NO3 steady-state lifetimes (calculated from the NO2–O3 product and the NO3 concentration) varied between 5 s and 615 s with an average of 92 s. The long-term observations offered the possibility to study the importance of NO3 for the oxidation of VOCs (volatile organic compounds) and its contribution in the non-photochemical removal of NOx from the atmosphere in different seasons. Analysis of the data showed, that NO3 was depleted by both, reactions with VOCs and indirectly by loss of N2O5 on aerosol surfaces. A clear seasonal variation of the sink distribution was found. The VOC sink dominated during summer while indirect loss was of major importance during the winter months. The results are compared with former long-term campaigns of NO3 in the marine boundary layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号