首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Black crusts (BC) on selenite, i.e. gypsum stone used in buildings and monuments in the city of Bologna (northern Italy) have been studied.The crusts have been compared with genetically identical ones encountered on gypsum outcrops in the area surrounding the same city, in a relatively clean rural environment.Because of gypsum's high solubility, also in the past, BC began to form and embed particles of atmospheric aerosol as soon as the stone was used in construction, even though the SO2 levels in the air were probably much lower than today. Unlike other types of stone (sandstone, limestone, marbles), selenite is currently undergoing a deceleration of dissolution processes, following the acidification of the environment caused by industrialisation. For this reason the BC on selenite are older (up to 580±45 yr), thicker (up to 4 cm) and far more stable than those encountered on other types of building stones used in the same area.The BC are stratified: at the base, in contact with the stone, the crust contains numerous prismatic black particles originating from wood combustion; immediately above the base layer these particles progressively increase; finally, in the outer part of the crust one encounters the characteristic black, spongy spherical fly-ash originating from the combustion of mineral oils.From the chemical point of view, a comparison between urban and rural crusts shows that elements such as C, Si, K, Fe, V, Cr, Ni, Zn, Ga, As and Pb are due to present-day and/or past pollutant sources within the city itself.Moreover, the chemical data from the stratigraphy of the BC show that, while C and K were more abundant in the past than now, elements such as Fe, V, Cr, (Mn, Ni), Cu, (Zn), (Ga), As, Pb characterise recent and current urban atmospheres.  相似文献   

2.
Black layers on historical architecture   总被引:3,自引:1,他引:2  

Background, aim and scope

The external surface of any building in urban polluted environment is unavoidably destined to be covered with layers that assume a grey to black colour and are generally called ‘black crusts’. These, according to standard protocols and glossary, are deteriorated surface layers of stone material; they can have variable thickness, are hard and fragile and can detach spontaneously from the substrate, which, in general, is quite decayed. Plain visual examination may lead to consider ‘black crusts’ all similar, whilst only a careful diagnostic investigation can distinguish ‘black crusts’ and the consequences of their formation on stone substrates. In this paper, various black layers on marble are studied and compared and the morphological and compositional characteristics discussed according to the related mechanisms of formation. Differences between old (hundred years) and recent crusts (30 years) are investigated and pointed out.

Materials and methods

Samples of black crusts collected from the Milan Cathedral façade (Candoglia Marble) have been studied and compared with the careful and synergic employ of traditional techniques: optical (transmission and reflected VIS light) and electron microscopy, X-ray spectrometry and micro-Fourier transform infrared spectroscopy.

Results

Visual examination of loose fragments does not allow to point out outstanding differences amongst the various samples; black layers have similar main mineral components, gypsum and airborne particles, with different spatial distribution. The microscopic studies allowed to point out the porosity differences, the gypsum crystallisation habit, different amount of embedded particles, level and progress of marble decay.

Discussion

The observations lead to define three main types of black crusts: black crust deriving from marble sulphation, compact deposit and encrustation due to exogenic materials deposition. Black crusts show evidence of sulphation in progress, without a clear continuity solution between crust and marble; the lack of separation is particularly evident in ‘recent’ crust, where the sulphation process is more active. Black compact deposits show a higher porosity than black crusts because gypsum is not coming from the chemical corrosion of the substrate but from outside; actually, in the former case, the substrate is sound. Encrustations show a highly regular crystal organisation of gypsum (close packed tabular crystals) that cannot be traced back to casual atmospheric deposit or to corrosion of the substrate but rather to the crystallisation of a solution coming from an external source. Also in this case, the marble is sound; evidence of the effect of some protection treatment is pointed out.

Conclusions

In spite of the apparent similarity of the examined samples, analytical results have evidenced three main types of black crusts: black crust with decayed substrate, compact deposit and black encrustation showing a sound substrate underneath. Experimental evidence of calcite grains sulphation in progress, taking place according to a model recently proposed, has been observed. Sulphation process is prevented where particular conservation treatments had been applied in the past.

Recommendations and perspectives

New experimental studies can be focussed to understand the specific conditions (measurements of micro-climatic and thermodynamic parameters) and mechanisms for black crusts formation in situ. The problem of the kinetic of the sulphation process of marble, the assessment of black layers formation in the case of different carbonate stone materials and the study of acid attack in presence of surface protecting layers deserve further investigation.  相似文献   

3.
Experimental conditions characteristic of the urban pollution in many European cities over the last decades were reproduced in a simulation chamber in which samples of limestone were exposed for a period of 12 months, both naked or sprinkled with carbonaceous fly-ash. In agreement with the findings reported in the literature the fly-ash emitted by heavy fuel combustion are highly reactive, undergoing chemical and morphological transformations which give rise to crystals growth, especially gypsum. The development of gypsum crystals was observed overall in close proximity of fly-ash anchoring them to the limestone surface. Samples of the same limestone exposed in the field in a polluted environment for the same period of time led to similar results. The preliminary mechanisms leading to the genesis of sulphated black crusts in polluted environments were thus highlighted. Because of their roughness the embryonic black crusts increase the development of the crust by trapping new particles. This trapping is also facilitated by the wetness of the stone surface leading to the development of hydrated mineral (gypsum) in the water meniscus between fly-ash and stone surface.  相似文献   

4.
Black crusts are recognized to have been, up to now, one of the major deterioration forms affecting the built heritage in urban areas. Their formation is demonstrated to occur mainly on carbonate building materials, whose interaction with an SO2-loaded atmosphere leads to the transformation of calcium carbonate (calcite) into calcium sulfate dihydrate (gypsum) which, together with embedded carbonaceous particles, consequently forms the black crusts on the stone surface. An analytical study was carried out on black crust samples collected from limestone monumental buildings and churches belonging to the European built Heritage, i.e., the Corner Palace in Venice (Italy), the Cathedral of St. Rombouts in Mechelen (Belgium), and the Church of St. Eustache in Paris (France). For a complete characterization of the black crusts, an approach integrating different and complementary techniques was used, including laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), Fourier transform infrared spectroscopy, optical and scanning electron microscopy. In particular, the application of LA-ICP-MS permitted to obtain a complete geochemical characterization in terms of trace elements of the black crusts from the inner parts to the external layers contributing to the identification of the major combustion sources responsible for the deterioration over time of the monuments under study. In addition, the obtained results revealed a relation between the height of sampling and the concentration of heavy metals and proved that the crust composition can be a marker to evaluate the variation of the fuels used over time.  相似文献   

5.
The processes occurring during the initial stages of size-selected sampling of atmospheric aerosol matter were explored by means of high-resolution scanning electron microscopy and energy dispersive X-ray spectrometry. The final four stages of a Berner impactor served to collect particles with aerodynamic diameters between 60 nm and 1 μm on polished silicon substrates at sampling times between 10 s and 16 min. In the single-particle impact regime (fractional coverage below 5%), most of the particles produced circular black tracks, of which 15 to 30% contained cores of carbonaceous nanoparticles. At a fractional coverage above about 10%, initially generated deposits became increasingly active as centres of preferred aerosol collection. As a result, the number of black spots remained almost constant, but the area per spot increased rapidly. At this stage of fractional coverage, structured aerosol matter became visible within large black areas of random shape. The deposits showed clear evidence for the onset of phase separation between carbon nanoparticles and material rich in sulphur, probably a mixture of alkaline and alkaline earth sulphates. After some time of sample storage in air the low-coverage sulphate matter tended to attain a fractal pattern. At a fractional coverage of several hundred per cent, large amorphous or crystalline objects had grown, but 30% or more of the nominal impact area still did not contain any aerosol matter. Moreover, carbon nanoparticles were found to be phase separated from the newly grown, very uniform aerosol material. The observations imply that sub-micrometer aerosol matter collected in impactors has lost memory of the original particle morphology.  相似文献   

6.
It has been postulated that atmospheric pathways may comprise a significant source of nitrogen for aquatic ecosystems and excess atmospheric deposition to coastal areas may be a major cause of eutrophication. Dry deposition of nitrogen containing particles is a potential, but poorly quantified pathway, for atmospheric nitrogen flux. This pathway is not well quantified because deposition velocities for particles are difficult to calculate and incorporate substantial uncertainties. Herein we employ an amended version of the Hummelshøj et al. (1992, Proceedings of the 5th International Conference on Precipitation Scavenging and Atmosphere–Surface Exchange Processes. AMS, Richland, Washington, USA, 12pp.) model to calculate size-segregated dry deposition of particle inorganic nitrogen compounds to the western Baltic during the late Spring of 1997 based on data collected as part of the Air–Sea Exchange Process Study (ASEPS). The results show that over a 15 d period in April and May dry deposition fluxes varied between 30 and 400 μg m-2 d-1 for nitrate and 1 and 120 μg m-2 d-1 for ammonium. Sensitivity analyses run to assess the potential bounds on actual dry deposition indicate that, for reasonable variation of model parameters and formulation, particle nitrogen dry deposition may be varied by up to an order of magnitude. The primary sources of uncertainty are identified and are discussed in the context of alternative model formulations.  相似文献   

7.
Intensive aircraft- and ground-based measurements of ultrafine to supermicron particles in the Osaka metropolitan area, Japan, were carried out on 17–19 March 2003, in order to investigate vertical profiles of size-resolved particles in the urban atmosphere. Differently sized particles were observed at different altitudes on 19 March. Relatively higher concentrations of ultrafine particles (31 nm) and submicron particles (0.3–0.5 μm) were measured (100–200 cm−3) at altitudes of 300 and 600 m, whereas supermicron particles (2–5 μm) were present (300–600 cm−3) at higher altitudes (1300 m in the morning and 2200 m in the afternoon). The chemical composition analysis showed that supermicron particles evidently comprised mainly soil particles mixed internally with anthropogenic species such as carbonaceous components and sulfate. Numerical simulation using the Chemical weather FORecasting System (CFORS) suggested the long-range transport of soil dust and black carbon from the Asian continent. Total number concentrations of particles sized 10–875 nm ranged from 4.8×103 to 3.0×104 cm−3 at an altitude of 300 m and from 7.3×102 to 4.8×103 cm−3 at an altitude of 1300 m. Total number concentrations of particles sized 10–875 nm correlated very well with NOX concentrations, and, therefore, ultrafine and submicron particles were likely emitted from urban activities such as car traffic and vertically transported. Number size distributions at lower altitudes obtained by aircraft measurements were similar to those obtained by ground measurements, with modal diameters of 20–30 nm on 18 March and about 50 nm on 19 March.  相似文献   

8.
Because aerosol particle deposition is an important factor in indoor air quality, many empirical and theoretical studies have attempted to understand the process. In this study, we estimated the deposition rate of aerosol particles on smooth aluminum surfaces inside a test chamber. We investigated the influence of turbulent intensity due to ventilation and fan operation. We also investigated two important processes in particle deposition: turbophoresis, which is significant for micron particles, and coagulation, which is relevant to ultrafine particles (UFP diameter <0.1 μm) at high particle concentrations. Our analysis included semi-empirical estimates of the deposition rates that were compared to available deposition models and verified with simulations of an aerosol dynamics model. In agreement with previous studies, this study found that induced turbulent intensity greatly enhanced deposition rates of fine particles (FP diameter <1 μm). The deposition rate of FP was proportional to the ventilation rate, and it increased monotonically with fan speed. With our setup, turbophoresis was very important for coarse particles larger than 5 μm. The coagulation of aerosol particles was insignificant when the particle concentration was less than 104 cm?3 during fan operation. The model simulation results verified that the aerosol dynamics module incorporated in our Multi-Compartment and Size-Resolved Indoor Aerosol Model (MC-SIAM) was valid. The behavior of aerosol particles inside our chamber was similar to that found in real-life conditions with the same ventilation rates (0.018–0.39 h?1) and similar air mixing modes. Therefore, our findings provide insight into indoor particle behavior.  相似文献   

9.
Even though dry deposition and air–water exchange of semivolatile organic compounds (SOCs) are important for surfaces in and around the urban areas, there is still no generally accepted direct measurement technique for dry deposition. In this study, a modified water surface sampler (WSS) configuration, including a filter holder and an XAD-2 resin column, was employed to investigate the polycyclic aromatic hydrocarbon (PAH) dry deposition in an urban area. The measured total (particle+dissolved) PAH fluxes to the WSS averaged to be 34 960±16 540 ng m−2 d−1. Average particulate PAH flux, determined by analyzing the filter in the WSS, was about 8% of the total PAH flux. Temporal flux variations indicated that colder months (October–April) had the highest PAH fluxes. This increase could be attributed to the residential heating as well as meteorological effects including lower mixing height. A high volume air sampler was concurrently employed to collect ambient air concentrations. The average total (gas+particle) atmospheric PAH concentration (456±524 ng m−3) was within the range of previously measured values at different urban locations. PAH concentrations in urban areas are more than two orders of magnitude higher than those measured in pristine areas and this result may indicate that urban areas have major source sectors and greater deposition rates are expected near to these areas. The average contribution of particle phase was about 10% in total concentration. Simultaneous particulate phase dry deposition and ambient air samples were collected in this study. Then, particulate phase apparent dry deposition velocities were calculated using the fluxes and concentrations for each PAH compound and they ranged from 0.1 to 1.2 cm s−1. These values are in good agreement with previously reported values.  相似文献   

10.
In order to characterize atmospheric aerosol in the São Paulo Metropolitan Area, aerosols were sampled during the winter months of August 1999 and August 2000. A micro-orifice uniform deposit impactor (MOUDI) was used. Samples were submitted to gravimetry, as well as to proton-induced X-ray emission (PIXE), carbon (black and organic) and ion-chromatography analysis. These analyses supplied information about mass concentrations and physicochemical properties of the particles. Due to the higher humidity, which can increase soluble particles diameters, and reduced atmospheric stagnation seen in 2000, average PM10 concentrations were higher (105 μg m−3) in the winter of 1999 than in the winter of 2000 (60 μg m−3). The PIXE analysis revealed metals and metal compounds, soil-derived elements, Si-rich particles, sulfates, carbonates, chlorides and other anthropogenic air-borne particles, supposing molecules in their usual composition. Mass balance for PM2.5 revealed significant participation of organic and black carbon, probably resulting from diesel burning by the heavy-duty fleet.  相似文献   

11.
The interaction of NO2 on carbonaceous aerosol particles in an NO2 concentration range relevant for the troposphere was studied. The adsorption as a function of NO2 concentration (2.5–65 ppb) was investigated along with the dependence on time (1–600 s) and particle concentration. The results exhibit a zero-order process in NO2 for the chemisorption over the measured time and concentration range. The results suggest that the chemisorption reaction is limited by a rapidly established steady-state coverage of a precursor in the form of reversibly adsorbed NO2 which seems to be constant over the whole investigated NO2 concentration range. Within the first 20 s, a chemisorption rate of 2.5×1011 molecules cm-2 s-1 was calculated. To estimate a saturation value for the NO2 adsorption on carbonaceous aerosol particles, bulk experiments were performed where the aerosol was deposited on a filter before exposure to NO2. This gives a lower limit for the total NO2 adsorption of about 1×1014 molecules cm-2 of particle surface area. The measurements show that the concept of the often used sticking coefficient γ (i.e. the number of adsorbed molecules per number of the total gas–surface collisions) is not a useful parameter to describe the chemisorption of NO2 at low ppb concentration on such complex surfaces as carbonaceous aerosol particles.  相似文献   

12.
This work presents mineralogical and chemical characteristics of weathering crusts developed on sandstones exposed to various air pollution conditions. The samples have been collected from sandstone tors in the Carpathian Foothill and from buildings in Kraków. It has been stated that these crusts differ in both fabric and composition. The sandstone black crust from tors is rich in organic matter and composed of amorphous silica. Sulphate incrustations accompanied by dust particles have been only sometimes observed. Beneath the black crust, a zone coloured by iron (oxyhydr)oxides occurs. The enrichment of the surface crust in silica and iron compounds protects the rock interior from atmospheric impact. The sandstones from architectonic details are also covered by a thin carbon-rich black crust, but they are visibly loosened. Numerous salts, mainly gypsum and halite, crystallise here, thus enhancing deterioration of the rock. Moreover, spherical particles originated from industrial emissions are much more common. Gypsum in natural outcrops, forms isolated and well-developed crystals, whilst these found on the architectonic details are finer and densely cover the surface. Such diversity reflects various concentrations of acid air pollutants in solutions.  相似文献   

13.
There is scant information related to heterogeneous indoor chemistry at ozone concentrations necessary for the effective disinfection of buildings, i.e., hundreds to thousands of ppm. In the present study, 24 materials were exposed for 16 h to ozone concentrations of 1000–1200 ppm in the inlet streams of test chambers. Initial ozone deposition velocities were similar to those reported in the published literature for much lower ozone concentrations, but decayed rapidly as reaction sites on material surfaces were consumed. For every material, deposition velocities converged to a relatively constant, and typically low, value after approximately 11 h. The four materials with the highest sustained deposition velocities were ceiling tile, office partition, medium density fiberboard and gypsum wallboard backing. Analysis of ozone reaction probabilities indicated that throughout each experiment, and particularly after several hours of disinfection, surface reaction resistance dominated the overall resistance to ozone deposition for nearly all materials. Total building disinfection by-products (all carbonyls) were quantified per unit area of each material for the experimental period. Paper, office partition, and medium density fiberboard each released greater than 38 mg m−2 of by-products.  相似文献   

14.
Black carbon (soot) concentrations have been measured in rain water, snow samples and near surface air at several locations in Nova Scotia, Canada. The average black carbon concentration in near surface air in summer was found to be 0.54 μg m-3 compared to 1.74 μg m-3 in the winter season. These values are comparable to black carbon concentrations found in other mid-size urban areas. The black carbon concentration in rain water and snow samples varied between an undetectable amount to about 20 μg kg-1 of rain (or melt) water. The relatively low concentrations of black carbon in precipitation are attributed to extratropical cyclones that often develop off-shore to the east and south of Nova Scotia in relatively clean conditions of the marine boundary layer.  相似文献   

15.
Ozone concentrations that are several orders of magnitude greater than typical urban ambient concentrations are necessary for gas-phase ozonation of buildings, either for deodorization or for disinfection of biological agents. However, there is currently no published literature on the interaction of building materials and ozone under such extreme conditions. It would be useful to understand, for example in the case of building re-occupation planning, what types and amounts of reaction products may form and persist in a building after ozonation. In this study, 24 materials were exposed to ozone at concentrations of 1000 ppm in the inlet stream of experimental chambers. Fifteen target carbonyls were selected and measured as building ozonation by-products (BOBPs). During the 36 h that include the 16 h ozonation and 20 h persistence phase, the total BOBP mass released from flooring and wall coverings ranged from 1 to 20 mg m−2, with most of the carbonyls being of lower molecular weight (C1–C4). In contrast, total BOBP mass released from wood-based products ranged from 20 to 100 mg m−2, with a greater fraction of the BOBPs being heavier carbonyls (C5–C9). The total BOBP mass released during an ozonation event is a function of both the total surface area of the material and the BOBP emission rate per unit area of material. Ceiling tile, carpet, office partition, and gypsum wallboard with flat latex paint often have large surface areas in commercial buildings and these same materials exhibited relatively high BOBP releases. The greatest overall BOBP mass releases were observed for three materials that building occupants might have significant contact with: paper, office partition, and medium density fiberboard, e.g., often used in office furniture. These materials also exhibited extended BOBP persistence following ozonation; some BOBPs (e.g., nonanal) persist for months or more at emission rates large enough to result in indoor concentrations that exceed their odor threshold.  相似文献   

16.
A winter PM2.5 episode that achieved a maximum 24-h average of 138 μg m−3 at the Fresno Supersite in California's San Joaquin Valley between 2 and 12 January, 2000 is examined using 5-min to 1-h continuous measurements of mass, nitrate, black carbon, particle-bound PAH, and meteorological measurements. Every day PM2.5 sampling showed that many episodes, including this one, are missed by commonly applied sixth-day monitoring, even though quarterly averages and numbers of US air quality standard exceedances are adequately estimated. Simultaneous measurements at satellite sites show that the Fresno Supersite represented PM2.5 within the city, and that half or more of the urban concentrations were present at distant, non-urban locations unaffected by local sources. Most of the primary particles accumulated during early morning and nighttime, decreasing when surface temperatures increased and the shallow radiation inversion coupled to a valleywide layer. When this coupling occurred, nitrate levels increased rapidly over a 10–30 min period as black carbon and gaseous concentrations dropped. This is consistent with a conceptual model in which secondary aerosol forms above the surface layer and is effectively decoupled from the surface for all but the late-morning and early afternoon period. Primary pollutants, such as organic and black carbon, accumulate within the shallow surface layer in urban areas where wood burning and vehicle exhaust emissions are high. Such a model would explain why earlier studies find nitrate concentrations to be nearly the same among widely separated sites in urban areas, as winds aloft of 1 to 6 m s−1 could easily disperse the elevated aerosol throughout the valley.  相似文献   

17.
《Chemosphere》2007,66(11):2477-2484
Atmospheric Hg transfer to the forest soil through litterfall was investigated in a primary rainforest at Ilha Grande (Southeast Brazil) from January to December 1997. Litter mass deposition reached 10.0 t ha−1 y−1, with leaves composing 50–84% of the total litter mass. Concentrations of Hg in the total fallen litter varied from 20 to 244 ng g−1, with higher concentrations during the dry season, between June and August (225 ± 17 ng g−1), and lower concentrations during the rainy season (99 ± 54 ng g−1). This seasonal variability was reflected in the Hg flux through litterfall, which corresponded to a Hg input to the forest floor of 122 μg m−2 y−1, with average Hg deposition of 16.5 ± 1.5 μg m−2 month−1 during and just after the dry season (June–September) and 7.0 ± 3.6 μg m−2 month−1 in the rest of the year. The variability in meteorological conditions (determining atmospheric Hg availability to foliar scavenging) may explain the pulsed pattern of Hg deposition, since litterfall temporal variability was generally unrelated with such deposition, except by a peak in litterfall production in September. Comparisons with regional data on Hg atmospheric deposition show that litterfall promotes Hg deposition at Ilha Grande two to three orders of magnitude higher than open rainfall deposition in non-industrialized areas and approximately two times higher than open rainfall deposition in industrialized areas in Rio de Janeiro State. The observed input suggests that atmospheric Hg transfer through litterfall may explain a larger fraction of the total Hg input to forest soils in Southeast Brazil than those recorded at higher latitudes.  相似文献   

18.
In order to increase knowledge of aerosol dry deposition for the regional assessment of acid deposition and transboundary air pollution in East Asia, an experimental study on PM2.5 sulfate deposition was implemented in the early summer of 2009. The experimental field was located in a deciduous forest at the foot of Mt. Asama, central Japan. Aerosol fluxes were obtained using the aerodynamic gradient method. Three aerosol samplers were placed on an experimental tower at 21, 24 and 27 m above the ground surface, and collected PM2.5 on filters for chemical analysis. Vertical concentration differences between 21 m and 27 m of PM2.5 sulfate were detected significantly when the concentration exceeded 1 μg m?3. Mean deposition velocity was estimated to be 0.9 ± 1.0 cm s?1 in the daytime and 0.3 ± 0.3 cm s?1 in the nighttime. In the case that a height-dependent correction in the roughness sub-layer was taken into account, the deposition velocities increased more, especially in daytime. Higher deposition velocities in the daytime were associated with larger friction velocities and unstable conditions. The deposition velocities observed in this study were in agreement with other experimental results found in the literature. On the other hand, they were higher than those calculated by theoretical models. Two empirical parameterizations (Wesely, M.L., Cook, D.R., Hart, R.L., 1985. Measurement and parameterization of particulate sulfur dry deposition over grass. Journal of Geophysical Research 90, 2131–2143; Ruijgrok, W., Tieben, H., Eisinga, P., 1997. The dry deposition of particles to a forest canopy: a comparison of model and experimental results. Atmospheric Environment 31, 399–415) were validated by the observations. The general trend of higher daytime and lower nighttime deposition velocities was similar among the observation and the two parameterizations. The large variability found in the measurement was not reproduced by the parameterizations, because it is attributable to random error from the differences between the samplers. The observations were in accordance with the parameterization of Ruijgrok et al. (1997) for a forest, although much larger than that of Wesely et al. (1985) for grasslands. This indicates the large difference in aerosol deposition velocities between forests and grasslands.  相似文献   

19.
In this paper, we report the results and analysis of a recent field campaign in August 2007 investigating the impacts of emissions from transportation on air quality and community concentrations in Beijing, China. We conducted measurements in three different environments, on-road, roadside and ambient. The carbon monoxide, black carbon and ultrafine particle number emission factors for on-road light-duty vehicles are derived to be 95 g kg?1-fuel, 0.3 g kg?1-fuel and 1.8 × 1015 particles kg?1-fuel, respectively. The emission factors for on-road heavy-duty vehicles are 50 g kg?1-fuel, 1.3 g kg?1-fuel and 1.1 × 1016 particles kg?1-fuel, respectively. The carbon monoxide emission factors from this study agree with those derived from remote sensing and on-board vehicle emission testing systems in China. The on-road black carbon and particle number emission factors for Chinese vehicles are reported for the first time in the literature. Strong traffic impacts can be observed from the concentrations measured in these different environments. Most clear is a reflection of diesel truck traffic activity in black carbon concentrations. The comparison of the particle size distributions measured at the three environments suggests that the traffic is a major source of ultrafine particles. A four-day traffic control experiment conducted by the Beijing Government as a pilot to test the effectiveness of proposed controls was found to be effective in reducing extreme concentrations that occurred at both on-road and ambient environments.  相似文献   

20.
A three-dimensional dispersion model has been implemented over the urban area of Stockholm (35×35 km) to assess the spatial distribution of number concentrations of particles in the diameter range 3–400 nm. Typical number concentrations in the urban background of Stockholm is 10 000 cm−3, while they are three times higher close to a major highway outside the city and seven times higher within a densely trafficked street canyon site in the city center. The model, which includes an aerosol module for calculating the particle number losses due to coagulation and dry deposition, has been run for a 10-day period. Model results compare well with measured data, both in levels and in temporal variability. Coagulation was found to be of little importance in terms of time averaged concentrations, contributing to losses of only a few percent as compared to inert particles, while dry deposition yield particle number losses of up to 25% in certain locations. Episodic losses of up to 10% due to coagulation and 50% due to deposition, are found some kilometers downwind of major roads, rising in connection with low wind speed and suppressed turbulent mixing. Removal due to coagulation and deposition will thus be more significant for the simulation of extreme particle number concentrations during peak episodes.The study shows that dispersion models with proper aerosol dynamics included may be used to assess particle number concentrations in Stockholm, where ultrafine particles principally originate from traffic emissions. Emission factors may be determined from roadside measurements, but ambient temperature must be considered, as it has a strong influence on particle number emissions from vehicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号