首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Irish peatland ecosystems have been shown to be important sources of low molecular weight halocarbons. Emission of CH3Br, CH3Cl, CH3I and CHCl3 was recorded from all peatland sites monitored, with minor flux of other halocarbons at certain sites. Fluxes were found to be highly linked to incident light, with strong diurnal cycles recorded at all open peatland sites. Estimates of halomethane emissions, particularly from coastal peatland and conifer plantation forest floor sites, suggests that these ecosystems may make a significant contribution to the global budgets of several important halocarbons. Global annual fluxes of 4.7 (0.1–151.9), 0.9 (0.1–3.3), 5.5 (0.9–43.4), and 1.4 (0.1–12.8) Gg yr−1 for CHCl3, CH3Br, CH3Cl, and CH3I, respectively, were determined for peatland ecosystems.  相似文献   

2.
Unique daily measurements of water-soluble organics in fine (<2 μm) and coarse (>2 μm) aerosols were conducted at Alert in the Canadian Arctic in winter to spring of 1992. They yield insight into photochemical production and loss of organics during long-range transport and ozone depletion events following polar sunrise. Comprehensive analyses of α, ω-dicarboxylic acids (C2–C12), ω-oxocarboxylic acids (C2–C9) and α-dicarbonyls (C2, C3) as well as pyruvic acid and aromatic (phthalic) diacid were conducted using GC and GC/MS techniques. Oxalic (C2) acid was generally the dominant diacid species in both fine and coarse fractions, followed by malonic (C3) and succinic (C4) acids. Concentrations of total diacids in the fine aerosol fraction (0.2–64 ng m−3) were 5–60 times higher than those in the coarse fraction (0.01–3 ng m−3). After polar sunrise in early-March, the total concentration of fine aerosol diacids increased by a factor of 3–5 while the coarse mode did not change significantly. From dark winter to sunlit spring, temporal changes in correlations and ratios of these water-soluble organics to vanadium and sulfate measured simultaneously suggest that atmospheric diacids and related organic compounds are largely controlled by long-range atmospheric transport of polluted air during winter, but they are significantly affected by photochemical production. The latter can occur in sunlight either during transport to the Arctic or during photochemical events associated with surface ozone depletion and bromine chemistry near Alert in spring. Conversion of gaseous precursors to particulate matter via photochemical oxidation was intensified at polar sunrise, resulting in a peak in the ratio of total diacids to V. During ozone depletion events, complex patterns are indicated in photochemical production and loss depending on the diacid compound. Unsaturated (maleic and phthalic) diacids were inversely correlated with particulate Br whereas saturated diacids (C2–C4) positively correlated with particulate Br. These results suggest that Br chemistry associated with ozone depletion leads to degradation of unsaturated diacids and to the production of smaller saturated diacids.  相似文献   

3.
Acetaldehyde (CH3CHO) and acetone (CH3C(O)CH3) concentrations in ambient air, in snowpack air, and bulk snow were determined at Alert, Nunavut, Canada, as a part of the Polar Sunrise Experiment (PSE): ALERT 2000. During the period of continuous sunlight, vertical profiles of ambient and snowpack air exhibited large concentration gradients through the top ∼10 cm of the snowpack, implying a flux of carbonyl compounds from the surface to the atmosphere. From vertical profile and eddy diffusivity measurements made simultaneously on 22 April, acetaldehyde and acetone fluxes of 4.2(±2.1)×108 and 6.2(±4.2)×108 molecules cm−2 s−1 were derived, respectively. For this day, the sources and sinks of CH3CHO from gas phase chemistry were estimated. The result showed that the snowpack flux of CH3CHO to the atmosphere was as large as the calculated CH3CHO loss rate from known atmospheric gas phase reactions, and at least 40 times larger (in the surface layer) than the volumetric rate of acetaldehyde produced from the assumed main atmospheric gas phase reaction, i.e. reaction of ethane with hydroxyl radicals. In addition, acetaldehyde bulk snow phase measurements showed that acetaldehyde was produced in or on the snow phase, likely from a photochemical origin. The time series for the observed CH3C(O)CH3, ozone (O3), and propane during PSE 1995, PSE 1998, and ALERT 2000 showed a consistent anti-correlation between acetone and O3 and between acetone and propane. However, our data and model simulations showed that the acetone increase during ozone depletion events cannot be explained by gas phase chemistry involving propane oxidation. These results suggest that the snowpack is a significant source of acetaldehyde and acetone to the Arctic boundary layer.  相似文献   

4.
Frequent smog episodes occur during spring, summer, and autumn in Insubria, Northern Italy. On a test site in this area the atmospheric concentration of the photo-oxidants ozone and peroxyacetyl nitrate has been monitored over a year (2000) together with ozone precursors listed in the European Union Air Quality Directive 2002/3/EC, such as nitrous oxides (NOX) and volatile organic compounds (VOC) including hydrocarbons and carbonyls. The results of this study revealed a strong impact of biogenic isoprene on the air quality.In winter isoprene was detected at the ppt level and correlated with anthropogenic VOC. However, during the growing season isoprene exhibited a distinct diurnal variation with maximum concentrations late in the afternoon reaching up 70 ppbC attributed to strong emissions from the abundant vegetation of broad-leaf deciduous trees in this area. A new HPLC-MS method was developed for the determination of isoprene's primary atmospheric oxidation products methacrolein as its 2,4-dinitrophenylhydrazone and methyl vinyl ketone as an unusual double derivative with 2,4-dinitrophenylhydrazine. Methacrolein and methyl vinyl ketone followed the same diurnal and annual trends as isoprene. The average monthly concentration of isoprene and these products ranged from around 10 ppbC in June, July and September to 20 ppbC in August, which constitutes 15–30% of C3–C9 VOCs. The contribution from isoprene photo-oxidation to the ambient air formaldehyde concentrations was also found to be high during this period ranging from 30% to 60% in May, June, July and August.From the atmospheric VOC and NOX concentrations the local photochemical ozone formation was estimated by the incremental reactivity approach. The calculations showed that in summer isoprene's contribution to the local ozone formation was as high as 50–75%.  相似文献   

5.
A budget for the methane (CH4) cycle in the Xilin River basin of Inner Mongolia is presented. The annual CH4 budget in this region depends primarily on the sum of atmospheric CH4 uptake by upland soils, emission from small wetlands, and emission from grazing ruminants (sheep, goats, and cattle). Flux rates for these processes were averaged over multiple years with differing summer rainfall. Although uplands constitute the vast majority of land area, they consume much less CH4 per unit area than is emitted by wetlands and ruminants. Atmospheric CH4 uptake by upland soils was ?3.3 and ?4.8 kg CH4 ha?1 y?1 in grazed and ungrazed areas, respectively. Average CH4 emission was 791.0 kg CH4 ha?1 y?1 from wetlands and 8.6 kg CH4 ha?1 y?1 from ruminants. The basin area-weighted average of all three processes was 6.8 kg CH4 ha?1 y?1, indicating that ruminant production has converted this basin to a net source of atmospheric CH4. The total CH4 emission from the Xilin River basin was 7.29 Gg CH4 y?1. The current grazing intensity is about eightfold higher than that which would result in a net zero CH4 flux. Since grazing intensity has increased throughout western China, it is likely that ruminant production has converted China's grazed temperate grasslands to a net source of atmospheric CH4 overall.  相似文献   

6.
The new National Ambient Air Quality Standard for ozone in the US uses 8 h averaging for the concentration. Based on the 1993 ambient data for Southern California, 8 h averaging has a moderate tendency to move the location of the peak ozone concentration east of the location of the peak 1 h ozone concentration. Reducing the area-wide peak 8 h ozone concentration to 80 ppb would require an effective reduction of the area-wide peak 1 h ozone concentration to around 90 ppb. The Urban Airshed Model with improved numerical solvers, meteorological input based on a mesoscale model and an adjusted emissions inventory was used to study the effect of reactive organic gases (ROG) and NOx controls on daily-maximum and peak 8 h ozone concentrations under the 26–28 August 1987 ozone episodic conditions in Southern California. The NOx disbenefit remains prominent for the case of 8 h ozone concentration but is somewhat less prominent, especially when areal ozone exposure is considered, than the case for 1 h ozone concentration. The role of two indicators – O3/NOy and H2O2/HNO3 – for NOx- and ROG-sensitivity for 1 and 8 h ozone concentrations were also studied. In general, the indicator trends are consistent with model predictions, but the discriminating power of the indicators is rather limited.  相似文献   

7.
During the continuous monitoring of atmospheric parameters at the station Cape Point (34°S, 18°E), a smoke plume originating from a controlled fire of 30-yr-old fynbos was observed on 6 May 1997. For this episode, which was associated with a nocturnal inversion and offshore airflow, atmospheric parameters (solar radiation and meteorological data) were considered and the levels of various trace gases compared with those measured at Cape Point in maritime air. Concentration maxima in the morning of 6 May for CO2, CO, CH4 and O3 amounted to 370.3 ppm, 491 ppb, 1730 ppb and 47 ppb, respectively, whilst the mixing ratios of several halocarbons (F-11, F-12, F-113, CCl4 and CH3CCl3) remained at background levels. In the case of CO, the maritime background level for this period was exceeded by a factor of 9.8. Differences in ozone levels of up to 5 ppb between air intakes at 4 and 30 m above the station (located at 230 m above sea level) indicated stratification of the air advected to Cape Point during the plume event. Aerosols within the smoke plume caused the signal of global solar radiation and UV–A to be attenuated from 52.4 to 13.0 mW cm−2 and from 2.3 to 1.3 mW cm−2, respectively, 5 h after the trace gases had reached their maxima. Emission ratios (ERs) calculated for CO and CH4 relative to CO2 mixing ratios amounted to 0.042 and 0.0040, respectively, representing one of the first results for fires involving fynbos. The CO ER is somewhat lower than those given in the literature for African savanna fires (average ER=0.048), whilst for CH4 the ER falls within the range of ERs reported for the flaming (0.0030) and smouldering phases (0.0055) of savanna fires. Non-methane hydrocarbon (NMHC) data obtained from a grab sample collected during the plume event were compared to background levels. The highest ERs (ΔNMHC/ΔCH4) have been obtained for the C2–C3 hydrocarbons (e.g. ethene at 229.3 ppt ppb−1), whilst the C4–C7 hydrocarbons were characterised by the lowest ERs (e.g. n-hexane at 1.0 and n-pentane at 0.8 ppt ppb−1).  相似文献   

8.
Analysis of time series and trends of nitrous oxide (N2O) and halocompounds weekly monitored at the Mediterranean island of Lampedusa are discussed. Atmospheric N2O levels showed a linear upward growth rate of 0.78 ppb yr?1 and mixing ratios comparable with Northern Hemisphere global stations. CFC-11 and CFC-12 time series displayed a decline consistent with their phase-out. Chlorofluorocarbons (CFCs) replacing compounds and SF6 exhibited an increasing temporal behaviour. The most rapid growth rate was recorded for HFC-134a with a value of 9.6% yr?1. The industrial solvents CCl4 and CH3CCl3, banned by the Montreal Protocol, showed opposite trends. While CH3CCl3 reported an expected decay of ?1.8 ppt yr?1, an increasing rate of 5.7 ppt yr?1 was recorded for CCl4 and it is probably related to its relatively long lifetime and persisting emissions. Chlorinated halomethanes showed seasonality with a maximum in early April and a minimum at the end of September. Halon-1301 and Halon-1211 displayed a decreasing trend consistent with industry emission estimates.An interspecies correlation analysis gave positive high correlations between HCFC-22 and HFC-134a (+0.84) highlighting the common extensive employment as refrigerants. Sharing sources inferred the high coupling between CH3Cl and CH3Br (+0.73) and between CHCl3 and CH2Cl2 (+0.77). A singular strong relationship (+0.55) between HFC-134a and CH3I suggested the influence of an unknown anthropogenic source of CH3I.Constraining of source and sink distribution was carried out by transport studies. Results were compared with the European Environment Agency (EEA) emission database. In contrast with the emission database results, our back trajectory analysis highlighted the release of large amounts of HFC-134a and SF6 from Eastern Europe. Observations also showed that African SF6 emissions may be considerable. Leakages from SF6 insulated electrical equipments located in the industrialized Northern African areas justify our observations.  相似文献   

9.
The nonlinear dynamical analysis of ground level ozone concentration is carried out by using correlation integral method to examine its scale invariance property. The dynamics of the time series is often studied at one temporal scale. It is assumed that if the time series is determined to be chaotic at one temporal scale, its behavior at another scale can be determined as the scale shifts are allowed due to scale invariance property. The actual dynamics at other scales is however not yet analyzed. The assumption of scale invariance of the time series at different time scales is tested in this study. The analysis is carried out for ground ozone levels observed during 2006 at two sites of different land use characteristics, as traffic and mixed-use in Delhi at four temporal scales as 1 h, 4 h, 8 h and 24 h. The chaotic nature is observed for the ozone concentration with 1 h and 4 h frequency, whereas at 8 h and 24 h time scale, the ozone concentration shows random behavior. As expected, a decrease in the variability is observed in the ozone levels with increase in the scales from 1 h to 24 h. The results indicated the temporal scale shifts are allowed from 1 h to 4 h resolution and vice versa. The ozone time series at 8 h and 24 h scalings however, should be dealt separately. Further analysis for corresponding NO2 concentration at two sites suggested finite d2 for 1 h, 4 h and 8 h scalings with higher value at traffic site than that at mixed-use site. The analysis also indicated same degrees of freedom for ozone and NO2 concentration at traffic site whereas at mixed-use site the number of variables governing the NO2 pollution are less than the ozone concentration.  相似文献   

10.
The objective of the study was to quantify the concentration and emission levels of sulfuric odorous compounds emitted from pig-feeding operations. Five types of pig-housing rooms were studied: gestation, farrowing, nursery, growing and fattening rooms. The concentration range of sulfuric odorous compounds in these pig-housing rooms were 30–200 ppb for hydrogen sulfide (H2S), 2.5–20 ppb for methyl mercaptan (CH3SH), 1.5–12 ppb for dimethyl sulfide (DMS; CH3SCH3) and 0.5–7 ppb for dimethyl disulfide (DMDS; CH3S2CH3), respectively. The emission rates of H2S, CH3SH, DMS and DMDS were estimated by multiplying the average concentration (mg m−3) measured near the air outlet by the mean ventilation rate (m3 h−1) and expressed either per area (mg m−2 h−1) or animal unit (AU; liveweight of the pig, 500 kg) (mg pig−1 h−1). As a result, the emission rates of H2S, CH3SH, DMS and DMDS in the pig-housing rooms were 14–64, 0.8–7.3, 0.4–3.4 and 0.2–1.9 mg m−2 h−1, respectively, based on pig's activity space and 310–723, 18–80, 9–39 and 5–22 mg AU−1 h−1, respectively, based on pig's liveweight, which indicates that their emission rates were similar, whether based upon the pig's activity space or liveweight. In conclusion, the concentrations and emission rates of H2S were highest in the fattening room followed by the growing, nursery, farrowing and gestation rooms whereas those of CH3SH, DMS and DMDS concentrations were largest in the growing room followed by the nursery, gestation and farrowing rooms.  相似文献   

11.
In this study, we will present evidence that aerosol particles have strong effects on the surface ozone concentration in a highly polluted city in China. The measured aerosol (PM10), UV flux, and O3 concentrations were analyzed from 1 November (1 Nov) to 7 November (7 Nov) 2005 in Tianjin, China. During this period, the aerosol concentration had a strong day-by-day variation, ranging from 0.2 to 0.6 mg m−3. The ozone concentration also shows a strong variability in correlation with the aerosol concentration. During 1 Nov, 2 Nov, 6 Nov, and 7 Nov, the ozone concentration was relatively high (about 30–35 ppbv; defined as a high-ozone period), and during 3 Nov to 5 Nov, the ozone concentration was relatively low (about 5–20 ppbv; defined as a low-ozone period). The analysis of the measurement shows that the ozone concentration is strongly correlated to the measured UV flux. Because there were near cloud-free conditions between 1 Nov and 7 Nov, the variation of the UV flux mainly resulted from the variation of aerosol concentration. The result shows that higher aerosol concentrations produce a lower UV flux and lower ozone concentrations. By contrast, the lower aerosol concentration leads to a higher UV flux and higher ozone concentrations. A chemical mechanism model (NCAR MM) is applied to interpret the measurement. The model result shows that the extremely high aerosol concentration in this polluted city has a very strong impact on photochemical activities and ozone formation. The correlation between aerosol and ozone concentrations appears in a non-linear feature. The O3 concentration is very sensitive to aerosol loading when aerosol loading is high, and this sensitivity is reduced when aerosol loading is low. For example, the ratio of Δ[O3]/Δ[AOD] is about −16 ppbv AOD−1 when AOD is less than 2, and is only −4 ppbv AOD−1 when AOD is between 2 and 5. This result implies that a future decrease in aerosol loading could lead to a rapid increase in the O3 concentration in this region.  相似文献   

12.
Steppe ecosystems are regarded as an important sink of atmospheric methane (CH4) and grazing is hypothesized to reduce CH4 uptake. However, firm experimental evidence is required to prove this hypothesis. Using a fully automated, chamber-based measuring system, we conducted continuous high-frequency (at a 3-h interval) measurements of CH4 uptake in a Leymus chinensis steppe, which is a typical grassland ecosystem in Inner Mongolia, China. Two management regimes were investigated: ungrazed since 1999 (UG99) and winter-grazed since 2001 (WG01). Measurements were carried out continuously during the periods of June–September 2004, May–September 2005 and March–June 2006. During all of these periods, significantly lower mean CH4 uptake (±S.E.) at WG01 (28±0.7 μg C m−2 h−1) as compared to UG99 (56±1.0 μg C m−2 h−1) (p<0.01) was found. Total CH4 uptake during the growing seasons (May–September) 2004 and 2005 at WG01 and UG99 was quantified as 1.15 and 2.15 kg C ha−1, respectively. Annual rates of CH4 uptake were approximately 1.91 (WG01) and 3.58 kg C ha−1 (UG99), respectively. These results indicate that winter-grazing of steppe significantly reduced atmospheric CH4 uptake by ca. 47%. The winter-grazing practice may have inhibited CH4 uptake by (a) increasing the likelihood of physiological water stress for CH4-consuming bacteria during dry periods, (b) decreasing gas diffusion into the soil and, (c) reducing the populations of CH4 oxidizing bacteria. These three mechanisms could have collectively or independently facilitated the observed inhibitory effects. Our results suggest that grazing exerts a considerable negative impact on CH4 uptake in semi-arid steppes at regional scales. Notwithstanding, further studies involving year-round, intensive measurements of CH4 uptake are needed.  相似文献   

13.
The use of alcohol fuel has received much attention since 1980s. In Brazil, ethanol-fueled vehicles have been currently used on a large scale. This paper reports the atmospheric methanol, ethanol and isopropanol concentrations which were measured from May to December 1997, in Osaka, Japan, where alcohol fuel was not used, and from 3 to 9 February 1998, in Sao Paulo, Brazil, where ethanol fuel was used. The alcohols were determined by the alkyl nitrite formation reaction using gas chromatography (GC-ECD) analysis. The concentration of atmospheric alcohols, especially ethanol, measured in Sao Paulo were significantly higher than those in Osaka. In Osaka, the average concentrations of atmospheric methanol, ethanol, and isopropanol were 5.8±3.8, 8.2±4.6, and 7.2±5.9 ppbv, respectively. The average ambient levels of methanol, ethanol, and isopropanol measured in Sao Paulo were 34.1±9.2, 176.3.±38.1, and 44.2±13.7 ppbv, respectively. The ambient levels of aldehydes, which were expected to be high due to the use of alcohol fuel, were also measured at these sampling sites. The atmospheric formaldehyde average concentration measured in Osaka was 1.9±0.9 ppbv, and the average acetaldehyde concentration was 1.5±0.8 ppbv. The atmospheric formaldehyde and acetaldehyde average concentrations measured in Sao Paulo were 5.0±2.8 and 5.4±2.8 ppbv, respectively. The C2H5OH/CH3OH and CH3CHO/HCHO were compared between the two measurement sites and elsewhere in the world, which have already been reported in the literature. Due to the use of ethanol-fueled vehicles, these ratios, especially C2H5OH/CH3OH, are much higher in Brazil than these measured elsewhere in the world.  相似文献   

14.
The present paper presents results from the analysis of 29 individual C2–C9 hydrocarbons (HCs) specified in the European Commission Ozone Directive. The 29 HCs are measured in exhaust from common, contemporary vehicle/engine/fuel technologies for which very little or no data is available in the literature. The obtained HC emission fingerprints are compared with fingerprints deriving from technologies that are being phased out in Europe. Based on the total of 138 emission tests, thirteen type-specific fingerprints are extracted (Mean ± SD percentage contributions from individual HCs to the total mass of the 29 HCs), essential for receptor modelling source apportionment. The different types represent exhaust from Euro3 and Euro4 light-duty (LD) diesel and petrol-vehicles, Euro3 heavy-duty (HD) diesel exhaust, and exhaust from 2-stroke preEuro, Euro1 and Euro2 mopeds. The fuels comprise liquefied petroleum gas, petrol/ethanol blends (0–85% ethanol), and mineral diesel in various blends (0–100%) with fatty acid methyl esters, rapeseed methyl esters palm oil methyl esters, soybean oil methyl or sunflower oil methyl esters. Type-specific tracer compounds (markers) are identified for the various vehicle/engine/fuel technologies.An important finding is an insignificant effect on the HC fingerprints of varying the test driving cycle, indicating that combining HC fingerprints from different emission studies for receptor modelling purposes would be a robust approach.The obtained results are discussed in the context of atmospheric ozone formation and health implications from emissions (mg km?1 for LD and mopeds and mg kW h?1 for HD, all normalised to fuel consumption: mg dm?3 fuel) of the harmful HCs, benzene and 1,3-butadiene.Another important finding is a strong linear correlation of the regulated “total” hydrocarbon emissions (tot-HC) with the ozone formation potential of the 29 HCs (ΣPO3 = (1.66 ± 0.04) × tot-RH; r2 = 0.93). Tot-HC is routinely monitored in emission control laboratories, whereas C2–C9 are not. The revealed strong correlations broadens the usability of data from vehicle emission control laboratories and facilitates the comparison of the ozone formation potential of HCs in exhaust from of old and new vehicle/engine/fuel technologies.  相似文献   

15.
This study investigates the levels of particulate matter smaller than 2.5 μm (PM2.5) and some selected volatile organic compounds (VOCs) at 12 photocopy centers in Taiwan from November 2004 to June 2005. The results of BTEXS (benzene, toluene, ethylbenzene, xylenes and styrene) measurements indicated that toluene had the highest concentration in all photocopy centers, while the concentration of the other four compounds varied among the 12 photocopy centers. The average background-corrected eight-hour PM2.5 in the 12 photocopy centers ranged from 10 to 83 μg m−3 with an average of 40 μg m−3. The 24-h indoor PM2.5 at the photocopy centers was estimated and at two photocopy centers exceeded 100 μg m−3, the 24-h indoor PM2.5 guideline recommended by the Taiwan EPA. The ozone level and particle size distribution at another photocopy center were monitored and indicated that the ozone level increased when the photocopying started and the average ozone level at some photocopy centers during business hour may exceed the value (50 ppb) recommended by the Taiwan EPA. The particle size distribution monitored during photocopying indicated that the emitted particles were much smaller than the original toner powders. Additionally, the number concentration of particles that were smaller than 0.5 μm was found to increase during the first hour of photocopying and it increased as the particle size decreased. The ultrafine particle (UFP, <100 nm) dominated the number concentration and the peak concentration appeared at sizes of under 50 nm. A high number concentration of UFP was found with a peak value of 1E+8 particles cm−3 during photocopying. The decline of UFP concentration was observed after the first hour and the decline is likely attributable to the surface deposition of charged particles, which are charged primarily by the diffusion charging of corona devices in the photocopier. This study concludes that ozone and UFP concentrations in photocopy centers should be concerned in view of indoor air quality and human health. The corona devices in photocopiers and photocopier-emitted VOCs have the potential to initiate indoor air chemistry during photocopying and result in the formation of UFP.  相似文献   

16.
《Chemosphere》2007,66(11):2216-2222
Five strains of basidiomycetes (Lentinula edodes, Coprinus phlyctidosporus, Hebeloma vinosophyllum, Pleurotus ostreatus and Agaricus bisporus), one strain of ascomycete (Hormoconis resinae) and six strains of imperfect fungi (Penicillium chrysogenum, Penicillium roquefortii, Cladosporium cladosporioides, Alternaria alternata, Aspergillus niger and Aspergillus oryzae) were cultured in a liquid medium containing a radioactive iodine tracer (125I), and were tested for their abilities to volatilize or accumulate iodine. Of the fungal strains tested, 11 strains volatilized a considerable amount of iodine, with L. edodes showing the highest volatilization rate of 3.4%. The volatile organic iodine species emitted from imperfect fungi cultures was identified as methyl iodide (CH3I). In contrast, six fungal strains in 12 strains accumulated a considerable amount of iodine from the medium with concentration factors of more than 1.0. Among these, Alt. alternata and Cl. cladosporioides accumulated more than 40% of the iodine in their hyphae, and showed high concentration factors of 22 and 18, respectively. These results suggest that filamentous fungi have a potential to influence the mobility and speciation of iodine by volatilization and accumulation. Considering their great biomass in soils, filamentous fungi may contribute to the global circulation of stable iodine and also the long-lived radioiodine, 129I (half-life: 1.6 × 107 years), released from nuclear facilities into the environment.  相似文献   

17.
Summer pollution episodes in Hong Kong are related to the passage of tropical storms close to the territory. Between 1994 and 1999, there were six territory-wide ozone episodes in Hong Kong during which the Hong Kong Air Quality Objective for ozone (240 μg m−3, 1 h) was violated. The maximum O3 concentration for the period was 334 μg m−3 recorded in August 1999. Synoptically, tropical storms were in the vicinity on all the episode days. Northwesterly/westerly winds induced by the storms are believed to cause ozone precursor emissions from local power plants in the western part of Hong Kong to impact the territory, and at the same time allowing the import of emissions from upwind sources along the mainland coast. Other important meteorological factors that contribute to the occurrence of the episode events include: stable atmospheres, morning break-up of nocturnal inversions, low winds, strong solar radiation and high temperatures. Trajectory analysis of airflows at 850 hPa confirms the long-range pollutant transport. The strong correlation between non-sea-salt sulphate (NS-SO4) and selenium for the summer of 1999 indicates that the main source of high levels of NS-SO4 in summer in Hong Kong is coal combustion. The correlation between arsenic (As) and vanadium (V) for the summers of 1996–1999 suggests a concomitant influence of coal and residual oil combustion in the region.  相似文献   

18.
Using the relative kinetic technique the kinetics of the gas-phase reactions of Br radicals with acrolein, methacrolein and methylvinyl ketone have been investigated at (301±3) K in 1013 mbar of (N2+O2) bath gas at varying proportions. In 1013 mbar of synthetic air the following rate coefficients have been obtained (in units of cm3 molecule−1 s−1): acrolein (3.21±0.11)×10−12; methacrolein (2.33±0.08)×10−11; methyl vinyl ketone (1.87±0.06)×10−11. This study represents the first determination of the rate coefficients for these compounds. As for other unsaturated hydrocarbons the rate coefficient with Br was found to increase with increasing partial pressure of O2. From the product studies of the reactions it has been established that addition of Br radicals to the terminal C-atom is the major pathway in all three cases. However, for acrolein H atom abstraction from the -CO–H group is also significant. Mechanisms are proposed to explain the observed products, mainly β-brominated carbonyl compounds.  相似文献   

19.
Analysis of the recent surface ozone data at four remote islands (Rishiri, Oki, Okinawa, and Ogasawara) in Japan indicates that East Asian anthropogenic emissions significantly influence the boundary layer ozone in Japan. Due to these regional-scale emissions, an increase of ozone concentration is observed during fall, winter, and spring when anthropogenically enhanced continental air masses from Siberia/Eurasia arrive at the sites. The O3 concentrations in the “regionally polluted” continental outflow among sites are as high as 41–46 ppb in winter and 54–61 ppb in spring. Meanwhile, marine air masses from the Pacific Ocean show as low as 13–14 ppb of O3 at Okinawa and Ogasawara in summer but higher O3 concentrations, 24–27 ppb, are observed at Oki and Rishiri due to the additional pollution mainly from Japan mainland. The preliminary analysis of the exceedances of ozone critical level using AOT40 and SUM06 exposure indices indicates that the O3 threshold were exceeded variously among sites and years. The highest AOT40 and SUM06 were observed at Oki in central Japan where the critical levels are distinctly exceeded. In the other years, the O3 exposures at Oki, Okinawa, and Rishiri are about or slightly higher than the critical levels. The potential risk of crop yields reduction from high level of O3 exposure in Japan might not be a serious issue during 1990s and at present because the traditional growing season in Japan are during the low O3 period in summer. However, increases of anthropogenic emission in East Asia could aggravate the situation in the very near future.  相似文献   

20.
Comparisons were made between the predictions of six photochemical air quality simulation models (PAQSMs) and three indicators of ozone response to emission reductions: the ratios of O3/NOz and O3/NOy and the extent of reaction. The values of the two indicator ratios and the extent of reaction were computed from the model-predicted mixing ratios of ozone and oxidized nitrogen species and were compared to the changes in peak 1 and 8 h ozone mixing ratios predicted by the PAQSMs. The ozone changes were determined from the ozone levels predicted for base-case emission levels and for reduced emissions of volatile organic compounds (VOCs) and oxides of nitrogen (NOx). For all simulations, the model-predicted responses of peak 1 and 8 h ozone mixing ratios to VOC or NOx emission reductions were correlated with the base-case extent of reaction and ratios of O3/NOz and O3/NOy. Peak ozone values increased following NOx control in 95% (median over all simulations) of the high-ozone (>80 ppbv hourly mixing ratio in the base-case) grid cells having mean afternoon O3/NOz ratios less than 5 : 1, O3/NOy less than 4 : 1, or extent less than 0.6. Peak ozone levels decreased in response to NOx reductions in 95% (median over all simulations) of the grid cells having peak hourly ozone mixing ratios greater than 80 ppbv and where mean afternoon O3/NOz exceeded 10 : 1, O3/NOy was greater than 8 : 1, or extent exceeded 0.8. Ozone responses varied in grid cells where O3/NOz was between 5 : 1 and 10 : 1, O3/NOy was between 4 : 1 and 8 : 1, or extent was between 0.6 and 0.8. The responses in such grid cells were affected by ozone responses in upwind grid cells and by the changes in ozone levels along the upwind boundaries of the modeling domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号