首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to investigate the characteristics of carbonaceous fine aerosols, PM2.5 particulate samples were collected in the Sihwa industrial complex area between February 1998 and 1999 and in Seoul between 31 May and 9 June 1999, respectively. The carbonaceous species were analyzed by the selective thermal manganese dioxide oxidation (TMO) method. In Sihwa, average OC and EC concentrations for the entire data set were measured to be 9.8 and 1.8 μg m−3, respectively. The OC concentrations were higher than those measured in other urban environments. The EC concentrations were lower than those of other urban environments. The OC/EC ratio measured at the Sihwa area was higher than those at other urban and rural environments. Backward trajectories of sampled air masses were performed to find out the sources of those higher OC/EC levels. Enrichment in the organic compounds during winter periods can be explained by the combination of primary local emissions from the industrial complex area and long-range transport of organic species from outside the Sihwa area. High OC values in June resulted from primary anthropogenic emissions and secondary organic aerosol formation rather than the atmospheric transport of organic compounds from the outside. In urban area of Seoul, the OC and EC concentrations in PM2.5 during the summer were higher than those measured at other urban atmospheres. OC/EC ratios obtained in Seoul were lower than Sihwa. It can be concluded that carbonaceous species in Seoul were mainly emitted from primary anthropogenic sources.  相似文献   

2.
Organic carbon (OC) and elemental carbon (EC) in fine particles (PM2.5) at two background sites, Kosan and Kangwha in Korea were measured during intensive field studies between 1994 and 1999. Fine particles were collected on pre-fired quartz filters in a low-volume sampler and analyzed using the selective thermal oxidation method with MnO2 catalyst. The OC and EC concentrations at Kosan located at western tip of Cheju Island in southern Korea are lower than those at Kangwha located at western coastal area in mid-Korean peninsula. Still, the OC concentrations at Kosan are generally higher than those at other background areas in Japan and USA. The EC concentrations at Kosan are lower than or comparable to those at other background areas. The total carbon (TC, sum of OC and EC) to EC ratio values at both sites were higher than those at other background areas in Japan and USA. At Kosan, the OC and EC concentrations when air parcels were from southern China were higher than those when air parcels were coming from northern China. However, at Kangwha, the differences were statistically not clear since most air parcels were from northern China. Except when air parcels were from the North Pacific during summer, the OC and EC concentrations are well correlated indicating that both OC and EC share the same emission/transport characteristics. From the gaseous hydrocarbon data and the OC and EC relationship, it was found that during summer local biogenic emissions of OC might be significant at Kosan.  相似文献   

3.
24-h PM2.5 carbonaceous samples were collected between 27 November and 9 December 1999 in Seoul, and between 7 and 20 June 2000 in Kwangju to investigate characteristics of carbonaceous species, and the relationship between elemental carbon (EC) and Aethalometer-based black carbon (BC) measurements. 5-min PM2.5 BC and criteria air pollutant data were also measured using the Aethalometer and ambient air monitoring system. The PM2.5 samples were analyzed for EC and OC using a selective thermal manganese dioxide oxidation (TMO) method. The daily average EC and OC concentrations in Seoul were higher in the winter than in the summer (Atmos. Environ. 35 (2001a) 657). It was found that difference between ambient BC levels in the two cities was not directly proportional to the population ratio (∼8) or diesel traffic ratio (∼5.9) since particulate matter or BC concentration is strongly influenced by a result of varying traffic and meteorological conditions at the site. Using the primary OC/EC ratio approach, the results suggest that most of the measured OC in Kwangju is of primary origin during the summer. In Seoul, the observed OC includes additional secondary organic aerosol during the wintertime conditions. The relationship between the 24-h TMO-EC and Aethalometer BC measurements in PM2.5 reflected very good agreement for the two urban sites, with correlation coefficients of R2=0.99 and 0.92, and BC/EC slopes of 0.93 and 1.07, respectively. It was found that comparing TMO-EC to BC at a different location in Korea, a different scaling factor was needed.  相似文献   

4.
Concentrations and distributions of elemental carbon (EC) and organic carbon (OC) in particles were measured in Kaohsiung City, Taiwan. PM10 and PM2.5 samples were collected using a dichotomous sampler from November 1998 to April 1999 and were analyzed for carbonaceous species with an elemental analyzer. The concentrations of carbonaceous species in Kaohsiung City were comparable to those at other urban locations in the world. On average, carbonaceous species accounted for 21.2% of the PM2.5 and 18.1% of the PM10. It was found that organic carbon dominated the carbonaceous species and was 72.2 and 70.4% of total carbon (TC) for PM2.5 and PM10. The secondary organic carbon formed through the volatile organic compound gas-to-particle conversion was estimated from the minimum ratio between elemental and organic carbon obtained in this study, and was found to constitute 40.0 and 32.4% of the total organic carbon particle for PM2.5 and PM10 (or 6.6 and 4.5% of the total particle mass).  相似文献   

5.
Continuous observation of PM2.5 was conducted in Taiyuan, a heavily polluted city in China, during high pollution season from December 2005 to February 2006. The results of this study showed that PM2.5 and carbonaceous species pollution were serious during winter in Taiyuan. The organic carbon (OC) and element carbon (EC) were accounted for 18.6±11.2% and 2.9±1.6% of PM2.5, respectively, which indicated that carbonaceous aerosols were key components for control fine particles pollution in Taiyuan. Coal combustion was a dominant source of OC and EC of PM2.5 in the urban area of Taiyuan during winter. The impact of local and remote particle sources on urban air quality was assessed using PM2.5 concentration rose and 3-day back trajectories of air masses arriving at Taiyuan. The meteorological conditions were found to affect the ambient concentrations of PM2.5, OC, EC and OC/EC ratio.  相似文献   

6.
Abstract

One-week integrated fine particulate matter (i.e., particles <2.5 μm in diameter; PM2.5) samples were collected continuously with a low-flow rate sampler at a downtown site (Chegongzhuang) and a residential site (Tsinghua University) in Beijing between July 1999 and June 2000. The annual average concentrations of organic carbon (OC) and elemental carbon (EC) at the urban site were 23.9 and 8.8 μg m?3, much higher than those in some cities with serious air pollution. Similar weekly variations of OC and EC concentrations were found for the two sampling sites with higher concentrations in the winter and autumn. The highest weekly variations of OC and EC occurred in the winter, suggesting that combustion sources for space heating were important contributors to carbonaceous particles, along with a significant impact from variable meteorological conditions. High emissions coupled with unfavorable meteorological conditions led to the max weekly carbonaceous concentration the week of November 18–25, 1999. The weekly mass ratios of OC:EC ranged between 2 and 4 for most samples and averaged 2.9, probably suggesting that secondary OC (SOC) is present most weeks. The range of contemporary carbon fraction, based on the C14 analyses of eight samples collected in 2001, is 0.330–0.479. Estimated SOC accounted for ~38% of the total OC at the two sites. Average OC and EC concentrations at Tsinghua University were 25% and 18%, respectively, higher than those at Chegongzhuang, which could be attributed to different local emissions of primary carbonaceous particles and gaseous precursors of SOC, as well as different summer photochemical intensities between the two locations.  相似文献   

7.
The characterization of carbonaceous species in PM2.5 during a spring period in a suburb of Xi'an, China was investigated. PM2.5 samples were collected on quartz filters and analyzed for organic carbon (OC) and elemental carbon (EC). The thermal optical reflectance method was used. The minimum OC/EC ratio method was used to estimate the concentration of secondary organic carbon (SOC). The distribution of eight carbon fractions was investigated as well. The average mass concentrations of OC and EC were 15.90 and 8.38 μg/m3, respectively. The average OC/EC ratio ranged from 1.16 to 3.16 with an average value of 2.25. This implies the existence of SOC in PM2.5. The mean SOC concentration was 7.20 μg/m3, accounting for 45.28% of total OC. This result suggests that SOC is a significant component of OC in the suburb of Xi'an. Results from the distribution of eight carbon fractions revealed that emissions from motor vehicle, coal combustion, and road dust were the main source of carbonaceous particles in the sampling period.  相似文献   

8.
In August 2003 during the anticipated month of the 2008 Beijing Summer Olympic Games, we simultaneously collected PM10 and PM2.5 samples at 8, 100, 200 and 325 m heights up a meteorological tower and in an urban and a suburban site in Beijing. The samples were analysed for organic carbon (OC) and elemental carbon (EC) contents. Particulate matter (PM) and carbonaceous species pollution in the Beijing region were serious and widespread with 86% of PM2.5 samples exceeding the daily National Ambient Air Quality Standard of the USA (65 μg m−3) and the overall daily average PM10 concentrations of the three surface sites exceeding the Class II National Air Quality Standard of China (150 μg m−3). The maximum daily PM2.5 and PM10 concentrations reached 178.7 and 368.1 μg m−3, respectively, while those of OC and EC reached 22.2 and 9.1 μg m−3 in PM2.5 and 30.0 and 13.0 μg m−3 in PM10, respectively. PM, especially PM2.5, OC and EC showed complex vertical distributions and distinct layered structures up the meteorological tower with elevated levels extending to the 100, 200 and 300 m heights. Meteorological evidence suggested that there exist fine atmospheric layers over urban Beijing. These layers were featured by strong temperature inversions close to the surface (<50 m) and more stable conditions aloft. They enhanced the accumulation of pollutants and probably caused the complex vertical distributions of PM and carbonaceous species over urban Beijing. The built-up of PM was accompanied by transport of industrial emissions from the southwest direction of the city. Emissions from road traffic and construction activities as well as secondary organic carbon (SOC) are important sources of PM. High OC/EC ratios (range of 1.8–5.1 for PM2.5 and 2.0–4.3 for PM10) were found, especially in the higher levels of the meteorological tower suggesting there were substantial productions of SOC in summer Beijing. SOC is estimated to account for at least 33.8% and 28.1% of OC in PM2.5 and PM10, respectively, with higher percentages at the higher levels of the tower.  相似文献   

9.
Agra, one of the oldest cities “World Heritage site”, and Delhi, the capital city of India are both located in the border of Indo-Gangetic Plains (IGP) and heavily loaded with atmospheric aerosols due to tourist place, anthropogenic activities, and its topography, respectively. Therefore, there is need for monitoring of atmospheric aerosols to perceive the scenario and effects of particles over northern part of India. The present study was carried out at Agra (AGR) as well as Delhi (DEL) during winter period from November 2011 to February 2012 of fine particulate (PM2.5: d?<?2.5 μm) as well as associated carbonaceous aerosols. PM2.5 was collected at both places using medium volume air sampler (offline measurement) and analyzed for organic carbon (OC) and elemental carbon (EC). Also, simultaneously, black carbon (BC) was measured (online) at DEL. The average mass concentration of PM2.5 was 165.42?±?119.46 μg m?3 at AGR while at DEL it was 211.67?±?41.94 μg m?3 which is ~27 % higher at DEL than AGR whereas the BC mass concentration was 10.60 μg m?3. The PM2.5 was substantially higher than the annual standard stipulated by central pollution control board and United States Environmental Protection Agency standards. The average concentrations of OC and EC were 69.96?±?34.42 and 9.53?±?7.27 μm m?3, respectively. Total carbon (TC) was 79.01?±?38.98 μg m?3 at AGR, while it was 50.11?±?11.93 (OC), 10.67?±?3.56 μg m?3 (EC), and 60.78?±?14.56 μg m?3 (TC) at DEL. The OC/EC ratio was 13.75 at (AGR) and 5.45 at (DEL). The higher OC/EC ratio at Agra indicates that the formation of secondary organic aerosol which emitted from variable primary sources. Significant correlation between PM2.5 and its carbonaceous species were observed indicating similarity in sources at both sites. The average concentrations of secondary organic carbon (SOC) and primary organic carbon (POC) at AGR were 48.16 and 26.52 μg m?3 while at DEL it was 38.78 and 27.55 μg m?3, respectively. In the case of POC, similar concentrations were observed at both places but in the case of SOC higher over AGR by 24 in comparison to DEL, it is due to the high concentration of OC over AGR. Secondary organic aerosol (SOA) was 42 % higher at AGR than DEL which confirms the formation of secondary aerosol at AGR due to rural environment with higher concentrations of coarse mode particles. The SOA contribution in PM2.5 was also estimated and was ~32 and 12 % at AGR and DEL respectively. Being high loading of fine particles along with carbonaceous aerosol, it is suggested to take necessary and immediate action in mitigation of the emission of carbonaceous aerosol in the northern part of India.  相似文献   

10.
Fine particles (PM2.5) and nanoparticles (PM0.1) were sampled using Dichotomous sampler and MOUDI, respectively, in Xueshan Tunnel, Taiwan. Eight carbon fractions were analyzed using IMPROVE thermal-optical reflectance (TOR) method. The concentrations of different temperature carbon fractions (OC1–OC4, EC1–EC3) in both PM2.5 and PM0.1 were measured and the correlations between OC and EC were discussed. Results showed that the ratios of OC/EC were 1.26 and 0.67 for PM2.5 and PM0.1, respectively. The concentration of EC1 was found to be more abundant than other elemental carbon fractions in PM2.5, while the most abundant EC fraction in PM0.1 was found to be EC2. The variation of contributions for elemental carbon fractions was different among PM2.5 and PM0.1 samples, which was partly owing to the metal catalysts for soot oxidation. The correlations between char-EC and soot-EC showed that char-EC dominated EC in PM2.5 while soot-EC dominated EC in PM0.1. Using eight individual carbon fractions, the gasoline and diesel source profiles of PM0.1 and PM2.5 were extracted and analyzed with the positive matrix factorization (PMF) method.  相似文献   

11.
Organic carbon (OC) and elemental carbon (EC) concentrations, associated to PM10 and PM2.5 particle fractions, were concurrently determined during the warm and the cold months of the year (July–September 2011 and February–April 2012, respectively) at two urban sites in the city of Thessaloniki, northern Greece, an urban-traffic site (UT) and an urban-background site (UB). Concentrations at the UT site (11.3?±?5.0 and 8.44?±?4.08 14 μg m?3 for OC10 and OC2.5 vs. 6.56?±?2.14 and 5.29?±?1.54 μg m?3 for EC10 and EC2.5) were among the highest values reported for urban sites in European cities. Significantly lower concentrations were found at the UB site for both carbonaceous species, particularly for EC (6.62?±?4.59 and 5.72?±?4.36 μg m?3 for OC10 and OC2.5 vs. 0.93?±?0.61 and 0.69?±?0.39 μg m?3 for EC10 and EC2.5). Despite that, a negative UT-UB increment was frequently evidenced for OC2.5 and PM2.5 in the cold months possibly indicative of emissions from residential wood burning at the urban-background site. At both sites, cconcentrations of OC fractions were significantly higher in the cold months; on the contrary, EC fractions at the UT site were prominent in the warm season suggesting some influence from maritime emissions in the nearby harbor area. Secondary organic carbon, being estimated using the EC tracer method and seasonally minimum OC/EC ratios, was found to be an appreciable component of particle mass particularly in the cold season. The calculated secondary contributions to OC ranged between 35 and 59 % in the PM10 fraction, with relatively higher values in the PM2.5 fraction (39–61 %). The source origin of carbonaceous species was investigated by means of air parcel back trajectories, satellite fire maps, and concentration roses. A local origin was mainly concluded for OC and EC with limited possibility for long range transport of biomass (agricultural waste) burning aerosol.  相似文献   

12.
A study of carbonaceous particulate matter (PM) was conducted in the Middle East at sites in Israel, Jordan, and Palestine. The sources and seasonal variation of organic carbon, as well as the contribution to fine aerosol (PM2.5) mass, were determined. Of the 11 sites studied, Nablus had the highest contribution of organic carbon (OC), 29%, and elemental carbon (EC), 19%, to total PM2.5 mass. The lowest concentrations of PM2.5 mass, OC, and EC were measured at southern desert sites, located in Aqaba, Eilat, and Rachma. The OC contribution to PM2.5 mass at these sites ranged between 9.4% and 16%, with mean annual PM2.5 mass concentrations ranging from 21 to 25 ug m?3. These sites were also observed to have the highest OC to EC ratios (4.1–5.0), indicative of smaller contributions from primary combustion sources and/or a higher contribution of secondary organic aerosol. Biomass burning and vehicular emissions were found to be important sources of carbonaceous PM in this region at the non-southern desert sites, which together accounted for 30%–55% of the fine particle organic carbon at these sites. The fraction of measured OC unapportioned to primary sources (1.4 μgC m?3 to 4.9 μgC m?3; 30%–74%), which has been shown to be largely from secondary organic aerosol, is relatively constant at the sites examined in this study. This suggests that secondary organic aerosol is important in the Middle East during all seasons of the year.  相似文献   

13.
PM2.5 samples were collected at five sites in Guangzhou and Hong Kong, Pearl River Delta Region (PRDR), China in both summer and winter during 2004–2005. Elemental carbon (EC) and organic carbon (OC) in these samples were measured. The OC and EC concentrations ranked in the order of urban Guangzhou > urban Hong Kong > background Hong Kong. Total carbonaceous aerosol (TCA) contributed less to PM2.5 in urban Guangzhou (32–35%) than that in urban Hong Kong (43–57%). The reason may be that, as an major industrial city in South China, Guangzhou would receive large amount of inorganic aerosol from all kinds of industries, however, as a trade center and seaport, urban Hong Kong would mainly receive organic aerosol and EC from container vessels and heavy-duty diesel trucks. At Hong Kong background site Hok Tsui, relatively lower contribution of TCA to PM2.5 may result from contributions of marine inorganic aerosol and inland China pollutant. Strong correlation (R2=0.76–0.83) between OC and EC indicates minor fluctuation of emission and the secondary organic aerosol (SOA) formation in urban Guangzhou. Weak correlation between OC and EC in Hong Kong can be related to the impact of the long-range transported aerosol from inland China. Averagely, secondary OC (SOC) concentrations were 3.8–5.9 and 10.2–12.8 μg m−3, respectively, accounting for 21–32% and 36–42% of OC in summer and winter in Guangzhou. The average values of 4.2–6.8% for SOA/ PM2.5 indicate that SOA was minor component in PM2.5 in Guangzhou.  相似文献   

14.
Fine particles were collected over four seasons from October 1995 to August 1996 to evaluate the chemical characteristics of principal PM2.5 components in Chongju, South Korea. The annual mean concentrations of PM2.5 (dp⩽2.5 μm), sulfate, nitrate, ammonium, elemental carbon (EC) and organic carbon (OC) were 44.2, 8.22, 3.63, 2.84, 4.44 and 4.99 μg m−3, respectively. The sum of the species measured from this study accounted for 50–62% of the PM2.5 mass. Sulfate was the most abundant species and constituted 13–23% of the PM2.5 mass. The EC and OC accounted for 17–28% of PM2.5. The correlation between OC and EC was strong, and the annual mean ratio of OC/EC was 1.12, suggesting that OC measured in the Chongju area may be emitted directly in particulate form as a primary aerosol.  相似文献   

15.
Semi-continuous and 24-h averaged measurements of fine carbonaceous aerosols were made concurrently at three sites within each of two U.S. Midwestern Cities; Detroit, Michigan and Cleveland, Ohio; during two, one-month intensive campaigns conducted in July of 2007 and January & February of 2008. A comparison of 24-h measurements revealed substantial intra-urban variability in carbonaceous aerosols consistent with the influence of local sources, and excesses in both PM2.5 organic carbon (OC) and elemental carbon (EC) were identified at individual sites within each city. High time-resolved black carbon (BC) measurements indicated that elemental carbon concentrations were higher at sites adjacent to freeways and busy surface streets, and temporal patterns suggested that excess EC at sites adjacent to freeways was dominated by mobile source emissions while excesses in EC away from traffic corridors was dominated by point/area source emissions. The site-to-site variability in OC concentrations was approximately 7% within the neighborhood scale (0.5–4 km) and between 4 and 27% at the urban scale (4–100 km). In contrast, measurements of organic source tracers, in conjunction with a Chemical Mass Balance (CMB) source-apportionment model, indicated that the spatial variation in the contribution of both mobile and stationary sources to PM2.5 OC often exceeded the variation in OC mass concentration by a factor of 3 or more. Markers for mobile sources, biomass smoke, natural gas, and coal combustion differed by as much as 60% within the neighborhood scale and by greater than 200% within the urban scale. The observations made during this study suggest that the urban excess of carbonaceous aerosols is much more complex than has been previously reported and that a more rigorous, source-oriented approach should be taken in order to assess the risk associated with exposure to carbonaceous aerosols within the industrialized environments of the Midwestern United States.  相似文献   

16.
ABSTRACT

To investigate the chemical characteristics of fine particles in the Sihwa area, Korea, atmospheric aerosol samples were collected using a dichotomous PM10 sampler and two URG PM2.5 cyclone samplers during five intensive sampling periods between February 1998 and February 1999. The Inductively Coupled Plasma (ICP)-Atomic Emission Spectrometry (AES)/ICP-Mass Spectrometry (MS), ion chromatograph (IC), and thermal manganese dioxide oxidation (TMO) methods were used to analyze the trace elements, ionic species, and carbonaceous species, respectively. Backward trajectory analysis, factor analysis, and a chemical mass balance (CMB) model were used to estimate quantitatively source contributions to PM2 5 particles collected in the Sihwa area.

The results of PM2.5 source apportionment using the CMB7 receptor model showed that (NH4)2SO4 was, on average, the major contributor to PM2.5 particles, followed by nontraffic organic carbon (OC) emission, NH4NO3, agricultural waste burning, motor vehicle emission, road dust, waste incineration, marine aerosol, and others. Here, the nontraffic OC sources include primary anthropogenic OC emitted from the industrial complex zone, secondary OC, and organic species from distant sources. The source impact of waste incineration emission became significant when the dominant wind directions were from southwest and west sectors during the sampling periods. It was found that PM2.5 particles in the Sihwa area were influenced mainly by both anthropogenic local sources and long-range transport and transformation of air pollutants.  相似文献   

17.
Carbonaceous components (organic carbon [OC] and elemental carbon [EC]) and optical properties (light absorption and scattering) of fine particulate matter (aerodynamic diameter <2.5 μm; PM2.5) were simultaneously measured at an urban site in Gwangju, Korea, during the winter of 2011. OC was further classified into OC1, OC2, OC3, and OC4, based on a temperature protocol using a Sunset OC/EC analyzer. The average OC and EC concentrations were 5.0 ± 2.5 and 1.7 ± 0.9 μg C m?3, respectively. The average single-scattering albedo (SSA) at a wavelength of 550 nm was 0.58 ± 0.11, suggesting that the aerosols observed in the winter of 2011 had a local warming effect in this area. During the whole sampling period, “stagnant PM” and “long-range transport PM” events were identified. The light absorption coefficient (babs) was higher during the stagnant PM event than during the long-range transport PM event due to the existence of abundant light-absorbing OC during the stagnant PM event. In particular, the OC2 and OC3 concentrations were higher during the stagnant PM event than those during the long-range transport event, suggesting that OC2 and OC3 might be more related to the light-absorbing OC. The light scattering coefficient (bscat) was similar between the events. On average, the mass absorption efficiency attributed to EC (σEC) was 9.6 m2 g?1, whereas the efficiency attributed to OC (σOC) was 1.8 m2 g?1 at λ = 550 nm. Furthermore, the σEC is comparable among the PM event days, but the σOC for the stagnant PM event was significantly higher than that for the long-range transport PM event (1.7 vs. 0.5).

Implications: Optical and thermal properties of carbonaceous aerosol were measured at Gwangju, and carbonaceous aerosol concentration and optical property varied between “stagnant PM” and “long-range transport PM” events. More abundant light absorbing OC was observed during the stagnant PM event.  相似文献   

18.
One-week integrated fine particulate matter (i.e., particles <2.5 microm in diameter; PM2.5) samples were collected continuously with a low-flow rate sampler at a downtown site (Chegongzhuang) and a residential site (Tsinghua University) in Beijing between July 1999 and June 2000. The annual average concentrations of organic carbon (OC) and elemental carbon (EC) at the urban site were 23.9 and 8.8 microg m(-3), much higher than those in some cities with serious air pollution. Similar weekly variations of OC and EC concentrations were found for the two sampling sites with higher concentrations in the winter and autumn. The highest weekly variations of OC and EC occurred in the winter, suggesting that combustion sources for space heating were important contributors to carbonaceous particles, along with a significant impact from variable meteorological conditions. High emissions coupled with unfavorable meteorological conditions led to the max weekly carbonaceous concentration the week of November 18-25, 1999. The weekly mass ratios of OC:EC ranged between 2 and 4 for most samples and averaged 2.9, probably suggesting that secondary OC (SOC) is present most weeks. The range of contemporary carbon fraction, based on the C14 analyses of eight samples collected in 2001, is 0.330-0.479. Estimated SOC accounted for approximately 38% of the total OC at the two sites. Average OC and EC concentrations at Tsinghua University were 25% and 18%, respectively, higher than those at Chegongzhuang, which could be attributed to different local emissions of primary carbonaceous particles and gaseous precursors of SOC, as well as different summer photochemical intensities between the two locations.  相似文献   

19.
A study to characterize primary particulate matter (PM2.5 and PM10) from the French vehicular fleet was conducted during winter 2008, in a tunnel in Marseille, France. The carbonaceous fraction represents 70% of the aerosol mass and elemental carbon fraction (EC) represent 60% of the carbonaceous fraction. The organic carbon OC was characterized in term of its water soluble fraction, functionalization rate and HULIS content. Seventy trace organic compounds including alkanes, polycyclic aromatic hydrocarbons (PAH), petroleum biomarkers and carboxylic acids were also quantified, in order to determine an organic emission profile for chemical mass balance modeling studies. Such source profiles were still missing in Europe and particularly in France. The profile obtained in this study is consistent with profiles determined in tunnel or dynamometer studies performed in other countries during the last ten years. These results suggest that organic compounds profiles from vehicular exhaust emissions are not significantly influenced by the geographic area and are thus suitable for use in aerosol source apportionment modeling applied across extensive regions. The chemical profile determined here is very similar to those obtained for diesel emissions with high concentrations of EC relative to OC (EC/OC = 1.8) and low concentrations of the higher molecular weight PAH. These results are consistent with the high proportion of diesel vehicles in the French fleet (49%).  相似文献   

20.
Abstract

Ambient measurements were made using two sets of annular denuder system during the four seasons (April 2001 to February 2002) and were then compared with the results during the period of 1996–1997 to estimate the trends and seasonal variations in concentrations of gaseous and fine particulate matter (PM2.5) principal species. Annual averages of gaseous HNO3 and NH3 increased by 11% and 6%, respectively, compared with those of the previous study, whereas HONO and SO2 decreased by 11% and 136%, respectively. The PM2.5 concentration decreased by ~17%, 35% for SO4 2?, and 29% for NH4 +, whereas NO3 ? increased by 21%. Organic carbon (OC) and elemental carbon (EC) were 12.8 and 5.98 μg/m-3, accounting for ~26 and 12% of PM2.5 concentration, respectively. The species studied accounted for 84% of PM2.5 concentration, ranging from 76% in winter to 97% in summer.

Potential source contribution function (PSCF) analysis was used to identify possible source areas affecting air pollution levels at a receptor site in Seoul. High possible source areas in concentrations of PM2.5, NO3 ?, SO4 2?, NH4 +, and K+ were coastal cities of Liaoning province (possibly emissions from oil-fired boilers on ocean liners and fishing vessels and industrial emissions), inland areas of Heibei/Shandong provinces (the highest density areas of agricultural production and population) in China, and typical port cities (Mokpo, Yeosu, and Busan) of South Korea. In the PSCF map for OC, high possible source areas were also coastal cities of Liaoning province and inland areas of Heibei/Shandong provinces in China. In contrast, high possible source areas of EC were highlighted in the south of the Yellow Sea, indicating possible emissions from oil-fired boilers on large ships between South Korea and Southeast Asia. In summary, the PSCF results may suggest that air pollution levels in Seoul are affected considerably by long-range transport from external areas, such as the coastal zone in China and other cities in South Korea, as well as Seoul itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号