首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
An aircraft study of air quality in the Hong Kong region during the fall of 1994 has allowed for an estimation of the daytime source strengths for CO and NOy from the Hong Kong metropolitan center. Emission rate estimates for the Hong Kong urban plume for NOy and CO were 5.4×10e(25) molecules s-1 and 1.8×10e(26) molecules s-1 as determined for the case study of 18 October. All emission rate estimates have uncertainties of a factor of 2. On one occasion a distinct plume emanating from Shenzhen in the People’s Republic of China was encountered. While plume delimitation was insufficient for source strength calculations, transect integrals did allow for a CO/NOy ratio of about 16 to be determined. The CO/NOy ratio for the Hong Kong urban plume was about 3.3. The difference in these ratios indicates differences in the overall combustion processes and efficiencies taking place within Hong Kong and the PRC.  相似文献   

2.
A method is developed to estimate wet deposition of nitrogen in a 11×14 km (0.125°Lon.×0.125°Lat.) grid scale using the precipitation chemistry monitored data at 10 sites scattered over South Korea supplemented by the routinely available precipitation rate data at 65 sites and the estimated emissions of NO2 and NH3 at each precipitation monitoring site. This approach takes into account the contributions of local NO2 and NH3 emissions and precipitation rates on wet deposition of nitrogen. Wet deposition of nitrogen estimated by optimum regression equations for NO3 and NH4+ derived from annual total monitored wet deposition and that of emissions of NO2 and NH3 is incorporated to normalize wet deposition of nitrogen at each precipitation rate class, which is divided into 6 classes. The optimum regression equations for the estimation of wet deposition of nitrogen at precipitation monitoring sites are developed using the normalized wet deposition of nitrogen and the precipitation rate at 10 precipitation chemistry monitoring sites. The estimated average annual total wet depositions of NO3 and NH4+ are found to be 260 and 500 eq ha−1 yr−1 with the maximum values of 400 and 930 eq ha−1 yr−1, respectively. The annual mean total wet deposition of nitrogen is found to be about 760 eq ha−1 yr−1, of which more than 65% is contributed by wet deposition of ammonium while, the emission of NH3 is about half of that of NO2, suggesting the importance of NH3 emission for wet deposition of nitrogen in South Korea.  相似文献   

3.
Annual volume-weighted mean (VWM) concentrations in rainwater collected at La Castanya (LC, Montseny Mountains, NE Spain) were analysed from 1983 to 2000 to study the temporal trends in precipitation chemistry, and the causes behind the changes. A significant positive correlation was found between annual rainwater SO42− concentrations at LC and Spanish SO2 emissions (r=0.73, P=0.0008) both decreasing remarkably during this period. Rainwater alkalinity increased during the period, shifting from negative values at the beginning (VWM in the 5 initial years=−2.7 μeq l−1) to alkaline values in recent years (VWM in the 5 final years=18.0 μeq l−1). Stepwise regression analysis indicated that 88% of the variation of alkalinity could be accounted for by the variability of non-marine Ca2+ and non-marine SO42−, with a more prominent dependence on Ca2+.Rains of African provenance were highly enriched in alkalinity and Ca2+, but no significant increases in their occurrence were found for the study period. Because of the reported higher dust updraft in northern Africa during years of high North Atlantic Oscillation (NAO) index, we also explored the relationship between rainwater variables associated with an African provenance and NAO. Annual precipitation was inversely related to NAO (r=−0.61, P=0.007). The annual wet deposition of African dust-related elements showed no correlation with NAO, probably because wet deposition of these elements depends on two factors (precipitation and dust updraft) which have opposite behaviour with respect to NAO. We hypothesise that dry deposition of African dust during dry spells (not sampled in this study) might be higher during high NAO-index years.  相似文献   

4.
Major ion concentrations and Sr isotope ratios (87Sr/86Sr) were measured in rainwater samples collected at an urban site in Beijing over a period of one year. The pH value and major ion concentrations of samples varied considerably, and about 50% of the rainwater studied here were acidic rain with pH values less than 5.0. Ca2+ and NH4+ were the dominant cations in rainwaters and their volume weighted mean (VWM) values were 608 μeq l?1 (14–1781 μeq l?1) and 186 μeq l?1 (48–672 μeq l?1), respectively. SO42? was the predominant anion with VWM value of 316 μeq l?1 (65–987 μeq l?1), next was NO3? with VWM value of 109 μeq l?1 (30–382 μeq l?1).Using Na as an indicator of marine origin, and Al for the terrestrial inputs, the proportions of sea salt and terrestrial elements were estimated from elemental ratios. More than 99% of Ca2+ and 98% of SO42? in rainwater samples are non-sea-salt origin. The 87Sr/86Sr ratios were used to characterize the different sources based on the data sets of this study and those from literatures. Such sources include sea salts (87Sr/86Sr~0.90917), soluble soil dust minerals originating from either local or the desert and loess areas (~0.7111), and anthropogenic sources (fertilizers, coal combustion and automobile exhausts). The high concentrations of alkaline ions (mainly Ca2+) in Beijing atmosphere have played an important role to neutralize the acidity of rainwater. However, it is worth noting that there is a remarkable acidification trend of rainwater in Beijing recent years.  相似文献   

5.
The characteristics and concentrations of volatile organic compounds (VOCs) in the roadside microenvironments of metropolitan Hong Kong were investigated. The VOC concentrations, especially toluene, benzene and chlorinated VOCs in Hong Kong were high when compared with those in most developed cities. The average and maximum concentration of toluene was 74.9 and 320.0 μg m−3, respectively. The respective values for benzene were 25.9 and 128.6 μg m−3. The chlorinated VOCs were dominated by trichloroethylene and tetrachloroethylene. The maximum concentrations of these two species reached 248.2 and 144.0 μg m−3, respectively. There were strong variations in the spatial fluctuation and characteristic of VOC concentrations. The highest VOC concentrations were found in the industrial district, which were followed by those in the commercial district, the central business district and finally the residential district. The highest concentrations of most VOC species, especially chlorinated VOC were found in the industrial and commercial districts. The average benzene/toluene ratio in Hong Kong was 0.5 suggesting that vehicular emission was the dominant VOC source in most areas of Hong Kong. There were strong deviations in benzene/toluene, benzene/ethylbenzene and benzene/(m+p-xylene) ratios in the commercial district, and highly chlorinated VOC in the industrial and commercial districts. These suggest that there were other benzene and VOC sources overlying on the high background VOC concentrations in these districts. The common usage of organic solvents in the building and construction industries, and in the small industries in the industrial and commercial districts were believed to be important sources of VOC in Hong Kong.  相似文献   

6.
Daily and seasonal variations in dry and wet atmospheric nitrogen fluxes have been studied during four campaigns between 2004 and 2006 at a coastal site of the Southern North Sea at De Haan (Belgium) located at coordinates of 51.1723° N and 3.0369° E. Concentrations of inorganic N-compounds were determined in the gaseous phase, size-segregated aerosol (coarse, medium, and fine), and rainwater samples. Dissolved organic nitrogen (DON) was quantified in rainwater. The daily variations in N-fluxes of compounds were evaluated with air-mass backward trajectories, classified into the main air-masses arriving at the sampling site (i.e., continental, North Sea, and Atlantic/UK/Channel).The three, non-episodic campaigns showed broadly consistent fluxes, but during the late summer campaign exceptionally high episodic N-deposition was observed. The average dry and wet fluxes for non-episodic campaigns amounted to 2.6 and 4.0 mg N m?2 d?1, respectively, whereas during the episodic late summer period these fluxes were as high as 5.2 and 6.2 mg N m?2 d?1, respectively.Non-episodic seasons/campaigns experienced average aerosol fluxes of 0.9–1.4 mg N m?2 d?1. Generally, the contribution of aerosol NH4+ was more significant in the medium and fine particulate fractions than that of aerosol NO3?, whereas the latter contributed more in the coarse fraction, especially in continental air-masses. During the dry mid-summer campaign, the DON contributed considerably (~15%) to the total N-budget.Exceptionally high episodic aerosol-N inputs have been observed for the late summer campaign, with especially high deposition rates of 3.6 and 2.9 mg N m?2 d?1 for Atlantic/UK/Channel and North Sea-continental (mixed) air-masses, respectively. During this pollution episode, the flux of NH4+ was dominating in each aerosol fraction/air-mass, except for coarse continental aerosols. High deposition of gaseous-N was also observed in this campaign with an average total N-flux of 2–2.5-times higher than in other campaigns.  相似文献   

7.
We reconstructed the historical trends in atmospheric deposition of nitrogen to Cape Cod, Massachusetts, from 1910 to 1995 by compiling data from literature sources, and adjusting the data for geographical and methodological differences. The reconstructed data suggest that NO3-N wet deposition to this region increased from a low of 0.9 kg N ha−1 yr−1 in 1925 to a high of approximately 4 kg N ha−1 yr−1 around 1980. The trend in NO3-N deposition has remained since the early 1980s at around 3.6 kg N ha−1 yr−1. In contrast, NH4-N wet deposition decreased from more than 4 kg N ha−1 yr−1 in the mid 1920s to about 1.5 kg N ha−1 yr−1 from the late-1940s until today. Emissions of NOx-N in the Cape Cod airshed increased at a rate of 2.1 kg N ha−1 per decade since 1910, a rate that is an order of magnitude higher than NO3-N deposition. Estimates of NH3 emissions to the northeast United States and Canada have decreased slightly throughout the century, but the decrease in reconstructed N-NH4+ deposition rates does not parallel emissions estimates. The trend in reconstructed total nitrogen deposition suggests an overall increase through the century at a rate of 0.26 kg N ha−1 per decade. This overall increase in deposition may expose coastal forests to rates of nitrogen addition that, if exceeded, could induce nitrogen saturation and increase nitrogen loads to adjoining estuaries.  相似文献   

8.
Summer pollution episodes in Hong Kong are related to the passage of tropical storms close to the territory. Between 1994 and 1999, there were six territory-wide ozone episodes in Hong Kong during which the Hong Kong Air Quality Objective for ozone (240 μg m−3, 1 h) was violated. The maximum O3 concentration for the period was 334 μg m−3 recorded in August 1999. Synoptically, tropical storms were in the vicinity on all the episode days. Northwesterly/westerly winds induced by the storms are believed to cause ozone precursor emissions from local power plants in the western part of Hong Kong to impact the territory, and at the same time allowing the import of emissions from upwind sources along the mainland coast. Other important meteorological factors that contribute to the occurrence of the episode events include: stable atmospheres, morning break-up of nocturnal inversions, low winds, strong solar radiation and high temperatures. Trajectory analysis of airflows at 850 hPa confirms the long-range pollutant transport. The strong correlation between non-sea-salt sulphate (NS-SO4) and selenium for the summer of 1999 indicates that the main source of high levels of NS-SO4 in summer in Hong Kong is coal combustion. The correlation between arsenic (As) and vanadium (V) for the summers of 1996–1999 suggests a concomitant influence of coal and residual oil combustion in the region.  相似文献   

9.
The annular denuder system (ADS) was used to characterize seasonal variations of acidic air pollutants in Seoul, South Korea. Fifty- four 24 h samples were collected over four seasons from October 1996 to September 1997. The annual mean concentrations of HNO3, HNO2, SO2 and NH3 in the gas phase were 1.09, 4.51, 17.3 and 4.34 μg m-3, respectively. The annual mean concentrations of PM2.5(dp≤2.5 μm in aerodynamic diameter, 50% cutoff), SO2-4, NO-3 and NH+4 in the particulate phase were 56.9, 8.70, 5.97 and 4.19 μg m-3, respectively. All chemical species monitored from this study showed statistical seasonal variations. Nitric acid (HNO3) and ammonia (NH3) exhibited substantially higher concentrations during the summer, while nitrous acid (HNO2) and sulfur dioxide(SO2) were higher during the winter. Concentrations of PM2.5, SO2-4, NO-3 and NH+4 in the particulate phase were higher during the winter months. SO2-4, NO-3 and NH+4 accounted for 26–38% of PM2.5. High correlations were found among PM2.5, SO2-4, NO-3 and NH+4. The mean H+ concentration measured only in the fall was 5.19 nmole m-3.  相似文献   

10.
During a measurement period from June till November 2004, ammonia fluxes above non-fertilized managed grassland in The Netherlands were measured with a Gradient Ammonia—High Accuracy—Monitor (GRAHAM). Compared with earlier ammonia measurement systems, the GRAHAM has higher accuracy and a quality control system.Flux measurements are presented for two different periods, i.e. a warm, dry summer period (from 18 July till 15 August) and a wet, cool autumn period (23 September till 23 October). From these measurements canopy compensation points were derived. The canopy compensation point is defined as the effective surface concentration of ammonia. In the summer period (negative) deposition fluxes are observed in the evening, night and early morning due to leaf surface wetness, while in the afternoon emission fluxes are observed due to high canopy compensation points. The mean NH3-flux in this period was 4 ng m−2 s−1, which corresponds to a net emission of 0.10 kg N ha−1 over the 28 day sampling period. The NH3-flux in the autumn period mainly shows (negative) deposition fluxes due to small canopy compensation points caused by low temperatures and a generally wet surface. The mean NH3-flux in this period is −24 ng m−2 s−1, which corresponds to a net deposition of 0.65 kg N ha−1 over the 31 day sampling period.Frequency distributions of the NH3-concentration and flux show that despite higher average ambient NH3-concentrations (13.3 μg m−3 in the summer period vs. 6.4 μg m−3 in the autumn period) there are more emission events in the summer period than in the autumn period (about 50% of the time in summer vs. 20% in autumn). This is caused by the high canopy compensation points in summer due to high temperatures and a dry surface. In autumn, deposition dominates due to a generally wet surface that induces low canopy compensation points.For our non-fertilized agricultural grassland site, the derived canopy compensation points (at temperatures between 7 and 29 °C) varied from 0.5 to 29.7 μg m−3 and were on an average 7.0 μg m−3, which is quite high for non-fertilized conditions and probably caused by high nitrogen inputs in the past or high dry deposition amounts from local sources. The average value for the ratio between NH4+ and H+ concentration in the canopy, Γc, that was derived from our data was 2200.  相似文献   

11.
This study conducted roadside particulate sampling to measure the total suspended particulate (TSP), PM10 (particles <10 μm in aerodynamic diameter) and PM2.5 (particles <2.5 μm in aerodynamic diameter) mass concentration in 11 urbanized and densely populated districts in Hong Kong. One hundred and thirty-three samples were obtained to measure the mass concentrations of TSP, PM10 and PM2.5. According to these results, the TSP, PM10 and PM2.5 mass concentrations varied from 94.85 to 301.63 μg m−3, 67.67 to 142.68 μg m−3 and 50.01 to 125.12 μg m−3, respectively. The PM2.5/PM10 ratio of all samples was 0.82 which ranged from 0.62 to 0.95. The PM levels and PM ratios in metropolitan Hong Kong significantly fluctuated from site-to-site and over time. The PM2.5 mass concentration in different districts corresponding to urban industrial, new town, urban residential and urban commercial were 77.64, 87.50, 106.96 and 88.54 μg m−3, respectively. The PM2.5 level is high in Hong Kong, and for individual sampling, more than 60% daily measurements exceeded the NAAQS. The mass fraction of PM2.5 in PM10 and TSP is relatively high when compared with overseas studies.  相似文献   

12.
Ammonia-nitrogen flux (NH3-N=(14/17)NH3) was determined from six anaerobic swine waste storage and treatment lagoons (primary, secondary, and tertiary) using the dynamic chamber system. Measurements occurred during the fall of 1998 through the early spring of 1999, and each lagoon was examined for approximately one week. Analysis of flux variation was made with respect to lagoon surface water temperature (∼15 cm below the surface), lagoon water pH, total aqueous phase NHx(=NH3+NH4+) concentration, and total Kjeldahl nitrogen (TKN). Average lagoon temperatures (across all six lagoons) ranged from approximately 10.3 to 23.3°C. The pH ranged in value from 6.8 to 8.1. Aqueous NHx concentration ranged from 37 to 909 mg N l−1, and TKN varied from 87 to 950 mg N l−1. Fluxes were the largest at the primary lagoon in Kenansville, NC (March 1999) with an average value of 120.3 μg N m−2 min−1, and smallest at the tertiary lagoon in Rocky Mount, NC (November 1998) at 40.7 μg N m−2 min−1. Emission rates were found to be correlated with both surface lagoon water temperature and aqueous NHx concentration. The NH3-N flux may be modeled as ln(NH3-N flux)=1.0788+0.0406TL+0.0015([NHx]) (R2=0.74), where NH3-N flux is the ammonia flux from the lagoon surface in μg N m−2 min−1, TL is the lagoon surface water temperature in °C, and [NHx] is the total ammonia-nitrogen concentration in mg N l−1.  相似文献   

13.
PM2.5 samples were collected at five sites in Guangzhou and Hong Kong, Pearl River Delta Region (PRDR), China in both summer and winter during 2004–2005. Elemental carbon (EC) and organic carbon (OC) in these samples were measured. The OC and EC concentrations ranked in the order of urban Guangzhou > urban Hong Kong > background Hong Kong. Total carbonaceous aerosol (TCA) contributed less to PM2.5 in urban Guangzhou (32–35%) than that in urban Hong Kong (43–57%). The reason may be that, as an major industrial city in South China, Guangzhou would receive large amount of inorganic aerosol from all kinds of industries, however, as a trade center and seaport, urban Hong Kong would mainly receive organic aerosol and EC from container vessels and heavy-duty diesel trucks. At Hong Kong background site Hok Tsui, relatively lower contribution of TCA to PM2.5 may result from contributions of marine inorganic aerosol and inland China pollutant. Strong correlation (R2=0.76–0.83) between OC and EC indicates minor fluctuation of emission and the secondary organic aerosol (SOA) formation in urban Guangzhou. Weak correlation between OC and EC in Hong Kong can be related to the impact of the long-range transported aerosol from inland China. Averagely, secondary OC (SOC) concentrations were 3.8–5.9 and 10.2–12.8 μg m−3, respectively, accounting for 21–32% and 36–42% of OC in summer and winter in Guangzhou. The average values of 4.2–6.8% for SOA/ PM2.5 indicate that SOA was minor component in PM2.5 in Guangzhou.  相似文献   

14.
15.
Bulk precipitation samples were collected at Montseny (Catalonia, NE Spain) from 1983 to 1994 and analysed for major cations and anions. The samples were classified for provenance based on meteorological synoptic maps and back trajectory analysis to identify the source areas of pollutants in precipitation. The meteorological classification was compared to an independent grouping based on multivariate data analysis (Clustering and Principal Component Analysis). Alkaline rain (mean pH=7.2) was associated to African trajectories. Local events produced neutral rains (mean pH=5.5). Acid rain was associated to rains of Atlantic origin (mean pH=4.8) and to European rains (mean pH=4.4), which also presented the highest mean concentrations of NH+4 (57 μeq -1), NO-3(49 μeq -1) and SO2-4(103 μeq -1). However, European events were only a small fraction of the total precipitation (10% of the cases). Marine rains accounted for 52% of the events, and African and Local for 20 and 18%, respectively. During the 11 year period there was a decreasing trend for the frequency of European events.  相似文献   

16.
Understanding the spatial–temporal variations of source apportionment of PM2.5 is critical to the effective control of particulate pollution. In this study, two one-year studies of PM2.5 composition were conducted at three contrasting sites in Hong Kong from November 2000 to October 2001, and from November 2004 to October 2005, respectively. A receptor model, principal component analysis (PCA) with absolute principal component scores (APCS) technique, was applied to the PM2.5 data for the identification and quantification of pollution sources at the rural, urban and roadside sites. The receptor modeling results identified that the major sources of PM2.5 in Hong Kong were vehicular emissions/road erosion, secondary sulfate, residual oil combustion, soil suspension and sea salt regardless of sampling sites and sampling periods. The secondary sulfate aerosols made the most significant contribution to the PM2.5 composition at the rural (HT) (44 ± 3%, mean ± 1σ standard error) and urban (TW) (28 ± 2%) sites, followed by vehicular emission (20 ± 3% for HT and 23 ± 4% for TW) and residual oil combustion (17 ± 2% for HT and 19 ± 1% for TW). However, at the roadside site (MK), vehicular emissions especially diesel vehicle emissions were the major source of PM2.5 composition (33 ± 1% for diesel vehicle plus 18 ± 2% for other vehicles), followed by secondary sulfate aerosols (24 ± 1%). We found that the contribution of residual oil combustion at both urban and rural sites was much higher than that at the roadside site (2 ± 0.4%), perhaps due to the marine vessel activities of the container terminal near the urban site and close distance of pathway for the marine vessels to the rural site. The large contribution of secondary sulfate aerosols at all the three sites reflected the wide influence of regional pollution. With regard to the temporal trend, the contributions of vehicular emission and secondary sulfate to PM2.5 showed higher autumn and winter values and lower summer levels at all the sites, particularly for the background site, suggesting that the seasonal variation of source apportionment in Hong Kong was mainly affected by the synoptic meteorological conditions and the long-range transport. Analysis of annual patterns indicated that the contribution of vehicular emission at the roadside was significantly reduced from 2000/01 to 2004/05 (p < 0.05, two-tail), especially the diesel vehicular emission (p < 0.001, two-tail). This is likely attributed to the implementation of the vehicular emission control programs with the tightening of diesel fuel contents and vehicular emission standards over these years by the Hong Kong government. In contrast, the contribution of secondary sulfate was remarkably increased from 2001 to 2005 (p < 0.001, two-tail), indicating a significant growth in regional sulfate pollution over the years.  相似文献   

17.
Currently, in operational modelling of NH3 deposition a fixed value of canopy resistance (Rc) is generally applied, irrespective of the plant species and NH3 concentration. This study determined the effect of NH3 concentration on deposition processes to individual moorland species. An innovative flux chamber system was used to provide accurate continuous measurements of NH3 deposition to Deschampsia cespitosa (L.) Beauv., Calluna vulgaris (L.) Hull, Eriophorum vaginatum L., Cladonia spp., Sphagnum spp., and Pleurozium schreberi (Brid.) Mitt. Measurements were conducted across a wide range of NH3 concentrations (1–140 μg m−3).NH3 concentration directly affects the deposition processes to the vegetation canopy, with Rc, and cuticular resistance (Rw) increasing with increasing NH3 concentration, for all the species and vegetation communities tested. For example, the Rc for C. vulgaris increased from 14 s m−1 at 2 μg m−3 to 112 s m−1 at 80 μg m−3. Diurnal variations in NH3 uptake were observed for higher plants, due to stomatal uptake; however, no diurnal variations were shown for non-stomatal plants. Rc for C. vulgaris at 80 μg m−3 was 66 and 112 s m−1 during day and night, respectively. Differences were found in NH3 deposition between plant species and vegetation communities: Sphagnum had the lowest Rc (3 s m−1 at 2 μg m−3 to 23 at 80 μg m−3), and D. cespitosa had the highest nighttime value (18 s m−1 at 2 μg m−3 to 197 s m−1 at 80 μg m−3).  相似文献   

18.
SO2 dry deposition was studied over short vegetation, in Portugal, by means of the concentration gradient method. The experimental study involved one first phase of long-term measurements carried out in a grassland and, subsequently, a second period of several 1997 intensive field campaigns performed in three places representing different climate and surface conditions. Temporal and spatial patterns of dry deposition parameters show that downward fluxes of SO2 are by some extent affected by surface processes. Median Rc varied from 140 s cm−1 to values around 200 s cm−1, in a wide range of environmental conditions. Stomatal uptake is an important sink when vegetation is biologically active, but its contribution is effectively low when compared with non-stomatal mechanisms, especially when the surface is wet. Under dry conditions Rc increases by a factor of two, but SO2 deposition rates then still are significant. The parameterisation of the surface resistance for SO2 proved to be difficult, but Vd derived with the Erisman parameterisation (Erisman et al., Atmos. Environ. 28 (16) (1994) 2595) compared best with measured values, at low time resolution scale and especially under moisture conditions.  相似文献   

19.
Marine background levels of non-sea-salt- (nss-) SO42− (5.0–9.7 neq m−3), NH4+ (2.1–4.4 neq m−3) and elemental carbon (EC) (40–80 ngC m−3) in aerosol samples were measured over the equatorial and South Pacific during a cruise by the R/V Hakuho-maru from November 2001 to March 2002. High concentrations of nss-SO42− (47–94 neq m−3), NH4+ (35–94 neq m−3) and EC (130–460 ngC m−3) were found in the western North Pacific near the coast of the Asian continent under the influence of the Asian winter monsoon. Particle size distributions of ionic components showed that the equivalent concentrations of nss-SO42− were balanced with those of NH4+ in the size range of 0.06<D<0.22 μm, whereas the concentration ratios of NH4+ to nss-SO42− in the size range of D>0.22 μm were decreased with increase in particle size. We estimated the source contributions of those aerosol components in the marine background air over the equatorial and South Pacific. Biomass burning accounted for the large fraction (80–98% in weight) of EC and the minor fraction (2–4% in weight) of nss-SO42−. Marine biogenic source accounted for several tens percents of NH4+ and nss-SO42−. In the accumulation mode, 70% of particle number existed in the size range of 0.1<D<0.2 μm. In the size rage of 0.06<D<0.22 μm, the dominant aerosol component of (NH4)2SO4 would be mainly derived from the marine biogenic sources.  相似文献   

20.
The concentrations of C1–C8 carbonyl compounds were measured at two urban sites in Hong Kong from October 1997 to September 2000. The daily total carbonyl concentrations were found to range from 2.4 to 37 μg m−3. Formaldehyde was the most abundant species, which comprised from 36 to 43% of the total detected carbonyls, followed by acetaldehyde (18–21%) and acetone (8–20%). The highest 24-hour average concentrations measured were 10 and 7.7 μg m−3 for formaldehyde and acetaldehyde, respectively. Seasonal and temporal variations in the concentrations of formaldehyde and acetaldehyde were not obvious, but lowest concentrations often occurred from June to August. The mean formaldehyde/acetaldehyde molar ratios at the two sites in summer (2.8±1.1 and 2.5±1.2) were significantly higher (p⩽0.01) than those in winter periods (1.9±0.6 and 2.0±0.6). The phenomena were explained by influences of both photochemical reactions and local meteorological conditions. Better correlations between formaldehyde and acetaldehyde, and between NOx and each of the two major carbonyls were obtained in winter periods indicating direct vehicular emissions were the principal sources. The ambient formaldehyde and acetaldehyde concentrations in the urban atmosphere of Hong Kong were within the normal ranges reported in the literature for other urban sites world-wide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号