首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Overall dry deposition velocities of several elements were determined by dividing measured fluxes by measured airborne concentrations in different particle size ranges. The dry deposition measurements were made with a smooth surrogate surface on an automated dry deposition sampler (Eagle II) and the ambient particle concentrations were measured with a dichotomous sampler. These long-term measurements were made in Chicago, IL, South Haven, MI, and Sleeping Bear Dunes, MI, from December 1993 through October 1995 as part of the Lake Michigan Mass Balance Study. In general, the dry deposition fluxes of elements were highly correlated with coarse particle concentrations, slightly less well correlated with total particle concentrations, and least well correlated with fine particle concentrations. The calculated overall dry deposition velocities obtained using coarse particle concentrations varied from approximately 12 cm s−1 for Mg in Chicago to 0.2 cm s−1 for some primarily anthropogenic metals at the more remote sites. The velocities calculated using total particle concentrations were slightly lower. The crustal elements (Mg, Al, and Mn) had higher deposition velocities than anthropogenic elements (V, Cr, Cu, Zn, Mo, Ba and Pb). For crustal elements, overall dry deposition velocities were higher in Chicago than at the other sites.  相似文献   

2.
The conceptual design and evaluation of a fine particle sizing and counting instrument are introduced in this paper. A corresponding laboratory prototype was developed by coupling aerodynamic particle focusing with corona charging techniques that could detect particle sizes down to 25 nm in diameter. Comparison between the prototype and a condensation particle counter (CPC) using identical monodisperse particles showed that the measurements agreed well for the particle sizes in the range of 60–300 nm.  相似文献   

3.
From 1 May to 25 May 2001, the BAB II campaign was carried out at the motorway BAB (656) near Heidelberg. Atmospheric concentrations of particulate matter and gases were measured together with the meteorological conditions. This paper is focused on the particulate matter measured upwind and downwind from the motorway at ground level. In order to determine the source contribution from the motorway traffic, it was necessary to measure upwind and downwind simultaneously due to variations in background concentrations. The particle number contribution from the motorway was found to be 35,000 particles cm−3 for particles with diameters close to 20 nm and 5000 particles cm−3 for particles with diameters close to 70 nm. Bimodal size distributions were observed on the downwind side, whereas the upwind side showed unimodal size distributions. For particulate mass, it can be estimated that the contribution from the motorway to the PM1 concentrations is in a range 0.6–1.3 μg m−3 for the chosen measurement sites approximately 60 m from the road at a height of 6 m. The soot measurements showed diurnal variation; however, the upwind downwind difference was not measured. Correlation factors showed good correlation between total particle number and number of particles with diameters below 80 nm, CO and NO. There was no correlation between particle number and PM10, which is due to the observation that particle number was dominated by the 20 nm particles.  相似文献   

4.
Air and precipitation measurements at five sites were undertaken from 2001 to 2003 in four different provinces in China, as part of the acid rain monitoring program IMPACTS. The sites were located in Tie Shan Ping (TSP) in Chongqing, Cai Jia Tang (CJT) in Hunan, Lei Gong Shan (LGS) and Liu Chong Guan (LCG) in Guizhou and Li Xi He (LXH) in Guangdong. The site characteristics are quite varied with TSP and LCG located relatively near big cites while the three others are situated in more regionally representative areas. The distances to urban centres are reflected in the air pollution concentrations, with annual average concentrations of SO2 ranging from 0.5 to above 40 μg S m−3. The main components in the airborne particles are (NH4)2SO4 and CaSO4. Reduced nitrogen has a considerably higher concentration level than oxidised nitrogen, reflecting the high ammonia emissions from agriculture. The gas/particle ratio for the nitrogen compounds is about 1:1 at all the three intensive measurement sites, while for sulphur it varies from 2.5 to 0.5 depending on the distance to the emission sources. As in air, the predominant ions in precipitation are sulphate, calcium and ammonium. The volume weighted annual concentration of sulphate ranges from about 70 μeq l−1 at the most rural site (LGS) to about 200 μeq l−1 at TSP and LCG. The calcium concentration ranges from 25 to 250 μeq l−1, while the total nitrogen concentration is between 30 and 150 μeq l−1; ammonium is generally twice as high as nitrate. China's acid rain research has traditionally been focused on urban sites, but these measurements show a significant influence of long range transported air pollutants to rural areas in China. The concentration levels are significantly higher than seen in most other parts of the world.  相似文献   

5.
Epidemiological studies are consistently reporting an association between fine particulate pollution and ill-health. Motor vehicle emissions are considered to be the main source of fine particles in ambient urban air of cities which are not directly influenced by industrial emissions. The aim of this work was to assess the influence of a major arterial road on concentration levels of airborne fine particles in its vicinity. Measurements of over 500 particle size distributions in the particle size range 16–626 nm, were made using two scanning mobility particle sizers (SMPS). A subsequent comparison of the recorded values from differing locations is discussed, with reference made to topographic and climatic influences. Both horizontal and vertical profile measurements of fine particle number size distributions are described; the combination of the two yielding information as to the relative exposures of occupants of buildings in the vicinity of a major arterial route. With the exception of measurements in close proximity to the freeway (about 15 m), the horizontal profile measurements did not provide any evidence of a statistically significant difference in fine particle number concentration with respect to distance at ground level up to a distance of 200 m within the study area. The vertical profile measurements also revealed no significant correlation between particle concentration and height. However, for buildings in the immediate proximity to the arterial road (about 15 m) concentrations around the building envelope are very high, comparable to those in the immediate vicinity of the road, indicating undiluted concentrations drawn directly from the freeway. This finding has a significant implication for management of indoor air quality in the buildings located in the immediate vicinity of major roads.  相似文献   

6.
ObjectiveThis cross-sectional study was conducted to assess the relationship between exposure to cadmium and circulating reproductive hormone levels in urban and rural male workers.Materials and MethodsUrinary cadmium, blood cadmium, luteinizing hormone (LH), follicle stimulating hormone (FSH) and testosterone were obtained from 86 non-smoking traffic policemen and 86 subjects working as roadmen in a rural area. All subjects were monitored to evaluate airborne exposure to cadmium.ResultsThe mean value of exposure to cadmium was 1.3 ng m?3 in traffic policemen, while the mean value was less than 0.5 ng m?3 in roadmen. The mean concentrations of urinary cadmium (1.4 vs. 0.9 μg g?1 creatinine; p = 0.001), blood cadmium (1.1 vs. 0.7 μg l?1; p = 0.000), FSH (2.6 vs. 3.2 μlU ml?1; p = 0.02) and LH (2.6 vs. 3.1 μlU ml?1; p = 0.03) were significantly different between traffic policemen and roadmen. No differences were found in the mean values of testosterone between the two groups. Multiple linear regression models showed associations between (a) urinary cadmium, airborne cadmium, working life, job category and consumption of water from water supply (b) blood cadmium, airborne cadmium and job category (c) the values of FSH and age, working life, job category, urinary cadmium and blood cadmium (d) the values of LH and both the age and working life.ConclusionThe above results must be confirmed by further studies, but they indicate the influence of exposure to the cadmium present in urban air on the circulating FSH, even at low doses.  相似文献   

7.
Aerobiological studies in commuting trains in northern Taiwan were carried out from August, 2007 until July, 2008. Two six-stage (>7 μm, 4.7~7 μm, 3.3~4.7 μm, 2.1~3.3 μm, 1.1~2.1 μm, 0.65~1.1 μm) cascade impactors of 400 orifices were used to collect viable bacteria and fungi, respectively. The levels of carbon monoxide (CO), carbon dioxide (CO2), formaldehyde (HCHO), temperature, and relative humidity in the commuting trains were also recorded during the sampling period. Results show that bacterial concentrations ranged from 25 to 1530 CFU m?3, and averaged 417 CFU m?3. The fungal concentrations ranged from 45 to 1906 CFU m?3, and averaged 413 CFU m?3. Additionally, the highest fractions occurred in the fifth stage (1.1~2.1 μm) for both bacteria and fungi. The respirable fractions, Rb and Rf, for bacteria and fungi were 62.8% and 81.4%, respectively, which are higher than those in other studies. Furthermore, the bacterial concentration reached its highest level in autumn, and its lowest level in winter. However, the fungal concentration was highest in spring and lowest in winter. Though the total bacterial or fungal concentration did not exceed the recommendation standard in Taiwan, the relatively high respirable fraction in commuting trains probably implies a higher adverse health risk for sensitive commuters. This study further conducted multiple regression analysis to determine the relationship of various stage fractions of airborne bacteria and fungi with indoor air pollutants (CO and HCHO) and environmental parameters (CO2, temperature, and relative humidity). The correlation coefficients of multiple regression analysis for total bacteria and fungi concentrations with indoor air pollutants and environmental parameters were 0.707 (p < 0.00376) and 0.612 (p < 0.00471), respectively. There are currently no formally regulated laws for indoor air quality (IAQ) in Taiwan, and this preliminary study can provide references to the Taiwan government on IAQ management.  相似文献   

8.
This study investigated particle size distributions from the burning of several grass species, under controlled laboratory conditions, and also in the field, conducted during the dry season in the Northern Territory, Australia. The laboratory study simulated conditions such as burning phases and burning rate, and particle diameter differed depending on the burning conditions. Under fast burning conditions, smaller particles were produced with a diameter in the range of 30–60 nm, while larger particles, with a diameter between 60 and 210 nm, were produced during slow burning. The airborne field measurements of biomass particles found that under the boundary layer most of the early dry season (EDS) particles came from fresh smokes with a count median diameter (CMD) of 83±13 nm, and most of the late dry season (LDS) particles came from aged smokes with a CMD of 127±6 nm. Vertical profiles of CMD showed that smaller particles were found higher within the atmosphere. These measurements provide insight into the scientific understanding of the properties of biomass burning particles in the Northern Territory, Australia.  相似文献   

9.
Total number concentrations, number concentrations of ultrafine (0.01–0.1 μm) and accumulation (0.1–0.5 μm) particles, as well as mass concentration of PM2.5 particles and blackness of PM2.5 filters, which is related to Black Smoke were simultaneously monitored in three European cities during the winter period for three and a half months. The purpose of the study was to describe the differences in concentration levels and daily and diurnal variations in particle number and mass concentrations between European cities. The results show statistically significant differences in the concentrations of PM2.5 and the blackness of the PM2.5 filters between the cities, but not in the concentrations of ultrafine particles. Daily PM2.5 levels were found to be poorly correlated with the daily total and ultrafine number concentrations but better correlated with the number concentration of accumulation particles. According to the principal component analysis airborne particulate pollutants seem to be divided into two major source categories, one identified with particle number concentrations and the other related to mass-based information. The present results underline the importance of using both particle number and mass concentrations to evaluate urban air quality.  相似文献   

10.
We present two years (January 2007–December 2008) of atmospheric SO2, NO2 and NH3 measurements from ten background or rural sites in nine provinces in China. The measurements were made on a monthly basis using passive samplers under careful quality control. The results show large geographical and seasonal variations in the concentrations of these gases. The mean SO2 concentration varied from 0.7 ± 0.4 ppb at Waliguan on Qinghai Plateau to 67.3 ± 31.1 ppb at Kaili in Guizhou province. The mean NO2 concentration ranged from 0.6 ± 0.4 ppb at Waliguan to 23.9 ± 6.9 ppb at Houma in southern Shanxi. The mean NH3 concentration ranged from 2.8 ± 3.0 ppb at Shangdianzi in northeastern Beijing to 13.7 ± 8.4 ppb at Houma. At most sites, SO2 and NO2 peaked in winter and reached minima in summer, while NH3 showed maximum values in summer and lower values in cold seasons. On the whole, the geographical distributions of the observed gas concentrations are consistent with those of emissions. The ground measurements of SO2 and NO2 are contrasted to the SCIAMACHY SO2 and OMI NO2 tropospheric columns, respectively. Although the satellite data can capture the main features of emissions and concentrations of SO2, they do not reflect the variations of SO2 in the surface layer. The situation is better for the case of NO2. The OMI NO2 columns capture the geographical differences in the ground NO2 and correlate fairly well with the ground levels of NO2 at six of the ten sites.  相似文献   

11.
The fungi and bacterial levels of the indoor air environments of 77 office buildings were measured in winter and a comparison was made between the buildings with microbe sources in their structures and those without such sources. Penicillium, yeasts, Cladosporium and non-sporing isolates were the commonest fungi detected in the indoor air and in settled dust, in both the mould-damaged and control buildings. Aspergillus ochraceus, Aspergillus glaucus and Stachybotrys chartarium were found only in environmental samples from the mould-damaged buildings. Some other fungi, with growth requiring of water activity, aw, above 0.85, occurred in both the reference and mould-damaged buildings, but such fungi were commoner in the latter type of buildings. The airborne concentrations of Penicillium, Aspergillus versicolor and yeasts were the best indicators of mould damage in the buildings studied. Penicillium species and A. versicolor were also the most abundant fungi in the material samples. This study showed that the fungi concentrations were very low (2–45 cfu m−3 90% of the concentrations being <15 cfu m−3) in the indoor air of the normal office buildings. Although the concentration range of airborne fungi was wider for the mould-damaged buildings (2–2470 cfu m−3), only about 20% of the samples exceeded 100 cfu m−3. The concentrations of airborne bacteria ranged from 12 to 540 cfu m−3 in the control buildings and from 14 to 1550 cfu m−3 in the mould-damaged buildings. A statistical analysis of the results indicated that bacteria levels are generally <600 cfu m−3 in office buildings in winter and fungi levels are <50 cfu m−3. These normal levels are applicable to subarctic climates for urban, modern office buildings when measurements are made using a six-stage impactor. These levels should not be used in evaluations of health risks, but elevated levels may indicate the presence of abnormal microbe sources in indoor air and a need for additional environmental investigations.  相似文献   

12.
Temporal and spatial variations in concentrations of particle-associated polycyclic aromatic hydrocarbons (PAHs) and their nitrated and oxygenated derivatives (nitro-PAHs and oxy-PAHs) were investigated to assess the influence of secondary formation on atmospheric occurrences of oxy-PAHs associated with particulate matter in downtown Tokyo, Japan. The daily variation in concentration of 1,8-naphthalic anhydride (1,8-NA) in summer 2007 was similar to that for 2-nitrofluoranthene (2-NF), a representative secondary formed nitro-PAH, while the variation for benzanthrone (BA) was similar to PAHs. In addition, the concentrations of polycyclic aromatic compounds (PACs) associated with airborne particulate matter decreased in the order of PAHs > BA > 9-fluorenone (9-FO) or 9,10-anthraquinone (9,10-AQ) > 1,8-NA with an increase in distance from the roadside, whereas 2-NF was constant. These results suggest that a considerable fraction of some oxy-PAHs such as 1,8-NA associated with airborne particulate matter in downtown Tokyo originates from atmospheric secondary formation.  相似文献   

13.
Improvements in measurement technology are permitting development of a more detailed scientific understanding of the cycling of mercury in the global atmospheric environment. Critical to advancing the state of knowledge is the acquisition of accurate measurement of speciated mercury (gaseous and particulate) at ground research stations in a variety of settings located around the globe. This paper describes one such research effort conducted at TVA's Look Rock air quality monitoring site in Tennessee—a mountain top site (813 m elevation) just west of the Great Smoky Mountains National Park. The Great Smoky Mountains National Park is the largest National Park in the eastern US and it receives environmental protection under a variety of US statutes. Gaseous and particle mercury species along with some additional trace gases were measured at Look Rock during two field studies totaling 84 days in the spring and summer of 2004. Average results for the entire sampling period are: gaseous elemental mercury Hg(0): 1.65 ng m−3, reactive gaseous mercury RGM: 0.005 ng m−3, particulate mercury Hg(p): 0.007 ng m−3. Literature review indicates that these levels are within the range found for other rural/remote sites in North America and worldwide. Reactive and particulate mercury comprised together less than 1%, on average, of total airborne mercury at Look Rock. When compared to the global background mercury literature, the Look Rock measurements demonstrate that the atmospheric mercury levels in the vicinity of the Great Smoky Mountains National Park are clearly dominated by the global atmospheric pool, not by local or regional sources.  相似文献   

14.
This study investigates the levels of particulate matter smaller than 2.5 μm (PM2.5) and some selected volatile organic compounds (VOCs) at 12 photocopy centers in Taiwan from November 2004 to June 2005. The results of BTEXS (benzene, toluene, ethylbenzene, xylenes and styrene) measurements indicated that toluene had the highest concentration in all photocopy centers, while the concentration of the other four compounds varied among the 12 photocopy centers. The average background-corrected eight-hour PM2.5 in the 12 photocopy centers ranged from 10 to 83 μg m−3 with an average of 40 μg m−3. The 24-h indoor PM2.5 at the photocopy centers was estimated and at two photocopy centers exceeded 100 μg m−3, the 24-h indoor PM2.5 guideline recommended by the Taiwan EPA. The ozone level and particle size distribution at another photocopy center were monitored and indicated that the ozone level increased when the photocopying started and the average ozone level at some photocopy centers during business hour may exceed the value (50 ppb) recommended by the Taiwan EPA. The particle size distribution monitored during photocopying indicated that the emitted particles were much smaller than the original toner powders. Additionally, the number concentration of particles that were smaller than 0.5 μm was found to increase during the first hour of photocopying and it increased as the particle size decreased. The ultrafine particle (UFP, <100 nm) dominated the number concentration and the peak concentration appeared at sizes of under 50 nm. A high number concentration of UFP was found with a peak value of 1E+8 particles cm−3 during photocopying. The decline of UFP concentration was observed after the first hour and the decline is likely attributable to the surface deposition of charged particles, which are charged primarily by the diffusion charging of corona devices in the photocopier. This study concludes that ozone and UFP concentrations in photocopy centers should be concerned in view of indoor air quality and human health. The corona devices in photocopiers and photocopier-emitted VOCs have the potential to initiate indoor air chemistry during photocopying and result in the formation of UFP.  相似文献   

15.
A few copper and gold smelters in Chile are behind a large fraction of global arsenic emissions, raising concerns for increased concentrations of arsenic in PM10 in Central and Northern Chile. This concern is amplified by the fact that Northern Chile soils and rivers in general are characterized by a high arsenic content. A monitoring and modeling study has been performed to quantify the regional impact of the smelter emissions. Measured atmospheric arsenic concentrations from 2.4 to 30.7 ng m−3 were found at seven rural stations, located tens to hundreds of kilometers away from the nearest smelter. Analyses of topsoil and subsoil samples taken from PM10 monitoring stations revealed levels up to 291 mg kg−1, the highest values found in the northern Atacama desert in Chile. An absolute principal component analysis of selected trace elements in PM10 shows that the regional impact of anthropogenic smelter emissions on airborne arsenic concentrations is more important than the effect of soil dust resuspension. The dominance of the smelter emissions is larger in Central Chile than in the northern parts. The impact of resuspended soil dust on airborne arsenic levels in rural areas was estimated not to exceed 5 ng m−3. The model calculations support the dominant role of anthropogenic emissions and give spatial and temporal variations in atmospheric concentrations consistent with the monitored levels at five of the seven stations. At two of the northernmost stations indications were found of unidentified sources other than the smelters and the resuspended soil dust, contributing to about 5 ng m−3 of total arsenic levels. The study confirms that a strong control or elimination of arsenic emissions from the smelters would lead to arsenic in PM10 levels in Northern and Central Chile comparable to non-polluted areas in other countries.  相似文献   

16.
Measurements of the physical properties of particles in the atmosphere of a UK urban area have been made, including particle number count by condensation nucleus counters with different lower particle size cut-offs; particle size distributions using a Scanning Mobility Particle Sizer; total particle Fuchs surface area using an epiphaniometer and particle mass using Tapered Element Oscillating Micro-balance (TEOM) instruments with size selective (PM10 and PM2.5) inlets. Mean particle number counts at three sites range from 2.86×104 to 9.60×104 cm-3. A traffic-influenced location showed a substantially higher ratio of particle number to PM10 mass than a nearby background location despite being some 70 m from the roadway. Operating two condensation nucleus counters in tandem to determine particles in the 3–7 nm size range by difference showed signficant numbers of particles in this range, apparently related to homogeneous nucleation processes. Measurements with the Scanning Mobility Particle Sizer showed a clear difference between roadside size distributions and those at a nearby background location with an additional mode in the roadside samples below 10 nm diameter. Particle number counts were found to show a significant linear correlation with PM10 mass (r2=0.44; n=44 for 24 h data at an urban background location), although during one period of high pollution a curvilinear relationship was found. Measurements of the diurnal variation in PM10 mass, particle number count and Fuchs surface area show the same general pattern of behaviour of the three variables, explicable in terms of vehicle emission source strength and atmospheric dispersion, although the surface area growth was out of phase with the particle number and mass. It appears that particle number gives the clearest indication of recent road traffic emissions.  相似文献   

17.
A method is developed to estimate wet deposition of nitrogen in a 11×14 km (0.125°Lon.×0.125°Lat.) grid scale using the precipitation chemistry monitored data at 10 sites scattered over South Korea supplemented by the routinely available precipitation rate data at 65 sites and the estimated emissions of NO2 and NH3 at each precipitation monitoring site. This approach takes into account the contributions of local NO2 and NH3 emissions and precipitation rates on wet deposition of nitrogen. Wet deposition of nitrogen estimated by optimum regression equations for NO3 and NH4+ derived from annual total monitored wet deposition and that of emissions of NO2 and NH3 is incorporated to normalize wet deposition of nitrogen at each precipitation rate class, which is divided into 6 classes. The optimum regression equations for the estimation of wet deposition of nitrogen at precipitation monitoring sites are developed using the normalized wet deposition of nitrogen and the precipitation rate at 10 precipitation chemistry monitoring sites. The estimated average annual total wet depositions of NO3 and NH4+ are found to be 260 and 500 eq ha−1 yr−1 with the maximum values of 400 and 930 eq ha−1 yr−1, respectively. The annual mean total wet deposition of nitrogen is found to be about 760 eq ha−1 yr−1, of which more than 65% is contributed by wet deposition of ammonium while, the emission of NH3 is about half of that of NO2, suggesting the importance of NH3 emission for wet deposition of nitrogen in South Korea.  相似文献   

18.
It is increasingly accepted that although exposure to elevated concentrations of PM10 is associated with an increased risk of mortality and morbidity, the relationship may not be causal. Rather, there is evidence that number concentrations may be a more appropriate metric than mass concentrations in evaluating health risk. Number concentrations are not routinely monitored and spatial and temporal patterns are poorly quantified. CO and NOx are co-pollutants with their major urban source in common with fine particles, i.e. road vehicle emissions; are routinely monitored in many cities and are also related to ill health. Datasets of particle number concentration measurements from approximately month-long field campaigns in Manchester, Edinburgh and Birmingham (UK) are compared with simultaneous concentrations of CO and NOx from nearby fixed monitors. It was found that it might be possible to reliably predict particle number concentrations (diameters>100 nm) on an hourly basis in Manchester city centre from knowledge of NOx or CO concentrations alone. The influences of meteorology, spatial variability in emissions and lack of co-location upon the correlations are investigated using cluster analysis. The cluster analysis revealed that these relationships may vary between cities and are dependent upon monitor location but in ways that can be ascribed. For two out of three sites there existed a linear relationship between average cluster aerosol and gas concentrations. This indicates that although airmass aging disrupts the short-term linear relationship, the relationship in the average survives. An emission ratio of particles (approx. 100–500 nm diameter) to NOx of approximately 50 cm−3 ppb−1 was estimated in Manchester and Birmingham. Particle mass spectrometry measurements indicated that organic compounds dominated these particles and an emission rate of 0.58 ton km−2 a−1 of organic particulate matter from road transport has been estimated for the Greater Manchester conurbation.  相似文献   

19.
Uncertainties still remain in the size and number emission of nucleation and soot mode particles from diesel vehicles and understanding of the nucleation process under different ambient conditions. Particle emission measurements were carried out with a EURO-3 certified European diesel passenger car running on low (<10 ppm S) and high (310 ppm S) sulfur fuel. A newly developed in situ diluter which sampled exhaust continuously from the tailpipe and diluted in two steps by a factor of 500–6000 was employed to study nucleation particle formation under well-controlled temperature and humidity conditions. Particle emission measurements were also carried out with a mobile laboratory chasing the exhaust plume of the same vehicle in summer (19–25 °C) and winter (9 °C), with no significant difference of the nucleation or soot mode particle emission found. The particle size distributions compared well with those measured in the laboratory with the same vehicle under identical driving conditions. Simple nucleation and coagulation calculations were compared with the atmospheric and laboratory measurements. It was shown that the primary dilution step had the largest impact on the nucleation mode formation, while the model overpredicted the influence of temperature and humidity. No nucleation mode particles were observed running the diesel vehicle on low (<10 ppm S) fuel.  相似文献   

20.
This study estimated the level and determinants of airborne benzene concentrations in rural western Canada. A multi-site, multi-month unbalanced two-factorial design was used to collect air samples at 1206 fixed sites across a geographic area associated with primary oil and gas industry in Canadian provinces of Alberta, north-eastern British Columbia, and central and southern Saskatchewan from April 2001 to December 2002. Benzene concentrations integrated over 1 calendar month were determined using passive organic vapour monitors. Linear mixed effects models were applied to identify the determinants of airborne benzene concentrations, in particular the proximity to oil and gas facilities. The observed geometric mean of benzene concentrations was 158 ng m−3, with large geometric standard deviation: 4.9. Benzene concentrations showed a seasonal variation with maxima in winter and minima in summer. Emissions from oil well (within 2 km) and compressor influenced monthly airborne benzene concentrations. However, in our study, being located in the general area of a gas plant seems to be the most important in determining monthly airborne benzene concentrations. These findings support the need for investigation of the impact of oil and gas industry on quality of rural air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号