首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding of aerosol dispersion characteristics has many scientific and engineering applications. It is recognized that Eulerian or Lagrangian approach has its own merits and limitations. A new Eulerian model has been developed and it adopts a simplified drift–flux methodology in which external forces can be incorporated straightforwardly. A new near-wall treatment is applied to take into account the anisotropic turbulence for the modified Lagrangian model. In the present work, we present and compare both Eulerian and Lagrangian models to simulate particle dispersion in a small chamber. Results reveal that the standard kε Lagrangian model over-predicts particle deposition compared to the present turbulence-corrected Lagrangian approach. Prediction by the Eulerian model agrees well with the modified Lagrangian model.  相似文献   

2.
An Eulerian atmospheric model with complex chemistry (Acidic Deposition and Oxidant Model) and a Lagrangian model with linear chemistry (Ontario Ministry of the Environment Trajectory Model) were used to simulate the wet SO42− deposition pattern over eastern North America for 16 days during April 1981.The two model results agree reasonably well with each other when the 16 day average values are compared. They also show reasonable agreement with observed data. Having established the ability of the models to predict deposition patterns for 1981 emissions, reduction scenarios with 50% SOx and 50% SOx and NOx of the 1981 emissions were studied through the Eulerian model. Near the heavy emissions area, the reduction in SO42− wet deposition is only about 30–40%. In this respect the linear Lagrangian model departs significantly from the Eulerian model. This non-linearity in response is attributed to the role of oxidants in controlling the conversion of SO2 to SO42−.  相似文献   

3.
The mass flux based subgrid-scale parameterization technique of Gidel (1983, J. geophys. Res.88, 6587–6599) is re-examined for use in Eulerian long-range transport models. Specifically, the parameterization scheme is incorporated into the STEM-II Eulerian transport/transformation/removal model and the model is used to investigate pollutant transport in a nonprecipitating cumulus cloud ensemble. The effects of entrainment, detrainment, evaporation and the transport by subsidence, updrafts and turbulent diffusion are included in the analysis. Presented simulation results indicate that the parameterization is able to treat the rapid vertical transport by cloud updrafts, enables the calculation of reaction rates based on subgrid-scale concentrations, and is readily adopted by Eulerian models.  相似文献   

4.
Modelling ozone (O3) deposition for impact risk assessment is still poorly developed for herbaceous vegetation, particularly for Mediterranean annual pastures. High inter-annual climatic variability in the Mediterranean area makes it difficult to develop models characterizing gas exchange behaviour and air pollutant absorption suitable for risk assessment. This paper presents a new model to estimate stomatal conductance (gs) of Trifolium subterraneum, a characteristic species of dehesa pastures. The MEDPAS (MEDiterranean PAStures) model couples 3 modules estimating soil water content (SWC), vegetation growth and gs. The gs module is a reparameterized version of the stomatal component of the EMEP DO3SE O3 deposition model. The MEDPAS model was applied to two contrasting years representing typical dry and humid springs respectively and with different O3 exposures. The MEDPAS model reproduced realistically the gs seasonal and inter-annual variations observed in the field. SWC was identified as the major driver of differences across years. Despite the higher O3 exposure in the dry year, meteorological conditions favoured 2.1 times higher gs and 56 day longer growing season in the humid year compared to the dry year. This resulted in higher ozone fluxes absorbed by T. subterraneum in the humid year. High inter-family variability was found in gas exchange rates, therefore limiting the relevance of single species O3 deposition flux modelling for dehesa pastures. Stomatal conductance dynamics at the canopy level need to be considered for more accurate O3 flux modelling for present and future climate scenarios in the Mediterranean area.  相似文献   

5.
6.
Abstract

Two mathematical models of the atmospheric fate and transport of mercury (Hg), an Eulerian grid–based model and a Gaussian plume model, are used to calculate the atmospheric deposition of Hg in the vicinity (i.e., within 50 km) of five coal–fired power plants. The former is applied using two different horizontal resolutions: coarse (84 km) and fine (16.7 km). More than 96% of the power plant Hg emissions are calculated with the plume model to be transported beyond 50 km from the plants. The grid–based model predicts a lower fraction to be transported beyond 50 km: >91% with a coarse resolution and >95% with a fine resolution. The contribution of the power plant emissions to total Hg deposition within a radius of 50 km from the plants is calculated to be <8% with the plume model, <14% with the Eulerian model with a coarse resolution, and <10% with the Eulerian model with a fine resolution. The Eulerian grid–based model predicts greater local impacts than the plume model because of artificially enhanced vertical dispersion; the former predicts about twice as much Hg deposition as the latter when the area considered is commensurate with the resolution of the grid–based model. If one compares the local impacts for an area that is significantly less than the grid–based model resolution, then the grid–based model may predict lower local deposition than the plume model, because two compensating errors affect the results obtained with the grid–based model: initial dilution of the power plant emissions within one or more grid cells and enhanced vertical mixing to the ground.  相似文献   

7.
This paper presents a mixed methodology for the simulation of atmospheric disperson phenomena in which vertical diffusion is computed using an analytical solution of the K-theory equation, while horizontal diffusion is simulated by the Gaussian formula. This new formulation, while maintaining a simple analytical form for the concentration field, incorporates the effects of power-law vertical profiles of both wind speed and eddy diffusivity. The performance of this approach, which has been implemented into a full computer package (KAPPA-G), is evaluated by comparison with data from SF6 tracer experiments.  相似文献   

8.
A range of models were fitted to the experimental time-dependent curves for the deposition velocity of O3 to concrete floor tile samples. The models included modified Langmuir isotherms assuming adsorption of O3 on the material surfaces and models assuming direct reaction on and diffusion of O3 into the material from the air. The best fit was obtained with a simple two-parameter model assuming direct reaction of O3 with adsorbed surface water and direct diffusion of O3 into the material from the air. However, models assuming an additional second-order reaction of O3 with an adsorbed surface species with a given start mass gave improved curve fit in the first 500 min. Applying the best model to experimental data obtained over the whole air humidity range resulted in markedly lower equilibrium deposition velocities than those measured after 48 h. The modelling gave a deposition velocity minimum in the 50–70% relative air humidity range in agreement with observations. The deposition velocity minimum could be explained with a reduced constant for the reaction of O3 with water or OH ions on the surface.  相似文献   

9.
Two mathematical models of the atmospheric fate and transport of mercury (Hg), an Eulerian grid-based model and a Gaussian plume model, are used to calculate the atmospheric deposition of Hg in the vicinity (i.e., within 50 km) of five coal-fired power plants. The former is applied using two different horizontal resolutions: coarse (84 km) and fine (16.7 km). More than 96% of the power plant Hg emissions are calculated with the plume model to be transported beyond 50 km from the plants. The grid-based model predicts a lower fraction to be transported beyond 50 km: >91% with a coarse resolution and >95% with a fine resolution. The contribution of the power plant emissions to total Hg deposition within a radius of 50 km from the plants is calculated to be <8% with the plume model, <14% with the Eulerian model with a coarse resolution, and <10% with the Eulerian model with a fine resolution. The Eulerian grid-based model predicts greater local impacts than the plume model because of artificially enhanced vertical dispersion; the former predicts about twice as much Hg deposition as the latter when the area considered is commensurate with the resolution of the grid-based model. If one compares the local impacts for an area that is significantly less than the grid-based model resolution, then the grid-based model may predict lower local deposition than the plume model, because two compensating errors affect the results obtained with the grid-based model: initial dilution of the power plant emissions within one or more grid cells and enhanced vertical mixing to the ground.  相似文献   

10.
ABSTRACT

The current status of the mathematical modeling of atmospheric particulate matter (PM) is reviewed in this paper. Simulating PM requires treating various processes, including the formation of condensable species, the gas/ particle partitioning of condensable compounds, and in some cases, the evolution of the particle size distribution. The algorithms available to simulate these processes are reviewed and discussed. Eleven 3-dimensional (3-D) Eulerian air quality models for PM are reviewed in terms of their formulation and past applications. Results of past performance evaluations of 3-D Eulerian PM models are presented. Currently, 24-hr average PM2.5 concentrations appear to be predicted within 50% for urban-scale domains. However, there are compensating errors among individual particulate species. The lowest errors tend to be associated with SO4 2-, while NO3 -, black carbon (BC), and organic carbon (OC) typically show larger errors due to uncertainties in emissions inventories and the prediction of the secondary OC fraction. Further improvements and performance evaluations are recommended.  相似文献   

11.
Franco A  Hauschild M  Jolliet O  Trapp S 《Chemosphere》2011,85(8):1353-1359
A modified version of the Multimedia Activity Model for Ionics MAMI, including two-layered atmosphere, air-water interface partitioning, intermittent rainfall and variable cloud coverage was developed to simulate the atmospheric fate of ten low volatility or ionizable organic chemicals. Probabilistic simulations describing the uncertainty of substance and environmental input properties were run to evaluate the impact of atmospheric parameters, ionization and air-water (or air-ice) interface enrichment.The rate of degradation and the concentration of OH radicals, the duration of dry and wet periods, and the parameters describing air-water partitioning (KAW and temperature) and ionization (pKa and pH) are the key parameters determining the potential for long range transport. Wet deposition is an important removal process, but its efficiency is limited, primarily by the duration of the dry period between precipitation events.Given the underlying model assumptions, the presence of clouds contributes to the higher persistence in the troposphere because of the capacity of cloud water to accumulate and transport non-volatile (e.g. 2,4-D) and surface-active chemicals (e.g. PFOA). This limits the efficiency of wet deposition from the troposphere enhancing long-range transport.  相似文献   

12.
HO2 radical concentrations were measured by a laser-induced fluorescence instrument for three nighttime periods during the intensive field campaign at Rishiri Island, Japan, in June 2000. The HO2 mixing ratio had temporal variations around its average of 4.2±1.2 (1σ) pptv and showed a positive correlation with the summed mixing ratio of four monoterpene species, α-pinene, β-pinene, camphene, and limonene, that sometimes reached 1 ppbv. Our model calculations suggested that ozonolysis reactions of monoterpenes were the main source of nighttime radicals and they explained 58% of measured HO2 concentration levels. The model roughly reproduced the dependence of the HO2 mixing ratio on the square root of the radical production rate due to the ozonolysis reactions of the monoterpenes. However, the absolute HO2 mixing ratio was significantly underpredicted by the model. We discuss possible reasons in terms of misunderstood RO2 chemistry, RO2 interference with HO2 observations, unknown radical production process associated by high NO2 mixing ratio, and the contribution of unmeasured olefinic species to radical production via their reactions with ozone.  相似文献   

13.
Mercury wet deposition is dependent on both the scavenging of divalent reactive gaseous mercury (RGM) and atmospheric particulate mercury (Hg(p)) by precipitation. Estimating the contribution of precipitation scavenging of RGM and Hg(p) is important for better understanding the causes of the regional and seasonal variations in mercury wet deposition. In this study, the contribution of Hg(p) scavenging was estimated on the basis of the scavenging ratios of other trace elements (i.e., Cd, Cu, Mn, Ni, Pb and V) existing entirely in particulate form. Their wet deposition fluxes and concentrations in air, which were measured concurrently from April 2004 to March 2005 at 10 sites in Japan, were used in this estimation. The monthly wet deposition flux of mercury at each site correlated with the amount of monthly precipitation, whereas the Hg(p) concentrations in air tended to decrease during summer. There was a significant correlation (P<0.001) among the calculated monthly average scavenging ratios of trace elements, and the values in each month at each site were similar. Therefore, it is assumed the monthly scavenging ratio of Hg(p) is equivalent to the mean value of other trace elements. Using this scavenging ratio (W), the wet deposition flux (F) due to Hg(p) scavenging in each month was calculated by F=WKP, where K and P are the Hg(p) concentration and amount of precipitation, respectively. Relatively large fluxes due to Hg(p) scavenging were observed at a highly industrial site and at sites on the Japan Sea coast, which are strongly affected by the local sources and the long-range transport from the Asian continent, respectively. However, on average, at the 10 sites, the contribution of Hg(p) scavenging to the annual mercury deposition flux was 26%, suggesting that mercury wet deposition in Japan is dominated by RGM scavenging. This RGM should originate mainly from the in situ oxidation of Hg0 in the atmosphere.  相似文献   

14.
Low-solubility contaminants with high affinity for colloid surfaces may form colloid-associated species. The mobile characteristics of this species are, however, ignored by the traditional sorption/distribution experiments in which colloidal species contributed to the immobile fraction of the contaminants retained on the solids as a result of centrifugation or ultrafiltration procedures. The mobility of the contaminants in subsurface environments might be underestimated accordingly. Our results show that colloidal species of 239Pu in three-phase systems remained the highest percentages in comparison to both the dissolved species and the immobile species retained on the granite grains (solid phase), although the relative fraction of these three species depended on the colloid types. The real solid/liquid distribution coefficients (K s/d) experimentally determined were generally smaller than the traditional K s/d (i.e., the K s+c/d in this study) by ~1,000 mL/g for the three-phase systems with the mineral colloids (granite particle, soil colloid, or kaolinite colloid). For the humic acid system, the traditional K s/d was 140 mL/g, whereas the real K s/d was approximately zero. The deviations from the real solid/liquid K s/d were caused by the artificially increased immobile fraction of Pu. One has to be cautious in using K s/d-based transport models to predict the fate and transport of Pu in the environment.  相似文献   

15.
Bioaccumulation models take various elimination and uptake processes into account, estimating rates from chemical lipophilicity, expressed as the octanol-water partition ratio (Kow). Here, we focussed on metabolism, which transforms parent compounds into usually more polar metabolites, thus enhancing elimination. The aim of this study was to quantify the change in lipophilicity of relevant organic pollutants undergoing various biotransformation reactions in mammals. We considered oxidation reactions catalyzed by three enzyme groups: cytochrome P450 (CYP), alcohol dehydrogenase (ADH), and aldehyde dehydrogenase (ALDH). Estimated log Kow values of a selected dataset of parent compounds were compared with the log Kow of their first metabolites. The log Kow decreased by a factor that varies between 0 and −2, depending on the metabolic pathway. For reactions mediated by CYP, the decrease in Kow was one order of magnitude for hydroxylated and epoxidated compounds and two orders of magnitude for dihydroxylated and sulphoxidated xenobiotics. On the other hand, no significant change in lipophilicity was observed for compounds N-hydroxylated by CYP and for alcohols and aldehydes metabolized by ADH and ALDH. These trends could be anticipated by the calculus method of log Kow. Yet, they were validated using experimental log Kow values, when available. These relationships estimate the extent to which the elimination of pollutants is increased by biotransformation. Thus, the quantification of the Kow reduction can be considered as a first necessary step in an alternative approach to anticipate biotransformation rates, which are hard to estimate with existing methods.  相似文献   

16.
Zheng W  Colosi LM 《Chemosphere》2011,85(4):553-557
Several classes of oxidative enzymes have shown promise for efficient removal of endocrine disrupting compounds (EDCs) that are resistant to conventional wastewater treatments. Although the kinetics of reactions between individual EDCs and selected oxidative enzymes are well documented in the literature, there has been little investigation of reactions with EDC mixtures. This makes it impossible to predict how enzyme-mediated treatment systems will perform since wastewater effluents generally contain multiple EDCs. This paper reports pseudo-first order rate constants for a model oxidative enzyme, horseradish peroxidase (HRP), during single-substrate (k1) and mixed-substrate (k1-MIX) reactions. Measured values are compared with literature values of three Michaelis-Menten parameters: half-saturation constant (KM), enzyme turnover number (kCAT), and the ratio kCAT/KM. Published reports had suggested that each of these could be correlated with HRP reactivity towards EDCs in mixtures, and empirical results from this study show that KM can be used to predict the sequence of EDC removal reactions within a particular mixture. We also observed that k1-MIX values were generally greater than k1 values and that compounds exhibiting greatest estrogenic toxicities reacted most rapidly in a given mixture. Finally, because KM may be tedious to measure for every EDC of interest, we have constructed a quantitative structure-activity relationship (QSAR) model to predict these values. This model predicts KM quite accurately (R2 = 89%) based on two molecular characteristics: molecular volume and hydration energy. Its accuracy makes this QSAR a useful tool for predicting which EDCs will be removed most efficiently during enzyme treatment of EDC mixtures.  相似文献   

17.
Nethaji S  Sivasamy A 《Chemosphere》2011,82(10):1367-1372
Chemically prepared activated carbon material derived from palm flower was used as adsorbent for removal of Amido Black dye in aqueous solution. Batch adsorption studies were performed for the removal of Amido Black 10B (AB10B), a di-azo acid dye from aqueous solutions by varying the parameters like initial solution pH, adsorbent dosage, initial dye concentration and temperature with three different particle sizes such as 100 μm, 600 μm and 1000 μm. The zero point charge was pH 2.5 and the maximum adsorption occurred at the pH 2.3. Experimental data were analyzed by model equations such as Langmuir, Freundlich and Temkin isotherms and it was found that the Freundlich isotherm model best fitted the adsorption data and the Freundlich constants varied from (KF) 1.214, 1.077 and 0.884 for the three mesh sizes. Thermodynamic parameters such as ΔG, ΔH and ΔS were also calculated for the adsorption processes and found that the adsorption process is feasible and it was the endothermic reaction. Adsorption kinetics was determined using pseudo first-order, pseudo second-order rate equations and also Elovich model and intraparticle diffusion models. The results clearly showed that the adsorption of AB10B onto lignocellulosic waste biomass from palm flower (LCBPF) followed pseudo second-order model, and the pseudo second-order rate constants varied from 0.059 to 0.006 (g mg−1 min) by varying initial adsorbate concentration from 25 mg L−1 to 100 mg L−1. Analysis of the adsorption data confirmed that the adsorption process not only followed intraparticle diffusion but also by the film diffusion mechanism.  相似文献   

18.
19.

Purpose

Lack of focus on the treatment of wastewaters bearing potentially hazardous pollutants like 1,1,2 trichloroethane and 1,1,2,2 tetrachloroethane in anaerobic reactors has provided an impetus to undertake this study. The objective of this exercise was to quantify the behavior of upflow anaerobic sludge blanket reactors and predict their performance based on the overall organic substrate removal.

Methods

The reactors (wastewater-bearing TCA (R2), and wastewater-bearing TeCA (R3)) were operated at different hydraulic retention times (HRTs), i.e., 36, 30, 24, 18, and 12?h corresponding to food-to-mass ratios varying in the range of 0.2?C0.7?mg chemical oxygen demand (COD) mg?1 volatile suspended solids day?1. The process kinetics of substrate utilization was evaluated on the basis of experimental results, by applying three mathematical models namely first order, Grau second order, and Michaelis-Menten type kinetics.

Results

The results showed that the lowering of HRT below 24?h resulted in reduced COD removal efficiencies and higher effluent pollutant concentrations in the reactors. The Grau second-order model was successfully applied to obtain the substrate utilization kinetics with high value of R 2 (>0.95). The Grau second-order substrate removal constant (K 2) was calculated as 1.12 and 7.53?day?1 for reactors R2 and R3, respectively.

Conclusion

This study demonstrated the suitability of Grau second-order kinetic model over other models, for predicting the performance of reactors R2 and R3, in treating wastewaters containing chlorinated ethanes under different organic and hydraulic loading conditions.  相似文献   

20.
This paper presents a multi-pollutant sensitivity study of an air quality model over Europe with a focus on aerosols. Following the evaluation presented in the companion paper, the aim here is to study the sensitivity of the model to input data, mathematical parameterizations and numerical approximations. To that end, 30 configurations are derived from a reference configuration of the model by changing one input data set, one parameterization or one numerical approximation at a time. Each of these configurations is compared to the same reference simulation over two time periods of the year 2001, one in summer and one in winter. The sensitivity of the model to the different configurations is evaluated through a statistical comparison between the simulation results and through comparisons to available measurements. The species studied are ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), ammonia (NH3), coarse and fine aerosol particles (PMc and PM2.5), sulfate, nitrate, ammonium, chloride and sodium.For all species, the modeled concentrations are very sensitive to the parameterization used for vertical turbulent diffusion and to the number of vertical levels. For the other configurations considered in this work, the sensitivity of the modeled concentration to configuration choice varies with the species and the period of the year. O3 is impacted by options related to boundary conditions. PMc is sensitive to sea-salt related options, to options influencing deposition and to options related to mass transfer between gas and particulate phases. PM2.5 is sensitive to a larger number of options than PMc: sea-salt, boundary conditions, heterogeneous reactions, aqueous chemistry and gas/particle mass transfer. NO2 is strongly influenced by heterogeneous reactions. Nitrate shows the highest variability of all species studied. As with NO2, nitrate is strongly sensitive to heterogeneous reactions but also to mass transfer, thermodynamic related options, aqueous chemistry and computation of the wet particle diameter. While SO2 is mostly sensitive to aqueous chemistry, sulfate is also sensitive to boundary conditions and, to a lesser extent, to heterogeneous reactions. As with nitrate, ammonium is largely impacted by the different configuration choices, although the sensitivity is slightly lower than for nitrate. NH3 is sensitive to aqueous chemistry, mass transfer and heterogeneous reactions. Chloride and sodium are impacted by sea-salt related options, by options influencing deposition and by options concerning the aqueous-phase module.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号