首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Following the meteorological evaluation in Part I, this Part II paper presents the statistical evaluation of air quality predictions by the U.S. Environmental Protection Agency (U.S. EPA)’s Community Multi-Scale Air Quality (Models-3/CMAQ) model for the four simulated months in the base year 2005. The surface predictions were evaluated using the Air Pollution Index (API) data published by the China Ministry of Environmental Protection (MEP) for 31 capital cities and daily fine particulate matter (PM2.5, particles with aerodiameter less than or equal to 2.5 μm) observations of an individual site in Tsinghua University (THU). To overcome the shortage in surface observations, satellite data are used to assess the column predictions including tropospheric nitrogen dioxide (NO2) column abundance and aerosol optical depth (AOD). The result shows that CMAQ gives reasonably good predictions for the air quality.The air quality improvement that would result from the targeted sulfur dioxide (SO2) and nitrogen oxides (NOx) emission controls in China were assessed for the objective year 2010. The results show that the emission controls can lead to significant air quality benefits. SO2 concentrations in highly polluted areas of East China in 2010 are estimated to be decreased by 30–60% compared to the levels in the 2010 Business-As-Usual (BAU) case. The annual PM2.5 can also decline by 3–15 μg m?3 (4–25%) due to the lower SO2 and sulfate concentrations. If similar controls are implemented for NOx emissions, NOx concentrations are estimated to decrease by 30–60% as compared with the 2010 BAU scenario. The annual mean PM2.5 concentrations will also decline by 2–14 μg m?3 (3–12%). In addition, the number of ozone (O3) non-attainment areas in the northern China is projected to be much lower, with the maximum 1-h average O3 concentrations in the summer reduced by 8–30 ppb.  相似文献   

2.
Olajire AA  Azeez L  Oluyemi EA 《Chemosphere》2011,84(8):1044-1051
We measured toxic air pollutants along Oba Akran road in Lagos to evaluate pedestrian exposure. PM10, CO, O3, NO2, SO2, CH4, noise, wind velocity and temperature were measured simultaneously with portable analyzers. Our results showed that pedestrian exposure to PM10 (with an average of 274.6 μg m−3 for all samples) and CO (with an average of 19.27 ppm for all samples) was relatively high. CO is a traffic-related pollutant, so the influence of the local traffic emissions on CO levels is strong. The high concentration of the PM10 measured at the three environments also suggests that the traffic is a major source of ultrafine particles. The overall average concentrations for the 72-day experimental period for SO2, NO2 and O3 are 101.2, 62.5 and 0.32 ppb respectively, all of which are below the US national ambient air quality standards. Strong traffic impacts can be observed from the concentrations of some of these pollutants measured in these three environments. Most clear is a reflection of diesel truck traffic activity rich in black carbon concentrations. The diurnal variation of O3 and NO2 also showed that NO2 was depleted by photochemically formed O3 during the day and replenished at night as O3 was destroyed. A multivariate statistical analysis (Principal Component Analysis, Factor Analysis) has been applied to a set of data in order to determine the contribution of different sources. It was found that the main principal components, extracted from the air pollution data, were related to gasoline combustion, oil combustion and ozone interactions.  相似文献   

3.
A wintertime episode during the 2000 California Regional PM Air Quality Study (CRPAQS) was simulated with the air quality model CMAQ–MADRID. Model performance was evaluated with 24-h average measurements available from CRPAQS. Modeled organic matter (OM) was dominated by emissions, which were probably significantly under-represented, especially in urban areas. In one urban area, modeled daytime nitrate concentrations were low and evening concentrations were high. This diurnal profile was not explained by the partition of nitrate between the gas and particle phases, because gaseous nitric acid concentrations were low compared to PM nitrate. Both measured and simulated nitrate concentrations aloft were lower than at the surface at two tower locations during this episode. Heterogeneous reactions involving NO3 and N2O5 accounted for significant nitrate production in the model, resulting in a nighttime peak. The sensitivity of PM nitrate to precursor emissions varied with time and space. Nitrate formation was on average sensitive to NOx emissions. However, for some periods at urban locations, reductions in NOx caused the contrary response of nitrate increases. Nitrate was only weakly sensitive to reductions in anthropogenic VOC emissions. Nitrate formation tended to be insensitive to the availability of ammonia at locations with high nitrate, although the spatial extent of the nitrate plume was reduced when ammonia was reduced. Reductions in PM emissions caused OM to decrease, but had no effect on nitrate despite the role of heterogeneous reactions. A control strategy that focuses on NOx and PM emissions would be effective on average, but reductions in VOC and NH3 emissions would also be beneficial for certain times and locations.  相似文献   

4.
Abstract

This study evaluates air quality model sensitivity to input and to model components. Simulations are performed using the California Institute of Technology (CIT) airshed model. Results show the impacts on ozone (O3) concentration in the South Coast Air Basin (SCAB) of California because of changes in: (1) input data, including meteorological conditions (temperature, UV radiation, mixing height, and wind speed), boundary conditions, and initial conditions (ICs); and (2) model components, including advection solver and chemical mechanism. O3 concentrations are strongly affected by meteorological conditions and, in particular, by temperature. ICs also affect O3 concentrations, especially in the first 2 days of simulation. On the other hand, boundary conditions do not significantly affect the absolute peak O3 concentration, although they do affect concentrations near the inflow boundaries. Moreover, predicted O3 concentrations are impacted considerably by the chemical mechanism. In addition, dispersion of pollutants is affected by the advection routine used to calculate its transport. Comparison among CIT, California Photochemical Grid Model (CALGRID), and Urban Airshed Model air quality models suggests that differences in O3 predictions are mainly caused by the different chemical mechanisms used. Additionally, advection solvers contribute to the differences observed among model predictions. Uncertainty in predicted peak O3 concentration suggests that air quality evaluation should not be based solely on this single value but also on trends predicted by air quality models using a number of chemical mechanisms and with an advection solver that is mass conservative.  相似文献   

5.
An evaluation of the NO, NO2 and O3 concentrations in downtown Caracas atmosphere at two different heights (1.5 and 56 m ) during the dry and wet season was performed.The qualitative variation of NO and NO2 concentrations throughout the day was the same for all conditions. The profiles are explained considering the automobile emissions and the fates by photochemical reactions and dispersion. The daily mean averages for NOx exceed all available air quality standards, making the downtown Caracas air polluted with these compounds at harmful levels.The O3 concentrations are lower than the natural background levels practically all day long for all conditions. This lack of O3 is explained mainly by the very high continuous NO emissions occuring in Caracas. NO reacts very fast with O3 consuming all the O3 produced by photochemical reactions. Possible health implications of the low O3 levels are pointed out.  相似文献   

6.
Numerous papers analyze ground-level ozone (O3) trends since the 1980s, but few have linked O3 trends with observed changes in nitrogen oxide (NOx) and volatile organic compound (VOC) emissions and ambient concentrations. This analysis of emissions and ambient measurements examines this linkage across the United States on multiple spatial scales from continental to urban. O3 concentrations follow the general decreases in both NOx and VOC emissions and ambient concentrations of precursors (nitrogen dioxide, NO2; nonmethane organic compounds, NMOCs). Annual fourth-highest daily peak 8-hr average ozone and annual average or 98th percentile daily maximum hourly NO2 concentrations show a statistically significant (p < 0.05) linear fit whose slope is less than 1:1 and intercept is in the 30 to >50 ppbv range. This empirical relationship is consistent with current understanding of O3 photochemistry. The linear O3–NO2 relationships found from our multispatial scale analysis can be used to extrapolate the rate of change of O3 with projected NOx emission reductions, which suggests that future declines in annual fourth-highest daily average 8-hr maximum O3 concentrations are unlikely to reach 65 ppbv or lower everywhere in the next decade. Measurements do not indicate increased annual reduction rates in (high) O3 concentrations beyond the multidecadal precursor proportionality, since aggressive measures for NOx and VOC reduction are in place and have not produced an accelerated O3 reduction rate beyond that prior to the mid-2000s. Empirically estimated changes in O3 with emissions suggest that O3 is less sensitive to precursor reductions than is found by the CAMx (v. 6.1) photochemical model. Options for increasing the rate of O3 change are limited by photochemical factors, including the increase in NOx sensitivity with time (NMOC/NOx ratio increase), increase in O3 production efficiency at lower NOx concentrations (higher O3/NOy ratio), and the presence of natural NOx and NMOC precursors and background O3.

Implications:?This analysis demonstrates empirical relations between O3 and precursors based on long term trends in U.S. locations. The results indicate that ground-level O3 concentrations have responded predictably to reductions in VOC and NOx since the 1980s. The analysis reveals linear relations between the highest O3 and NO2 concentrations. Extrapolation of the historic trends to the future with expected continued precursor reductions suggest that achieving the 2014 proposed reduction in the U.S. National Ambient Air Quality Standard to a level between 65 and 70 ppbv is unlikely within the next decade. Comparison of measurements with national results from a regulatory photochemical model, CAMx, v. 6.1, suggests that model predictions are more sensitive to emissions changes than the observations would support.  相似文献   

7.
A field measurement campaign was conducted near a major road in southern Finland from September 15 to October 30, 1995. The concentrations of NO, NO2 and O3 were measured simultaneously at three locations, at three heights (3.5, 6 and 10 m) on both sides of the road. Traffic densities and relevant meteorological parameters were also measured on-site. We have compared measured concentration data with the predictions of the road network dispersion model CAR-FMI, used in combination with a meteorological pre-processing model MPP-FMI. In comparison with corresponding results presented previously in the literature, the agreement of measured and predicted datasets was good, as measured using various statistical parameters. For all data (N=587), the index of agreement (IA) was 0.83, 0.82 and 0.89 for the measurements of NOx, NO2 and O3, respectively. The IA is a statistical measure of the correlation of the predicted and measured time series of concentrations. However, the modelling system overpredicts NOx concentrations with a fractional bias FB=+13%, and O3 concentrations with FB=+8%, while for NO2 concentrations FB=−2%. We also analyzed the difference between model predictions and measured data in terms of meteorological parameters. Model performance clearly deteriorated as the wind direction approached a direction parallel to the road, and for the lowest wind speeds. The range of variability concerning atmospheric stability, ambient temperature and the amount of solar radiation was modest during the measurement campaign. As expected, no clear dependencies of model performance were therefore detected in terms of these parameters. The experimental dataset is available for the evaluation of other roadside dispersion models.  相似文献   

8.
Abstract

A computer model called the Ozone Risk Assessment Model (ORAM) was developed to evaluate the health effects caused by ground-level ozone (O3) exposure. ORAM was coupled with the U.S. Environmental Protection Agency’s (EPA) Third-Generation Community Multiscale Air Quality model (Models-3/CMAQ), the state-of-the-art air quality model that predicts O3 concentration and allows the examination of various scenarios in which emission rates of O3 precursors (basically, oxides of nitrogen [NOx] and volatile organic compounds) are varied. The principal analyses in ORAM are exposure model performance evaluation, health-effects calculations (expected number of respiratory hospital admissions), economic valuation, and sensitivity and uncertainty analysis through a Monte Carlo simulation. As a demonstration of the system, ORAM was applied to the eastern Tennessee region, and the entire O3 season was simulated for a base case (typical emissions) and three different emission scenarios. The results indicated that a synergism occurs when reductions in NOx emissions from mobile and point sources were applied simultaneously. A 12.9% reduction in asthma hospital admissions is expected when both mobile and point source NOx emissions are reduced (50 and 70%, respectively) versus a 5.8% reduction caused by mobile source and a 3.5% reduction caused by point sources when these emission sources are reduced individually.  相似文献   

9.
A mathematical model is used to study the fate of nitrogen oxides (NOx) emissions and the reactions responsible for the formation of nitric acid (HNO3). Model results indicate that the majority of the NOx inserted into an air parcel in the Los Angeles basin is removed by dry deposition at the ground during the first 24 h of travel, and that HNO3 is the largest single contributor to this deposition flux. A significant amount of the nitric acid is produced at night by N2O5 hydrolysis. Perturbation of the N2O5 hydrolysis rate constant within the chemical mechanism results in redistribution of the pathway by which HNO3 is formed, but does not greatly affect the total amount of HNO3 produced. Inclusion of NO3-aerosol and N2O5-aerosol reactions does not affect the system greatly at collision efficiencies, α, of 0.001, but at α = 0.1 or α = 1.0, a great deal of nitric acid could be produced by heterogeneous chemical processes.Ability to account for the observed nitrate radical (NO3) concentrations in the atmosphere provides a key test of the air quality modeling procedure. Predicted NO3 concentrations compare well with those measured by Platt et al. (Geophys. Res. Lett.7, 89–92, 1980). Analysis shows that transport, deposition and emissions, as well as chemistry, are important in explaining the behavior of NO3 in the atmosphere.  相似文献   

10.
Source-contribution assessment of ambient NO2 concentration was performed at Pantnagar, India through simulation of two urban mathematical dispersive models namely Gaussian Finite Line Source Model (GFLSM) and Industrial Source Complex Model (ISCST-3) and model performances were evaluated. Principal approaches were development of comprehensive emission inventory, monitoring of traffic density and regional air quality and conclusively simulation of urban dispersive models. Initially, 18 industries were found responsible for emission of 39.11 kg/h of NO2 through 43 elevated stacks. Further, vehicular emission potential in terms of NO2 was computed as 7.1 kg/h. Air quality monitoring delineates an annual average NO2 concentration of 32.6 μg/m3. Finally, GFLSM and ISCST-3 were simulated in conjunction with developed emission inventories and existing meteorological conditions. Models simulation indicated that contribution of NO2 from industrial and vehicular source was in a range of 45-70% and 9-39%, respectively. Further, statistical analysis revealed satisfactory model performance with an aggregate accuracy of 61.9%.  相似文献   

11.
Sensitivity of ozone (O3) concentrations in the Mexico City area to diurnal variations of surface air pollutant emissions is investigated using the WRF/Chem model. Our analysis shows that diurnal variations of nitrogen oxides (NOx = NO + NO2) and volatile organic compound (VOC) emissions play an important role in controlling the O3 concentrations in the Mexico City area. The contributions of NOx and VOC emissions to daytime O3 concentrations are very sensitive to the morning emissions of NOx and VOCs. Increase in morning NOx emissions leads to decrease in daytime O3 concentrations as well as the afternoon O3 maximum, while increase in morning VOC emissions tends to increase in O3 concentrations in late morning and early afternoon, indicating that O3 production in Mexico City is under VOC-limited regime. It is also found that the nighttime O3 is independent of VOCs, but is sensitive to NOx. The emissions of VOCs during other periods (early morning, evening, and night) have only small impacts on O3 concentrations, while the emissions of NOx have important impacts on O3 concentrations in the evening and the early morning.This study suggests that shifting emission pattern, while keeping the total emissions unchanged, has important impacts on air quality. For example, delaying the morning emission peak from 8 am to 10 am significantly reduced the morning peaks of NOx and VOCs, as well as the afternoon O3 maxima. It suggests that without reduction of total emission, the daytime O3 concentrations can be significantly reduced by changing the diurnal variations of the emissions of O3 precursors.  相似文献   

12.
The paper presents a comprehensive model evaluation focusing on the meaning and shortcomings of accuracy measures used to determine model quality according to European Union (EU) directives on air quality. European wide simulations employing the chemical transport model REM-CALGRID for the year 2002 were compared with O3, NO2, SO2 and PM10 observations of the German measurement network.The EU model quality objective, which is based on maximum relative errors, tends to penalise (i) the overestimation of very low measured concentrations in the case of annual averages and (ii) the underestimation of extremely high measured concentrations in the case of short-term values. As a more robust alternative, a model accuracy measure is presented, which corresponds to the allowed number of exceedances of the corresponding short-term air quality limit values.The influence of the spatial heterogeneity of the observations in relation to the spatial resolution of the model is investigated by spatial averaging of observation data. Because of this heterogeneity, any model with a 25 km resolution would fail to simulate about 20% of all NO2 and SO2 stations and 5–10% of all O3 and PM10 stations in Germany according to the EU model quality objectives for short-term averages.  相似文献   

13.
Based on hourly measurements of NOx NO2 and O3 and meteorological data, an ordinary least squares (OLS) model and a first-order autocorrelation (AR) model were developed to analyse the regression and prediction of NOx and NO2 concentrations in London. Primary emissions and wind speed are the most important factors influencing NOx concentrations; in addition to these two, reaction of NO with O3 is also a major factor influencing NO2 concentrations. The AR model resulted in high correlation coefficients (R > 0.95) for the NOx and NO2 regression based on a whole year's data, and is capable of predicting NO2 (R = 0.83) and NOx (R = 0.65) concentrations when the explanatory variables were available. The analysis of the structure of regression models by Principal Component Analysis (PCA) indicates that the regression models are stable. The results of the OLS model indicate that there was an exceptional NO2 source, other than primary emission and reaction of NO with O3, in the air pollution episode in London in December 1991.  相似文献   

14.
A basin-wide air quality trend analysis for the South Coast Air Basin of California is conducted for hydrocarbons (HC), NOx, O3 and CO using multi-station composite daily maximum-hour average ambient concentrations for the third quarter (July, August and September) from 1968 to 1985. Emissions and air quality trends are compared for the period 1968-1984. Ambient HC and NOX trends are somewhat different from estimated emission trends of HC and NOx, while a definite, downward trend of ambient CO is consistent with vehicular emission control measures. Basin-wide ambient HC, NOx and O3 appear to show downward trends for the period 1970-1985, but because of high fluctuations it is difficult to delineate trends for shorter periods. The meteorology (850 mb temperature)-adjusted O3 shows a more consistent downward trend than does unadjusted O3. Polynomial and multiplicative regression models for basin-wide empirical O3-HC-NOx relationships Indicate that the O3 variation is explained largely by the meteorological variable (850 mb temperature) although model estimations are improved by adding HC and NOx concentration terms.  相似文献   

15.
The atmospheric chemical process was simulated using the Carbon Bond 4 (CB-4) model, the aqueous-phase chemistry in Regional Acid Deposition Model and the thermodynamic equilibrium relation of aerosols with the emission inventories of the Emission Database for Global Atmospheric Research, the database of China and South Korea and the Mesoscale Model version 2 (MM5) meteorological fields to examine the spatial distributions of the acidic pollutant concentrations in East Asia for the case of the long-lasting Yellow Sand event in April 1998. The present models simulate quite well the observed general trend and the diurnal variation of concentrations of gaseous pollutants, especially for O3 concentration. However, the model underestimates SO2 and NOx concentration but overestimates O3 concentration largely due to uncertainty in NOx and VOC emissions. It is found that the simulated gaseous pollutants such as SO2, NOx, and NH3 are not transported far away from the source regions but show significant diurnal variations of their concentrations. However, the daily variations of the concentrations are not significant due to invariant emission rates. On the other hand, concentrations of the transformed pollutants including SO42−, NH4+, and NO3 are found to have significant daily variations but little diurnal variations. The model-estimated deposition indicates that dry deposition is largely contributed by gaseous pollutants while wet deposition of pollutants is mainly contributed by the transformed pollutants.  相似文献   

16.
An investigation of the concentrations of nitrogen oxides (NOX) from an air quality model and observations at monitoring sites was performed to assess the changes in NOX levels attributable to changes in mobile emissions. This evaluation effort focused on weekday morning rush hours since urban NOX concentrations are strongly influenced by the significant loading of emissions associated with heavy commuter traffic. On-road vehicle NOX emissions generated by the MOBILE6 model revealed a steady decline with an overall decrease of 25% for 2002–2006. In this study, a dynamic model evaluation was undertaken that entails an assessment of the predicted concentration response of the Community Multiscale Air Quality (CMAQ) model due to changes in NOX emissions as well as to meteorological variability spanning 3-month summer periods over five consecutive years (2002–2006) against observed concentration changes at NOX monitoring sites located primarily in urban areas of the eastern United States. Both modeled and observed hourly NOX concentrations exhibited maximum values that coincided with the morning peak NOX emissions. The notable results, based on 3-h average (6–9 AM local time) NOX concentrations, derived between the 50th and 95th percentiles of cumulative concentration distributions, revealed that modeled changes at these elevated NOX levels generally tracked the year-to-year variations in the observed concentration changes. When summer 2002 values were used as a reference, both modeled and observed results also showed definitive decreases in weekday morning urban NOX concentrations over this multi-year period, which can be primarily attributed to the reductions in mobile source emissions. Whereas observed NOX concentrations have declined by about 25% over this period consistent with the decline in the modeled mobile emission sector, modeled NOX concentration changes were close to the decreases exhibited in all (mobile + other sectors) surface NOX emissions whose overall decline was about 15% over this multi-year period.  相似文献   

17.
It has recently been recognized that air and noise pollution constitutes an extended problem over the densely populated city of Buenos Aires. Traffic emissions are of paramount concern, especially along narrow and main traffic arteries. In spite of these considerations, few systematic studies have been undertaken to evaluate the air quality in the metropolitan area of the city. In 1996, concentrations of carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO2) and ozone (O3) were simultaneously measured for the first time using a continuous monitoring station. This station was placed in a building at Belgrano Avenue, which is a heavy traffic street in the downtown area of the city (Bogo et al., Atmospheric Environment 33 (1999) 2587. In this work, we analyze the dependence of the measured primary pollutants, CO and the mixture of nitrogen oxides (NOx), with meteorological conditions, traffic emissions and monitoring location. We compare the registered values with the results obtained from modeling the dispersion of the pollutants emitted from mobile and area sources. We also discuss the relevance of street canyon effects compared with background concentrations of these pollutants.  相似文献   

18.
ABSTRACT

Data from the 1990 San Joaquin Valley Air Quality Study/ Atmospheric Utility Signatures, Predictions, and Experiments (SJVAQS/AUSPEX) field program in California's San Joaquin Valley (SJV) suggest that both urban and rural areas would have difficulty meeting an 8-hr average O3 standard of 80 ppb. A conceptual model of O3 formation and accumulation in the SJV is formulated based on the chemical, meteorological, and tracer data from SJVAQS/ AUSPEX. Two major phenomena appear to lead to high O3 concentrations in the SJV: (1) transport of O3 and precursors from upwind areas (primarily the San Francisco Bay Area, but also the Sacramento Valley) into the SJV, affecting the northern part of the valley, and (2) emissions of precursors, mixing, transport (including long-range transport), and atmospheric reactions within the SJV responsible for regional and urban-scale (e.g., downwind of Fresno and Bakersfield) distributions of O3. Using this conceptual model, we then conduct a critical evaluation of the meteorological model and air quality model. Areas of model improvements and data needed to understand and properly simulate O3 formation in the SJV are highlighted.  相似文献   

19.
Abstract

Emission trading is a market‐based approach designed to improve the efficiency and economic viability of emission control programs; emission trading has typically been confined to trades among single pollutants. Interpollutant trading (IPT), as described in this work, allows for trades among emissions of different compounds that affect the same air quality end point, in this work, ambient ozone (O3) concentrations. Because emissions of different compounds impact air quality end points differently, weighting factors or trading ratios (tons of emissions of nitrogen oxides (NOx) equivalent to a ton of emissions of volatile organic compounds [VOCs]) must be developed to allow for IPT. In this work, IPT indices based on reductions in O3 concentrations and based on reductions in population exposures to O3 were developed and evaluated using a three‐dimensional gridded photochemical model for Austin, TX, a city currently on the cusp of nonattainment with the National Ambient Air Quality Standards for O3 concentrations averaged over 8 hr. Emissions of VOC and NOx from area and mobile sources in Austin are larger than emissions from point sources. The analysis indicated that mobile and area sources exhibited similar impacts. Trading ratios based on maximum O3 concentration or population exposure were similar. In contrast, the trading ratios did exhibit significant (more than a factor of two) day‐to‐day variability. Analysis of the air quality modeling indicated that the daily variability in trading ratios could be attributed to daily variations in both emissions and meteorology.  相似文献   

20.
The purpose of this work is to contribute to the understanding of the photochemical air pollution in central-southern of the Iberian Peninsula, analysing the behaviour and variability of oxidant levels (OX?=?O3?+?NO2), measured in a polluted area with the highest concentration of heavy industry in central Spain. A detailed air pollution database was observed from two monitoring stations. The data period used was 2008 and 2009, around 210,000 data, selected for its pollution and meteorological statistics, which are very representative of the region. Data were collected every 15 min, however hourly values were used to analyse the seasonal and daily ozone, NO, NO2 and OX cycles. The variation of OX concentrations with NO x is investigated, for the first time, in the centre of the Iberian Peninsula. The concentration of OX was calculated using the sum of a NO x -independent ‘regional’ contribution (i.e. the O3 background), and a linearly NO x -dependent ‘local’ contribution. Monthly dependence of regional and local OX concentration was observed to determine when the maximum values may be expected. The variation of OX concentrations with levels of NO x was also measured, in order to pinpoint the atmospheric sources of OX in the polluted areas. The ratios [NO2]/[OX] and [NO2]/[NO x ] vs. [NO x ] were analysed to find the fraction of OX in the form of NO2, and the possible source of the local NO x -dependent contribution, respectively. The progressive increase of the ratio [NO2]/[OX] with [NO x ] observed shows a greater proportion of OX in the form of NO2 as the level of NO x increases. The higher measured values in the ratio [NO2]/[NO x ] should not be attributed to NO x emissions by vehicles; they could be explained by industrial emission, termolecular reactions or formaldehyde and HONO directly emitted by vehicles exhausts. We also estimate the rate of NO2 photolysis, J NO2?=?0.18–0.64 min?1, a key atmospheric reaction that influence O3 production and then the regional air quality. The first surface plot study of annual variation of the daily mean oxidant levels, obtained for this polluted area may be used to improve the atmospheric photochemical dynamic in this region of the Iberian Peninsula where there are undeniable air quality problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号