首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An oil spill model was applied to the Nakhodka tanker spill accident that occurred in the Japan Sea in January 1997. The amount of oil spilled was estimated to be around 5000 kl, released over 1 day. Under a 2-m wave height condition, and a 3.5% of drift factor, the model simulated the oil slick to hit the shoreline after 6 days. This was in good agreement with the observed conditions. After drifting to the shoreline, the oil slick moved northeastward with the current. In the model, the simulation where the shoreline absorbs 100% of stranded oil failed to reproduce the actual oil slick trajectory. The simulation in which oil resuspended after stranding indicated a similar trend to the actual case. Therefore, it is likely that a considerable amount of oil that hit the shoreline may have returned to the sea and moved with the current. The effects of current pattern and wind drift angle on the oil slick trajectory were also examined. It is suggested that the wind parameters were of prime importance in reproducing a realistic distribution.  相似文献   

2.
Estimates of occurrence rates for offshore oil spills are useful for analysis of potential oil spill impacts and for oil spill response contingency planning. As the Oil Pollution Act of 1990 (U.S. Public Law 101–380, 18 August 1990) becomes fully implemented, estimates of oil spill occurrence will become even more important to natural resource trustees and to responsible parties involved in oil and gas activities. Oil spill occurrence rate estimates have been revised based on U.S. Outer Continental Shelf platform and pipeline spill data (1964–1992) and worldwide tanker spill data (1974–1992). These spill rates are expressed and normalized in terms of number of spills per volume of crude oil handled. The revisions indicate that estimates for the platform spill occurrence rates declined, the pipeline spill occurrence rates increased, and the worldwide tanker spill occurrence rates remained unchanged. Calculated for the first time were estimates of tanker and barge spill rates for spills occuring in U.S. waters, and spill occurrence rates for spills of North Slope crude oil transported by tanker from Valdez, Alaska. All estimates of spill occurrence rates were restricted to spills greater than or equal to 159 m3 (1000 barrels).  相似文献   

3.
In situ burning is an oil spill response technique or tool that involves the controlled ignition and burning of the oil at or near the spill site on the surface of the water or in a marsh (see Lindau et al., this volume). Although controversial, burning has been shown on several recent occasions to be an appropriate oil spill countermeasure. When used early in a spill before the oil weathers and releases its volatile components, burning can remove oil from the waters surface very efficiently and at very high rates. Removal efficiencies for thick slicks can easily exceed 95% (Advanced In Situ Burn Course, Spiltec, Woodinville, WA, 1997). In situ burning offers a logistically simple, rapid, inexpensive and if controlled a relatively safe means for reducing the environmental impacts of an oil spill. Because burning rapidly changes large quantities of oil into its primary combustion products (water and carbon dioxide), the need for collection, storage, transport and disposal of recovered material is greatly reduced. The use of towed fire containment boom to capture, thicken and isolate a portion of a spill, followed by ignition, is far less complex than the operations involved in mechanical recovery, transfer, storage, treatment and disposal (The Science, Technology, and Effects of Controlled Burning of Oil Spills at Sea, Marine Spill Response Corporation, Washington, DC, 1994).However, there is a limited window-of-opportunity (or time period of effectiveness) to conduct successful burn operations. The type of oil spilled, prevailing meteorological and oceanographic (environmental) conditions and the time it takes for the oil to emulsify define the window (see Buist, this volume and Nordvik et al., this volume). Once spilled, oil begins to form a stable emulsion: when the water content exceeds 25% most slicks are unignitable. In situ burning is being viewed with renewed interest as a response tool in high latitude waters where other techniques may not be possible or advisable due to the physical environment (extreme low temperatures, ice-infested waters), or the remoteness of the impacted area. Additionally, the magnitude of the spill may quickly overwhelm the deployed equipment necessitating the consideration of other techniques in the overall response strategy (The Science, Technology, and Effects of Controlled Burning of Oil Spills at Sea, Marine Spill Response Corporation, Washington, DC, 1994; Proceedings of the In Situ Burning of Oil Spills Workshop. NIST. SP934. MMS. 1998, p. 31; Basics of Oil Spill Cleanup, Lewis Publishers, Washington, DC, 2001, p. 233). This paper brings together the current knowledge on in situ burning and is an effort to gain regulatory acceptance for this promising oil spill response tool.  相似文献   

4.
A numerical model for the simulation of the physicochemical weathering processes of an oil spill at sea is presented based on state-of-the-art models. The model includes the most significant processes: spreading, evaporation, dispersion into the water column, emulsification and the change in viscosity and density. These processes depend on each other and are allowed to vary simultaneously since processes are described by a set of differential equations, solved by a fourth-order Runge-Kutta method. Numerical examples are given, in order to test the results obtained, and compared with available experimental data in the literature. The model predicts well the variation of water incorporation, density and viscosity but seems to overestimate the fraction evaporated. However more experimental data are needed to calibrate and validate the model since differences in the composition of the simulated oil and the samples from which experimental data are taken may occur in evaporation studies. The model is suitable to join other modules for the prediction of the spill trajectory by advection due to winds and currents and sub-sea transport.  相似文献   

5.
This paper discusses the changes in spilled oil properties over time and how these changes affect differential density separation. It presents methods to improve differential density, and operational effectiveness when oil-water separation is incorporated in a recovery system. Separators function because of the difference in density between oil and seawater. As an oil weathers this difference decreases, because the oil density increases as the lighter components evaporate. The density also increases as the oil incorporates water droplets to form a water-in-oil emulsion. These changes occur simultaneously during weathering and reduce the effectiveness of separators. Today, the state-of-the-art technologies have limited capabilities for separating spilled marine oil that has weathered.For separation of emulsified water in an emulsion, the viscosity of the oil will have a significant impact on drag forces, reducing the effect of gravity or centrifugal separation. Since water content in an emulsion greatly increases the clean up volume (which can contain as much as two to five times as much water as the volume of recovered oil), it is equally important to remove water from an emulsion as to remove free water recovered owing to low skimmer effectiveness. Removal of both free water and water from an emulsion, has the potential to increase effective skimming time, recovery effectiveness and capacity, and facilitate waste handling and disposal. Therefore, effective oil and water separation in marine oil spill clean-up operations may be a more critical process than credited because it can mean that fewer resources are needed to clean up an oil spill with subsequent effects on capital investment and basic stand-by and operating costs for a spill response organization.A large increase in continuous skimming time and recovery has been demonstrated for total water (free and emulsified water) separation. Assuming a 200 m3 storage tank, 100 m3 h−1 skimmer capacity, 25% skimmer effectiveness, and 80% water content in the emulsion, the time of continuous operation (before discharge of oil residue is needed), increases from 2 to 40 h and recovery of oil residue from 10 to 200 m3.Use of emulsion breakers to enhance and accelerate the separation process may, in some cases, be a rapid and cost effective method to separate crude oil emulsions. Decrease of water content in an emulsion, by heating or use of emulsion breakers and subsequent reduction in viscosity, may improve pumpability, reduce transfer and discharge time, and can reduce oily waste handling, and disposal costs by a factor of 10. However, effective use of emulsion breakers is dependant on the effectiveness of the product, oil properties, application methods and time of application after a spill.  相似文献   

6.
A three-dimensional numerical model of the physical and chemical behavior and fate of spilled oil has been coupled to a model of oil spill response actions. This coupled system of models for Oil Spill Contingency and Response (OSCAR), provides a tool for quantitative, objective assessment of alternative oil spill response strategies. Criteria for response effectiveness can be either physical (‘How much oil comes ashore?’ or ‘How much oil have we recovered?’) or biological (‘How many biologically sensitive areas were affected?’ or ‘What exposures will fish eggs and larvae experience in the water column?’). The oil spill combat module in the simulator represents individual sets of equipment, with capabilities and deployment strategies being specified explicitly by the user. The coupling to the oil spill model allows the mass balance of the spill to be affected appropriately in space and time by the cleanup operation as the simulation proceeds. An example application is described to demonstrate system capabilities, which include evaluation of the potential for both surface and subsurface environmental effects. This quantitative, objective approach to analysis of alternative response strategies provides a useful tool for designing more optimal, functional, rational, and cost-effective oil spill contingency solutions for offshore platforms, and coastal terminals and refineries.  相似文献   

7.
Estimates of occurrence rates for offshore oil spills are useful for analyzing potential oil-spill impacts and for oil-spill response contingency planning. With the implementation of the Oil Pollution Act of 1990 (US Public Law 101-380, August 18, 1990), estimates of oil-spill occurrence became even more important to natural resource trustees and to responsible parties involved in oil and gas activities.Oil-spill occurrence rate estimates have been revised based on US Outer Continental Shelf (US OCS) platform and pipeline spill data (1964 through 1999), worldwide tanker spill data (1974 through 1999), and barge spill data for US waters (1974–1999). These spill rates are expressed and normalized in terms of number of spills per volume of crude oil handled. All estimates of spill occurrence rates were restricted to spills greater than or equal to 1000 barrels (159 m3, 159 kl, 136 metric tonnes, 42,000 US gallons).The revisions compared to the previously published rates calculated through 1992 (Anderson and LaBelle, 1994) indicate that estimates for the US OCS platform spill occurrence rates continue to decline, primarily because no spills have occurred since 1980. The US OCS pipeline spill occurrence rates for spills greater than or equal to 1000 barrels remained essentially unchanged. However, the rate for larger OCS pipeline spills (greater than or equal to 10,000 barrels) has decreased significantly. Worldwide tanker spill rates, rates for tanker spills in US waters, and rates for barge spills in US waters decreased significantly. The most recent 15-year estimates for 1985–1999 (compared to rates for the entire data series) showed that rates for US OCS platforms, tankers, and barges continued to decline.  相似文献   

8.
Observations on oil slicks, tar residues and dissolved petroleum hydrocarbons (DPH) shortly after the oil spill resulting from the tanker accident in January 1993 showed negligible impact on the Indian EEZ of the Great Channel (Andaman Sea). DPH were between 0.31 and 1.85 μg l−1 in the area examined. Tar residues were absent throughout the study area. Prevailing NE wind with resultant SW surface current appears to have pushed the oil patches out towards the open Indian Ocean.A follow-up survey of the same area was carried out in September-October 1993 and observations similar to those made during the earlier survey were recorded. The zooplankton biomass had increased considerably during the interval between the two surveys, but this was probably due to seasonal changes and natural variability.The spill did not cause any perceptible impact on the environment.  相似文献   

9.
The 1970s oil spill model described the infiltration of oil (light nonaqueous phase liquid or LNAPL) into the subsurface, resulting in an oil pancake depressing the water table within the capillary fringe. An update to the 1970s model is needed because, according to the discussion by Lenhard et al. on the work of Lenhard and Parker and Farr et al., “A key concept of their efforts was that LNAPL-saturated ‘pancakes’ do not exist.” Lenhard and Parker and Farr et al. showed that the distribution of water, LNAPL, and air in the subsurface was a function of the LNAPL, water, and air pressures; fluid properties; and the pore-size distribution of the porous medium, and that the fluid saturations can be calculated from fluid levels in a monitoring well. The 1970s oil spill infiltration model described that spilled LNAPL migrates downward through the vadose zone under the force of gravity with some lateral spreading. The vadose zone, where all of the liquid pressures are less than atmospheric pressure, becomes a three-fluid zone consisting of variable saturations of air, water, and LNAPL, which together fully saturate the pore spaces. One important update to the 1970s model is that instead of the infiltrating LNAPL stopping at and depressing the water table, LNAPL penetrates the water table to a depth consistent with the gravitational and capillary forces experienced during LNAPL infiltration and creates a two-fluid zone below the water table where LNAPL and water pressures are greater than atmospheric pressure. After the LNAPL release stops, LNAPL infiltration and migration will cease after reaching equilibrium. The updated LNAPL infiltration conceptual model, like the 1970s model, describes the situation where the LNAPL release has stopped and LNAPL infiltration and migration have ceased after reaching equilibrium. The volume of LNAPL released is also assumed to be sufficient to pass through the vadose zone and enter the saturated zone.  相似文献   

10.
In January 1997 7000 t of refined petrol were spilled into the English Channel following a collision in dense fog off Ostend. The following day reports of petrol odours were recorded throughout central England at distances up to 300 km from the spill site. One possibility is that mass hysteria was induced by media reports of the accident coupled with the publicised wind direction. Indeed, the simulated gas cloud trajectory does not pass over central England if the petrol is assumed to have evaporated over a period of about 3 h. However, a feasible advection path can be reproduced by assuming that the water/atmosphere exchange of vapours occurred on a time scale of 12 h, the extended evaporation being due to the formation of subsurface droplets by wave action. Evidence to support the simulated trajectory has been obtained from the UK National Air Quality Information Archive which contains hourly data for benzene and NOx concentrations. By regressing the benzene concentration against NOx which is assumed to be an indicator of traffic density, it is shown that an increase in benzene concentrations on the day following the spillage was consistent with the simulated movement of the vapour cloud.  相似文献   

11.
The Oil Pollution Act of 1990 (OPA 90) was largely driven by the catastrophic EXXON VALDEZ tanker spill and several other major tanker spills that followed in 1989. Under the OPA 90 mandate, the US Coast Guard, in partnership with other Federal agencies and industry have implemented a number of initiatives that have significantly enhanced the national oil spill prevention, preparedness and response capability. Declining trends in the volume of oil spilled into US waters indicates that these initiatives are at least in some measure successful.The Coast Guard is now concerned about what the future may hold in terms of oil pollution threats, and prevention, preparedness and response program shortcomings and opportunities in the future. To address this issue, the Coast Guard, in partnership with other National Response Team agencies and industry, is conducting a Broad-Based Programmatic Risk Assessment to develop a comprehensive vision and strategy for the Oil Spill Prevention, Preparedness and Response (OSPPR) Program in the 21st Century. This study will characterize the current and emerging oil spill threats by source category, assess the potential impacts of these threats to define overall risk, and examine the current and projected effectiveness of OSPPR initiatives in minimizing these risks. Key issues, problems and focus areas will be identified and targeted for follow-on risk analysis and management activities by the Coast Guard and agency and industry stakeholders.  相似文献   

12.
This paper is a review of the major findings from laboratory studies and field trials conducted in Norway in recent years on the emulsification of oils spilled at sea. Controlled bench-scale and meso-scale basin experiments using a wide spectrum of oils have revealed that both the physico-chemical properties of the oils and the release conditions are fundamental determinants of the rate of emulsion formation, for the rheological properties of the emulsion formed and for the rate of natural dispersion at sea.During the last decade, several series of full-scale field trials with experimental releases of various crude oils have been undertaken in the North Sea and the Norwegian Sea. These have involved both sea surface releases, underwater pipeline leak simulations (release of oil under low pressure and no gas) and underwater blowout simulations (pressurized oil with gas) from 100 and 850 m depth. The field trials have been performed in co-operation with NOFO (Norwegian Clean Seas Association for Operating Companies), individual oil companies, the Norwegian Pollution Control Authority (SFT) and Minerals Management Services (MMS). SINTEF has been responsible for the scientific design and monitoring during these field experiments. The main objectives of the trials have been to study the behaviour of different crude oils spilled under various conditions and to identify the operational and logistical factors associated with different countermeasure techniques.The paper gives examples of data obtained on the emulsification of spilled oil during these field experiments. The empirical data generated from the experimental field trials have been invaluable for the validation and development of numerical models at SINTEF for predicting the spreading, weathering and behaviour of oil released under various conditions. These models are extensively used in contingency planning and contingency analysis of spill scenarios and as operational tools during spill situations and combat operations.  相似文献   

13.
The state-of-the-art in oil spill modeling is summarized, focusing primarily on the years from 1990 to the present. All models seek to describe the key physical and chemical processes that transport and weather the oil on and in the sea. Current insights into the mechanisms of these processes and the availability of algorithms for describing and predicting process rates are discussed. Advances are noted in the areas of advection, spreading, evaporation, dispersion, emulsification, and interactions with ice and shorelines. Knowledge of the relationship between oil properties, and oil weathering and fate, and the development of models for the evaluation of oil spill response strategies are summarized. Specific models are used as examples where appropriate. Future directions in these and other areas are indicated  相似文献   

14.
This paper discusses processes and factors for estimating time period windows of in situ burning of spilled oil at sea. Time-periods of in situ burning of Alaska North Slope (ANS) crude oil are estimated using available data. Three crucial steps are identified. The First Step is to determine the time it takes for the evaporative loss to reach the known or established limitation for evaporation and compare this time-period with estimated time of ignition at the ambient wind and sea temperatures. The Second Step is to determine the water up-take of the spilled oil and compare it with the known or established limitation for water-in-oil content. The Third Step is to determine the necessary heat load from the igniter to bring the surface temperature of the spilled oil to its flash point temperature so that it will burn at the estimated time period for ignition of the slick.  相似文献   

15.
In 1970, approximately 2000 m3 of Bunker C crude oil impacted 300 km of Nova Scotia’s coastline following the grounding of the tanker Arrow. Only 10% of the contaminated coast was subjected to cleanup, the remainder was left to cleanse naturally. To determine the long-term environmental impact of residual oil from this spill event, samples of sediment and interstitial water were recovered in 1993, 1997 and 2000 from a sheltered lagoon in Black Duck Cove. This heavily oiled site was intentionally left to recover on its own. Visual observations and chemical analysis confirmed that substantial quantities of the weathered cargo oil were still present within the sediments at this site. However, direct observations of benthic invertebrate abundance suggest that natural processes have reduced the impacts of the residual oil. To confirm this hypothesis, sediment and interstitial water samples from Black Duck Cove were assessed with a comprehensive set of biotests and chemical assays.Residual oil in the sediments had limited effect on hepatic CYP1A protein levels and mixed function oxygenase (MFO) induction in winter flounder (Pleuronectes americanus). No toxicity was detected with the Microtox solid phase test (Vibrio fischeri). Significant sediment toxicity was detected by the amphipod survival test (Eohaustorius estuarius) in four out of the eight contaminated sediments. Interstitial water samples were deemed non-toxic by the Microtox 100% test (Vibrio fischeri) and the echinoid fertilization test (Lytechinus pictus). Sediment elutriates were also found to be non-toxic in the grass shrimp embryo-larval toxicity (GSELTOX) test (Palaemonetes pugio).Recovery at this contaminated site is attributed to natural processes that mediated biodegradation and physical removal of oil from the sediments. In support of the latter mechanism, mineralization experiments showed that all test sediments had the capacity for hexadecane, octacosane and naphthalene degradation, while chemical analysis confirmed that the Bunker C oil from the Arrow had undergone substantial biodegradation.  相似文献   

16.
RADARSAT synthetic aperture radar imagery has been successfully classified to delineate oil slicks on water using training areas for various degrees of oil coverage located within each image. Three and four class schemes have been tested with imagery from the Nakhodka and Milford Haven spills. An interactive graphical editor has been developed using the classified images to re-initialize the SPILLSIM oil spill model during a simulation.  相似文献   

17.
Analysis of oil spills data confirms that accidental oil spills are natural phenomenon and that there is a relationship between accidental oil spills and variables like vessel size, vessel type, time and region of spill. The volume of oil spilled bears relationship with the volume of petroleum imports and domestic movement of petroleum and proportion of large oil spills. Finally, navigational risk increases with increase in marine traffic and is also determined by variables like hydrographic and meteorological conditions, water configuration, maneuvering space, obstructions and nuisance vessels. The Oil Pollution Act, 1990 (OPA 90) was passed by the US Congress in the aftermath of 11 million gallon spill of crude oil in Prince William Sound, Alaska. The objective of OPA 90 was to minimize marine casualties and oil spills by addressing preventive, protective, deterrent and performance aspects of accidental oil spills. The arm of various regulations like double-hull tankers and vessel response plans extended to both US flagged and foreign-flagged tank vessels. The cost–benefit analysis of major regulations shows that the estimated costs exceed estimated benefits. We observe from USCG data on oil spills by size, by vessel type, Coast guard district and type of petroleum product that there have been significant reductions in the number and the quantity of oil spills. Our regression results show that the quantity of oil spilled increases with increase in oil imports but increases at a decreasing rate. The quantity of oil spilled decreases with increases in the domestic oil movements. Furthermore, percent of oil spills larger than 10,000 gallons also increases the potential quantity of oil spilled. OPA 90 has been a deterrent to accidental oil spills but the finding is not conclusive.  相似文献   

18.
The work reported here encompasses analyses of specific potential spill scenarios for oil exploration activity planned offshore of Namibia. The analyses are carried out with the SINTEF Oil Spill Contingency and Response (OSCAR) 3-dimensional model system. A spill scenario using 150 m3 of marine diesel demonstrates the rapidity with which such a spill will dissipate naturally, even in light winds. Vertical and horizontal mixing bring subsurface hydrocarbon concentrations to background levels within a few days. A hypothetical 10 day blowout scenario releasing 11,000 bbl per day of light crude oil is investigated in terms of the potential for delivering oil to selected bird and marine mammal areas along the Namibian coast. Worst case scenarios are selected to investigate the potential mitigating effects of planned oil spill response actions. Mechanical recovery significantly reduces, and in some cases eliminates, potential environmental consequences of these worst case scenarios. Dispersant application from fixed wing aircraft further reduces the potential surface effects. The analysis supplies an objective basis for net environmental analysis of the planned response strategies.  相似文献   

19.
An experimental technique has been developed to study systematically the ignition, flame spread and mass burning characteristics of liquid fuels spilled on a water bed. The final objective of this work is to provide a tool that will serve to assess a fuel's ease of ignition, spread and sustaining a flame, thus, helping to better define the combustion parameters that affect in situ burning of oil spills.  相似文献   

20.
This viewpoint paper considers the potential of offshore burning of oil in the recent Tampa Bay spill as a generic oil spill response option. While the oil spilled might not have been amenable to burning, the physical constraints of the spill and subsequent environmental conditions provide a scenario for future consideration of this option.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号