首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radical chemistry in the nocturnal urban boundary layer is dominated by the nitrate radical, NO3, which oxidizes hydrocarbons and, through the aerosol uptake of N2O5, indirectly influences the nitrogen budget. The impact of NO3 chemistry on polluted atmospheres and urban air quality is, however, not well understood, due to a lack of observations and the strong impact of vertical stability of the boundary layer, which makes nocturnal chemistry highly altitude dependent.Here we present long-path DOAS observations of the vertical distribution of the key nocturnal species O3, NO2, and NO3 during the TRAMP experiment in Summer 2006 in Houston, TX. Our observations confirm the altitude dependence of nocturnal chemistry, which is reflected in the concentration profiles of all trace gases at night. In contrast to other study locations, NO3 chemistry in Houston is dominated by industrial emissions of alkenes, in particular of isoprene, isobutene, and sporadically 1,3-butadiene, which are responsible for more than 70% of the nocturnal NO3 loss. The nocturnally averaged loss of NOx in the lowest 300 m of the Houston atmosphere is ~0.9 ppb h?1, with little day-to-day variability. A comparison with the daytime NOx loss shows that NO3 chemistry is responsible for 16–50% of the NOx loss in a 24-h period in the lowest 300 m of the atmosphere. The importance of the NO3 + isoprene/1,3-butadiene reactions implies the efficient formation of organic nitrates and secondary organic aerosol at night in Houston.  相似文献   

2.
Determining the destructions of both ozone and odd oxygen, Ox, in the nocturnal boundary layer (NBL) is important to evaluate the regional ozone budget and overnight ozone accumulation. This work develops a simple method to determine the dry deposition velocity of ozone and its destruction at a polluted nocturnal boundary layer. The destruction of Ox can also be determined simultaneously. The method is based on O3 and NO2 profiles and their surface measurements. Linkages between the dry deposition velocities of O3 and NO2 and between the dry deposition loss of Ox and its chemical loss are constructed and used. Field measurements are made at an agricultural site to demonstrate the application of the model. The model estimated nocturnal O3 dry deposition velocities from 0.13 to 0.19 cm s?1, very close to those previously obtained for similar land types. Additionally, dry deposition and chemical reactions account for 60 and 40% of the overall nocturnal ozone loss, respectively; ozone dry deposition accounts for 50% of the overall nocturnal loss of Ox, dry deposition of NO2 accounts for another 20%, and chemical reactions account for the remaining 30%. The proposed method enables the use of measurements made in typical ozone field studies to evaluate various nocturnal destructions of O3 and Ox in a polluted environment.  相似文献   

3.
UV-B radiation is a driving factor for the chemistry of the polluted boundary layer. It is involved in the formation of radicals and consequently influences the formation and concentration of photo-oxidants. The 3-D mesoscale photochemical Metphomod model was employed to study the effect of changes in UV-B radiation on the concentration of photo-oxidants in the boundary layer over the Swiss Plateau. The model chemistry is based on the RACM mechanism and a two-stream approximation of radiative transfer. A summer (July) and a late winter (February) episode were simulated. All simulations were replicated with relatively large changes in the prescribed total ozone. The results for an increase in UV-B radiation show increases in PAN, HNO3, and ozone at noon in NOx-rich areas and a decrease in NOx. In NOx-poor areas in summer the effect on ozone is weak and has a negative sign, the main effect being an increase in H2O2. The spatial variability of NOx concentrations in the Swiss Plateau in the summer case is such that the effect of increased UV-B radiation on ozone is spatially variable. The effect on the ozone production rate in summer is strongest positive at the surface in the NOx-rich regions in the morning and strongest negative at some altitude above ground in NOx-poor regions in the early afternoon. In the winter episode, NOx-rich conditions are found almost everywhere on the Swiss Plateau, the effect of increased UV-B radiation on the ozone production rate is positive all day long and is largest at 300 m above ground at noon. In this case, in contrast to the summer case, the increase in ozone is carried over to the next day. The model results for ozone are in good agreement with results from a case study and a time series analysis of surface ozone measurements. We estimate the effect of day-to-day changes in total ozone on surface ozone peaks to range from 4 to 6 ppb at most.  相似文献   

4.
The nitrate radical (NO3) was first measured in the atmosphere in the 1970s and suggestions were made that it could play a major role in oxidising many unsaturated hydrocarbons, such as those emitted from the biosphere. Analysis of the hydrocarbon mix over the North Atlantic Ocean suggested subsequently that the influence of NO3 radical chemistry at night was even more extensive, being on a par with hydroxyl radical chemistry at some times of the year.The paper presents a detailed analysis of an extensive database of many nonmethane hydrocarbons collected at various sites around the North Sea in the mid 1990s during the HANSA project. By comparing the relative rates of oxidation of iso and normal pentane with that of toluene and benzene it clearly shows that the efficiency of NO3 radical chemistry and hydroxyl radical chemistry over northwest Europe are similar in springtime and predicts an average nighttime NO3 concentration of the order of 350 pptv, assuming an annual average OH concentration of 0.6×106 cm−3. This value is very dependant on the average emission ratios of the different hydrocarbons and values between 200 and 600 pptv are possible. It is much larger than direct measurements made in Europe at the surface, but is of the same magnitude as concentrations measured recently from aircraft in the boundary layer over the northeast USA, and previously in vertical profiles by remote sounding over Europe.A simple analytical expression can be derived to calculate the NO3 concentration at night with the only variables being ozone and the loss rate of N2O5, either to the ground or to aerosol surfaces. The concentrations of NO3 calculated in this manner are similar to those derived from the analysis of the HANSA hydrocarbon database for typical conditions expected over Europe, but they are very dependant on the efficiency of the aerosol sink for N2O5.It is shown that NO3 oxidation of many unsaturated hydrocarbons can indeed be more efficient than OH oxidation, especially at times of the year outside the summer season. Direct evidence for hydrocarbon oxidation by NO3 radicals is shown by a series of peroxy radical measurements where the nighttime concentrations can be significantly higher than daytime concentrations in polluted air on occasion. Also the winter/summer (W/S) ratios of many unsaturated hydrocarbons are much lower than those expected from their removal purely by hydroxyl radical chemistry.The consequences of these findings are profound especially as satellite measurements of NO2, a major precursor to NO3, suggest that these high average concentrations of several hundred pptv could be widespread over most of the continents. This needs to be confirmed by direct in-situ measurement of nitrate radicals but it suggests a much larger role for NO3 chemistry in the oxidation capacity of the atmosphere than realised hitherto.  相似文献   

5.
Long-term observations of the nitrate radical concentration and supporting parameters in the continental boundary layer at the rural site Lindenberg near Berlin, Germany, were performed using differential optical absorption spectroscopy (DOAS). Average nighttime NO3 levels were 4.6 ppt, while NO3 steady-state lifetimes (calculated from the NO2–O3 product and the NO3 concentration) varied between 5 s and 615 s with an average of 92 s. The long-term observations offered the possibility to study the importance of NO3 for the oxidation of VOCs (volatile organic compounds) and its contribution in the non-photochemical removal of NOx from the atmosphere in different seasons. Analysis of the data showed, that NO3 was depleted by both, reactions with VOCs and indirectly by loss of N2O5 on aerosol surfaces. A clear seasonal variation of the sink distribution was found. The VOC sink dominated during summer while indirect loss was of major importance during the winter months. The results are compared with former long-term campaigns of NO3 in the marine boundary layer.  相似文献   

6.
We present measurements of several trace gases made at a subtropical coastal site in Hong Kong in October and November 1997. The gases include O3, CO, SO2, and NOx. The surface measurement data are compared with those from an aircraft study [Kok et al. J. Geophys. Res. 102 (D15) (1997) 19043–19057], and a subset of the latter is used to show the vertical distribution of the trace gases in the boundary layer. During the study period, averaged concentrations at the surface site for O3, CO, NOx, and SO2 were 50, 298, 2.75, and 1.65 ppbv, respectively. Their atmospheric abundance and diurnal pattern are similar to those found in the “polluted” rural areas in North America. The measured trace gases are fairly well mixed in the coastal boundary layer in the warm South China region. Large variability is indicated from the data. Examination of 10-day, isentropic back trajectories shows that the measured trace gases are influenced by maritime air masses, outflow of pollution-laden continental air, and the mixing of the two. The trajectories capture the contrasting chemical features of the large-scale air masses impacting on the study area. CO, NOx and SO2 all show higher concentrations in the strong outflow of continental air, as expected, than those in the marine category. Compared with previously reported values for the western Pacific, the much higher levels found in the marine trajectories in our study suggest the impacts of regional and/or sub-regional emissions on the measured trace gases at the study site. The presence of abundant O3 and other chemically active trace gases in the autumn season, coupled with high solar radiation and warm weather, suggests that the South China Sea is a photochemically active region important for studying the chemical transformation of pollutants emitted from the Asian continent.  相似文献   

7.
Aerosol temporal and spatial distributions during wintertime temperature inversions in Gothenburg, Sweden, have been characterized by ground-based and airborne particle measurements combined with lidar measurements. Ground inversions frequently developed during evenings and nights with stable cold conditions, and the low wintertime insolation often resulted in near neutral boundary layer conditions during day-time. Under these conditions ground level aerosol concentrations peaked during morning rush hours and often remained relatively high throughout the day due to inefficient ventilation. The particle number concentrations decreased slowly with increasing altitude within the boundary layer, and measurements slightly above the boundary layer suggested limited entrainment of polluted air into the free troposphere. High concentrations of ultrafine particles were observed throughout the boundary layer up to altitudes of 1100 m, which suggested that nucleation took place within the residual layer during the night and early morning. Recently formed particles were also observed around midday when the layer near ground was ventilated by mixing into the boundary layer, which indicated that ultrafine particles were either transported down from the residual layer to ground level or formed when the polluted surface layer mixed with the cleaner air above.  相似文献   

8.
Year-long measurements of NOx and ozone performed during the NOXAR project are compared to results from the ECHAM4.L39(DLR)/CHEM (E39/C) and GISS coupled chemistry–climate models. The measurements were taken on flights between Europe and the eastern United States and between Europe and the Far East in the latitude range 40–65°N. Our comparison concentrates on the upper troposphere and reveals strong longitudinal variations in seasonal mean NOx of more than 200 pptv, which both models are able to reproduce qualitatively. Vertical profiles show maximum NOx values 2–3 km below the tropopause (“E-shape”) with a strong seasonal cycle. E39/C simulates a maximum located at the tropopause and with a reasonable seasonal cycle. The GISS model reproduces the seasonal cycle but not the profile's shape due to its coarser vertical resolution. A comparison of NOx frequency distributions reveals that both models are capable of reproducing the observed variability, except that E39/C shows no very high NOx mixing ratios.Both models show that lightning and surface NOx emissions contribute the most to the seasonal cycle of NOx at tropopause altitudes. The impact of lightning in the upper troposphere does not vary strongly with altitude, whereas the impact of surface emissions decreases with altitude. Among all sources, lightning contributes the most to the variability of NOx in the upper troposphere in northern mid-latitudes during summer.  相似文献   

9.
The observed ranges in nonmethane organic compound (NMOC) concentrations, NMOC composition and nitrogen oxides (NOX) concentrations have been evaluated for urban and nonurban areas at ground level and aloft of the contiguous United States. The ranges in NMOC to NOX ratios also are considered. The NMOC composition consistently shifts towards less reactive compounds, especially the alkanes, in air parcels over nonurban areas compared to the NMOC composition near ground level within urban areas. The values for the NMOC to NOX ratios, 1.2 to 4.2, in air aloft over nonurban areas are lower than in air at ground level urban sites, ≥8, and much lower than in air at ground level nonurban sites, ≥20.

The layers of air aloft over a number of nonurban areas of the United States tend to accumulate NOX emissions from the tall stacks of large fossil fuel power plants located at nonurban sites. During the night into the morning hours, the air aloft is isolated from any fresh NMOC emissions predominately coming from near surface sources. Conversely, during this extended period of restricted vertical mixing, air near the surface accumulates NMOC emissions while this air is isolated from the major NOX sources emitting aloft. These differences in the distribution of NMOC and NOX sources appear to account for the much larger NMOC to NOX ratios reported near ground level compared to aloft over nonurban areas.

Two types of experimental results are consistent with these conclusions: (1) observed increases in surface rural NOX concentrations during the morning hours during which the mixing depth increases to reach the altitude at which NOX from the stacks of fossil fuel power plants is being transported downwind; (2) high correlations of total nitrate at rural locations with Se, which is a tracer for coal-fired power plant NOX emissions.

The implications of these conclusions from the standpoint of air quality strategies are suggested by use of appropriate scenarios applied to both urban and regional scale photochemical air quality models. The predictions from urban model scenarios with NMOC to NOX ratios up to 20 are that NOX control will result in the need for the control of more NMOC emissions than necessary in the absence of NOX control, in order to meet the O3 standard. On a regional scale, control of NOX emissions from fossil fuel power plants has little overall effect regionally but does result on a more local scale in both small decreases and increases in O3 concentrations compared to the baseline scenario without NOX control. The regional modeling results obtained to date suggest that NOX control may be effective in reducing O3 concentrations only for a very limited set of conditions in rural areas.  相似文献   

10.
The formation of chemical oxidants, particularly ozone, in Mexico City were studied using a newly developed regional chemical/dynamical model (WRF-Chem). The magnitude and timing of simulated diurnal cycles of ozone (O3), carbon monoxide (CO) and nitrogen oxides (NOx), and the maximum and minimum O3 concentrations are generally consistent with surface measurements. Our analysis shows that the strong diurnal cycle in O3 is mainly attributable to photochemical variations, while diurnal cycles of CO and NOx mainly result from variations of emissions and boundary layer height. In a sensitivity study, oxidation reactions of aromatic hydrocarbons (HCs) and alkenes yield highest peak O3 production rates (20 and 18 ppbv h−1, respectively). Alkene oxidations, which are generally faster, dominate in early morning. By late morning, alkene concentrations drop, and oxidations of aromatics dominate, with lesser contributions from alkanes and CO. The sensitivity of O3 concentrations to NOx and HC emissions was assessed. Our results show that daytime O3 production is HC-limited in the Mexico City metropolitan area, so that increases in HC emissions increase O3 chemical production, while increases in NOx emissions decrease O3 concentrations. However, increases in both NOx and HC emissions yield even greater O3 increases than increases in HCs alone. Uncertainties in HC emissions estimates give large uncertainties in calculated daytime O3, while NOx emissions uncertainties are less influential. However, NOx emissions are important in controlling O3 at night.  相似文献   

11.
Dimethyl sulfide (DMS) and atmospheric aerosols were sampled simultaneously over the Atlantic Ocean in the vicinity of Bermuda using the NOAA King Air research aircraft. Total and fine (50% cutoff at 2 μm diameter) aerosol fractions were sampled using two independent systems. The average nonsea-salt (nss)SO42− concentrations were 1.9 and 1.0 μg m−3 (as SO42−) for the total and the fine fractions in the boundary layer (BL) and 0.53 and 0.27 μg m−3 in the free troposphere (FT). Non-sea-salt SO42− in the two aerosol fractions were highly correlated (r = 0.90), however a smaller percentage (55%) was found in the fine aerosol near Bermuda relative to that (90%) near the North American continent. The BL SO42− concentrations measured in this study were higher than those measured by others at remote marine locations despite the fact that the 7-day air mass back trajectories indicated little or no continental contact at altitudes of 700 mb and below; the trajectories were over subtropical oceanic areas that are expected to be rich in DMS. DMS concentrations were higher near the ocean surface and decreased with increasing altitude within the BL; the average DMS concentration was 0.13 μg m−3. Trace levels of DMS were also measured in the FT (0.01 μg m−3). Computer simultation of the oxidation and removal of DMS in the marine atmosphere suggests that <50% of the SO42− observed could be related to the natural S cycle.  相似文献   

12.
A DeHavilland DHC-6 Twin Otter, operated by the National Oceanic and Atmospheric Administration, was deployed in Tampa, FL to measure aerosols and primary and secondary trace gases in support of the Bay Regional Atmospheric Chemistry Experiment (BRACE). The Twin Otter repeatedly overflew the surface chemistry monitoring super site near Sydney, FL to assess the comparability of surface and airborne datasets and the spatial representativeness of the surface measurements. Prior to comparing the chemical datasets, we evaluated the comparability of the standards used to calibrate surface and airborne detectors, as well as the uniformity of wind fields aloft and at the surface. Under easterly flow, when the dearth of significant upwind emission sources promoted chemical homogeneity at Sydney, trace gas concentrations at the surface and aloft were generally well correlated; R2 ranged from 0.4396 for H2O2 to 0.9738 for O3, and was typically better than 0.70 for NO, NO2, NOY, HNO3, HCHO, and SO2. Mean ratios of aircraft-to-surface concentrations during 10 overflights of Sydney were as follows: 1.002±0.265 (NO), 0.948±0.183 (NO2), 1.010±0.214 (NOY), 0.941±0.263 (HCHO), and 0.952±0.046 (O3). Poorer agreement and larger variability in measured ratios were noted for SO2 (1.764±0.559), HNO3 (1.291±0.391), and H2O2 (1.200±0.657). Under easterly flow, surface measurements at Sydney were representative of conditions over horizontal scales as large as 50 km and agreed well with airborne values throughout the depth of the turbulently mixed boundary layer at mid-day. Westerly flow advected the Tampa urban plume over the site; under these conditions, as well as during transitional periods associated with the development of the land–sea breeze, surface conditions were representative of smaller spatial scales. Finally, we estimate possible errors in future measurement-model comparisons likely to arise from fine scale (or subgrid;<2 km) variability of trace gas concentrations. Large subgrid variations in concentration fields were observed downwind of large emission point sources, and persisted across multiple model grid cells (distances>4 km) in coherent plumes. Variability at the edges of the well-mixed urban plume, and at the interface of the land–sea breeze circulation, was significantly smaller. This suggests that even a failure of modeled wind fields to resolve the sea breeze return can induce moderate, but not overwhelming, errors in simulated concentration fields and dependent chemical processes.  相似文献   

13.
In this paper, the NOx emission scaling factors applied over the 2001 National Emissions Inventory (NEI) are estimated through a four-dimensional variational (4D-Var) approach using SCIAMACHY (Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY) tropospheric NO2 columns measured during summer 2004. In the “top-down” approach, two-month average NO2 columns are assimilated into a regional chemical transport model (CTM), STEM, using different assimilation setups. In a basic setup, NOx emissions are adjusted by assimilating the NO2 columns. A more general setup of emission inversion allows the initial O3 concentrations be adjusted along with the NOx emissions. A final case is set up to assimilate both the NO2 columns and O3 measurement from various platforms while allowing adjustments of both the NOx emissions and the initial O3 concentrations. It is found that the addition of O3 measurements did not improve the NOx emission inversion. With the NOx emission at surface and upper levels being adjusted separately, results from four cases show that the elevated NOx emission reduction ranges from 8.9% to 11.4%, and the surface NOx emission reduction is up to 6.6%. All the cases show NOx emission reduction in Ohio valley and Washington, District of Columbia areas.  相似文献   

14.
Summer-time rainfalls during 1980 and 1981 were collected at several sites near La Grande, 200 km inland from the James Bay coast, in Northern Quebec. These were analyzed for pH and the concentrations of major ions. Concurrent and prior measurements were also taken or derived for a series of meteorological parameters including 85 Kp level wind speed and direction, 85 Kp level air temperature, vertical air movement, these during and prior to rainfall, precipitation amount, duration and intensity, prior duration of precipitation, precipitation type, boundary layer height, surface pressure and surface pressure change and atmospheric divergence.Results demonstrate that wind speed at 85 Kp level 48–72 h prior to rainfall, wind direction at 85 Kp 72 h prior, air temperature at 85 Kp during rainfall and 60–72 h prior, vertical movement of the atmosphere 24 h prior, boundary layer height, surface pressure and surface pressure change and rainfall amount and duration at the site as well as prior duration of rainfall consistently correlate with the log10 of major ions in rainfall. Also surface wind direction, precipitation type and the trajectory of air masses do not consistently relate to the pH of rainfall.  相似文献   

15.
The CALINE4 roadway dispersion model has been applied to concentrations of NOx and NO2 measured near Gandy Boulevard in Tampa, FL (USA) during May 2002. A NOx emission factor of 0.86 gr mi−1 was estimated by treating NO+NO2 (NOx) as a conserved species and minimizing the differences between measured and calculated NOx concentrations. This emission factor was then used to calculate NO2 concentrations using the NO/NO2 transformation reactions built into CALINE4. A comparison of measured and calculated NO2 concentrations indicates that for ambient O3 concentrations less than 40 ppb the model under-predicts the chemical transformation of NO. The enhanced transformation of NO may be due to reactions of NO with oxidants such as peroxy radicals that are present either in the atmosphere or in vehicle exhaust.  相似文献   

16.
The ozone records of several monitoring stations in Switzerland from 1992 to 1998 are investigated with respect to the variability observed during regional background conditions, i.e. conditions with little detectable local or regional-scale influences as evident by NOx and CO concentrations. The sites cover different altitudes between 490 and 3600 m asl. They are characteristic of near-surface conditions, the top of the planetary boundary layer or residual layer, the complex atmosphere in an alpine valley, and the free troposphere. The results reveal a distinctly different ozone variability (diurnal cycles, seasonal cycles, trends) during regional background conditions compared to all days. The estimated annual average ozone concentration under these conditions is between 33 and 50 ppb, dependent on altitude, with a spring maximum and an autumn/winter minimum. Differences in background ozone are found depending on the synoptic weather type. For all sites a positive ozone trend is calculated for background conditions that is larger than for all data. For the latter, the trends appear to be stronger positive for the last 7 years than for the last 11 years.  相似文献   

17.
Because investigations of PAN at higher southern latitudes are very scarce, we measured surface PAN concentrations for the first time in Antarctica. During the Photochemical Experiment at Neumayer (PEAN'99) campaign mean surface PAN mixing ratios of 13±7 pptv and maximum values of 48 pptv were found. When these PAN mixing ratios were compared to the sum of NOx and inorganic nitrate they were found to be equal or higher. Low ambient air temperatures and low PAN concentrations caused a slow homogeneous PAN decomposition rate of approximately 5×10−2 pptv h−1. These slow decay rates were not sufficient to firmly establish the simultaneously observed NOx concentrations. In addition, low concentration ratios of [HNO3]/[NOx] imply that the photochemical production of NOx within the snow pack can influence surface NOx mixing ratios in Antarctica. Alternate measurements of PAN mixing ratios at two different heights above the snow surface were performed to derive fluxes between the lower troposphere and the underlying snow pack using calculated friction velocities. Most of the concentration differences were below the precision of the measurements. Therefore, only an upper limit for the PAN flux of ±1×1013 molecules m−2 s−1 without a predominant direction can be estimated. However, PAN fluxes below this limit can still influence both the transfer of nitrogen compounds between atmosphere and ice, and the PAN budget in higher southern latitudes.  相似文献   

18.
Nocturnal chemistry can play an important role in determining the initial morning conditions for daytime chemistry in urban areas. However, the impact on daytime O3 levels is difficult to assess as the suppression of vertical trace gas transport leads to highly altitude dependent nocturnal chemistry, in particular with respect to the removal and conversion of nitrogen oxides (NOx) and volatile organic compounds (VOC). One-dimensional (1-D) chemical transport model calculations for different nighttime vertical stabilities and different ozone formation regimes (i.e. NOx- vs. VOC-sensitive) were performed assuming a 1000 m high daytime boundary layer and a growing nocturnal boundary layer reaching 200 m height at the end of the night. Exclusion of NO3 chemistry from the model leads to daytime O3 concentration changes from ?4% to +16% for different O3 sensitivities. In all cases strong nocturnal vertical concentration profiles of NOx, O3, NO3 and N2O5 and a dependence of these profiles on vertical stability were found at night. The nocturnal NOx loss averaged over the lowest 1000 m changes by 9–24% for different vertical stabilities and ozone sensitivities. The impact of nocturnal vertical stability leads to 7–12% difference in O3 concentration in the morning and ~0–2.5% in the afternoon.  相似文献   

19.
Urban Airshed Model-Version IV (UAM-IV) simulations on 7–8 July, 1988 for the Atlanta, Georgia, nonattainment area are used to investigate how recent changes in the National Ambient Air Quality Standard (NAAQS) and changes in boundary concentrations may affect attempts to comply with the standard through local emissions reductions. According to model results, the recently promulgated 8 h NAAQS at a level of 0.08 ppmv will require larger emission reductions to comply with the standard than those that are necessary to comply with the previous 1 h/0.12 ppmv NAAQS. Regardless of the form of the NAAQS or the magnitude of the concentrations of O3 and its precursors at the model domain boundary, UAM-IV simulations for Atlanta predict that NOx (NO+NO2) emission reductions are more effective than volatile organic compound reductions in mitigating O3 pollution. Moreover, the simulations indicate that NOx emission reductions greater than 60–75% would be required to demonstrate attainment under either form of the standard, even if boundary concentrations of O3 and its precursors were substantially reduced. Further research is necessary to determine if this weak response to emission controls is truly representative of the real atmosphere, or is a result of the meteorological conditions specific to this episode, or is an artifact of the UAM-IV model or its inputs.  相似文献   

20.
Ultra-fine particle number concentrations were measured over Siberia during two large-scale airborne measurement campaigns in April and September 2006. During both campaigns, an aircraft flew between Novosibirsk and Yakutsk, collecting every 200 km vertical profiles up to 7 km. This dataset was completed by 5 years of monthly profiles above Novosibirsk. Particle number concentration was measured in the size ranges 3–70 and 70–200 nm, along with other tracers. Free troposphere (FT) particle concentrations (N3–200) varied between 60 and 460 cm?3, inferior to boundary layer concentrations (100–7000 cm?3). In April, high concentrations of ~500 cm?3 were observed in a polluted air mass recently uplifted at 5–6 km altitude over eastern Siberia, with no sign of significant new particle formation. In September, particle concentrations decreased with altitude, but with a steeper gradient in N70–200 compared to N3–70, the latter accounting for 90% of the total particle concentration in the free troposphere at 6–7 km altitude. Because ultra-fine particles presumably have short lifetimes, these observed particles could have been formed in situ in the clean Siberian atmosphere. Two cases of possible nucleation with high concentration and N3–70/N70–200 ratios are reported for the September campaign, in the upper troposphere and in cloud outflow in the mid-troposphere. In the seasonal analysis, a FT N3–70 maximum is found in July–August between 6 and 7 km altitude, with N3–70 accounting for ~90% of N3–200 supporting the hypothesis of in situ formation in the FT. A secondary FT maximum of N3–70 was identified later in autumn. In the boundary layer, seasonally maximum N3–70 concentrations were found over Novosibirsk in May and September, but not in summer, possibly due to scavenging by precipitations and a large condensational sink from biomass burning aerosols. Our dataset has a limited size resolution and no speciation capability; more investigation is thus required to understand the conditions leading to in situ nucleation processes in the Siberian air shed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号