首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Over the past several years, numerous studies have linked ambient concentrations of particulate matter (PM) to adverse health effects, and more recent studies have identified PM size and surface area as important factors in determining the health effects of PM. This study contributes to a better understanding of the evolution of particle size distributions in exhaust plumes with unconfined dilution by ambient air. It combines computational fluid dynamics (CFD) with an aerosol dynamics model to examine the effects of different streamlines in an exhaust plume, ambient particle size distributions, and vehicle and wind speed on the particle size distribution in an exhaust plume. CFD was used to calculate the flow field and gas mixing for unconfined dilution of a vehicle exhaust plume, and the calculated dilution ratios were then used as input to the aerosol dynamics simulation. The results of the study show that vehicle speed affected the particle size distribution of an exhaust plume because increasing vehicle speed caused more rapid dilution and inhibited coagulation. Ambient particle size distributions had an effect on the smaller sized particles (approximately 10 nm range under some conditions) and larger sized particles (>2 microm) of the particle size distribution. The ambient air particle size distribution affects the larger sizes of the exhaust plume because vehicle exhaust typically contains few particles larger than 2 microm. Finally, the location of a streamline in the exhaust plume had little effect on the particle size distribution; the particle size distribution along any streamline at a distance x differed by less than 5% from the particle size distributions along any other streamline at distance x.  相似文献   

2.
The southeastern aerosol and visibility study (SEAVS) was conducted in Great Smoky Mountains National Park in summer 1995 to investigate variations in ambient aerosol size distributions and their effect on visibility. In this paper, we compare dry aerosol size distribution parameters from a MOUDI impactor and two different optical particle counters (OPCs). Size distributions from the various instruments are expressed in a common measure of size, specifically, optical and aerodynamic diameters are converted to a dry, geometric diameter basis. Comparisons of the real part of particle refractive index obtained directly from light scattering measurements and inferred from aerosol composition measurements are also shown. Real refractive indices from direct measurements and those computed from measured fine aerosol chemical composition were generally within ±0.02. Maximum differences in estimated accumulation mode integrated volume concentrations from all instruments were within ∼22%. Accumulation mode integrated number concentrations and geometric standard deviations from the two OPCs agreed within ∼30% and ∼3%, respectively. Differences between MOUDI- and OPC-derived accumulation mode number concentrations and geometric standard deviations were ∼20% and ∼8%, respectively. The average geometric volume mean diameters derived from the three instruments agreed within 15% or less. The volume median diameters obtained by fitting the CSU number concentration data to a lognormal function were typically the smallest. We show that these discrepancies can be related to the differences and biases in the measurement and data analysis techniques.  相似文献   

3.
Aerosol size distributions were measured during the summertime 1995 Southeastern Aerosol and Visibility Study (SEAVS) in Great Smoky Mountains National Park using an Active Scattering Aerosol Spectrometer (ASASP-X) optical particle counter. We present an overview of the experimental method, our data inversion technique, timelines of the size distribution parameters, and calculations of dry accumulation mode aerosol density and refractive index. Aerosol size distributions were recorded during daylight hours for aerosol in the size range 0.1 < Dp < 2.5 microns. The particle refractive index used for the data inversion was calculated with the partial molar refractive index approach using 12-hr measured aerosol chemical composition. Aerosol accumulation mode volume concentrations ranging from 1 to 26 micron 3 cm-3 were observed, with an average of 7 +/- 5 micron 3 cm-3. The study average dry accumulation mode geometric volume median diameter was 0.27 +/- 0.03 micron, and the mean geometric standard deviation was 1.45 +/- 0.06. Using an internally mixed aerosol model, and assuming chemical homogeneity across the measured particle distribution, an average accumulation mode dry sulfate ion mass scattering efficiency of 3.8 +/- 0.6 m2 g-1 was calculated.  相似文献   

4.
An apparatus for measuring the scattering phase function and linear polarization of aerosol particles has been developed. The apparatus uses an elliptical mirror and CCD camera to image the full angular scattering range simultaneously. An in-line aerodynamic particle sizer (APS) in the particle flow stream provides for the simultaneous measurement of the aerosol particle size distribution. This apparatus allows for a comparison of measured optical properties with theoretical model calculations based on the measured aerosol size distribution. The system was calibrated and tested using monodisperse polystyrene latex (PSL) spheres and with ammonium sulfate (AS) aerosol. We have also used the apparatus for measuring the scattering phase function and linear polarization for light scattering from irregular quartz aerosol particles. Our results show that Mie theory substantially overestimates the backscattering cross-section for quartz particles in the size parameter range X∼2–4, in agreement with previous experimental work and theoretical modeling studies. We also present a normalized synthetic phase function for quartz dust aerosol in the accumulation mode size range (0.1–2.0 μm).  相似文献   

5.
Abstract

A novel photonic decontamination method was developed for removal of pollutants from material surfaces. Such a method relies on the ability of a high-energy laser beam to ablate materials from a contaminated surface layer, thus producing airborne particles. In this paper, the authors presented the results obtained using a scanning mobility particle sizer (SMPS) system and an aerosol particle sizer (APS). Particles generated by laser ablation from the surfaces of cement, chromium-embedded cement, and alumina were experimentally investigated. Broad particle distributions from nanometer to micrometer in size were measured. For stainless steel, virtually no particle >500 nm in aerodynamic size was detected. The generated particle number concentrations of all three of the materials were increased as the 266-nm laser fluence (millijoules per square centimeter) increased. Among the three materials tested, cement was found to be the most favorable for particle removal, alumina next, and stainless steel the least. Chromium (dropped in cement) showed almost no effects on particle production. For all of the materials tested except for stainless steel, bimodal size distributions were observed; a smaller mode peaked at ~50–70 nm was detected by SMPS and a larger mode (peaked at ~0.70–0.85 µm) by APS. Based on transmission electron microscopy observations, the authors concluded that particles in the range of 50–70 nm were aggregates of primary particles, and those of size larger than a few hundred nanometers were produced by different mechanisms, for example, massive object ejection from the material surfaces.  相似文献   

6.
ABSTRACT

Aerosol size distributions were measured during the summertime 1995 Southeastern Aerosol and Visibility Study (SEAVS) in Great Smoky Mountains National Park using an Active Scattering Aerosol Spectrometer (ASASP-X) optical particle counter. We present an overview of the experimental method, our data inversion technique, timelines of the size distribution parameters, and calculations of dry accumulation mode aerosol density and refractive index. Aerosol size distributions were recorded during daylight hours for aerosol in the size range 0.1 < Dp < 2.5 u,m. The particle refractive index used for the data inversion was calculated with the partial molar refractive index approach using 12-hr measured aerosol chemical composition. Aerosol accumulation mode volume concentrations ranging from 1 to 26 u,m3 cm-3 were observed, with an average of 7 ± 5 u,m3 cm-3. The study average dry accumulation mode geometric volume median diameter was 0.27 ± 0.03 u,m, and the mean geometric standard deviation was 1.45 ± 0.06. Using an internally mixed aerosol model, and assuming chemical homogeneity across the measured particle distribution, an average accumulation mode dry sulfate ion mass scattering efficiency of 3.8 ± 0.6 m2 g-1 was calculated.  相似文献   

7.
A novel photonic decontamination method was developed for removal of pollutants from material surfaces. Such a method relies on the ability of a high-energy laser beam to ablate materials from a contaminated surface layer, thus producing airborne particles. In this paper, the authors presented the results obtained using a scanning mobility particle sizer (SMPS) system and an aerosol particle sizer (APS). Particles generated by laser ablation from the surfaces of cement, chromium-embedded cement, and alumina were experimentally investigated. Broad particle distributions from nanometer to micrometer in size were measured. For stainless steel, virtually no particle > 500 nm in aerodynamic size was detected. The generated particle number concentrations of all three of the materials were increased as the 266-nm laser fluence (millijoules per square centimeter) increased. Among the three materials tested, cement was found to be the most favorable for particle removal, alumina next, and stainless steel the least. Chromium (dropped in cement) showed almost no effects on particle production. For all of the materials tested except for stainless steel, bimodal size distributions were observed; a smaller mode peaked at approximately 50-70 nm was detected by SMPS and a larger mode (peaked at approximately 0.70-0.85 microm) by APS. Based on transmission electron microscopy observations, the authors concluded that particles in the range of 50-70 nm were aggregates of primary particles, and those of size larger than a few hundred nanometers were produced by different mechanisms, for example, massive object ejection from the material surfaces.  相似文献   

8.
The purpose of this research is to study the dependence of the characteristics of the atmospheric aerosol size distribution (SD), especially its modal structure on the type and origin of the air mass using multivariate analysis. A large amount of the data of measurement campaigns of different duration, which were held all over Estonia from 1992 to 2001, was collected and systematized. The data were collected using the original electrical aerosol spectrometer, designed at the Institute of Environmental Physics of the University of Tartu. The dependence of aerosol particle size spectra on the air mass origin can be analyzed by means of air mass trajectories. The measurement data were classified according to the air mass origin taking into account of the starting point, climatic conditions and different kinds of pollution sources the air mass trajectory overpasses. The particle size mean spectra over all measurement campaigns were calculated for all selected air mass types. These mean spectra curves are quite smooth, so that their modal structure is visually not clearly seen. Therefore, their modal structure was identified by means of the factor analysis for most of the separated air masses. The retained factors were interpreted as the lognormally distributed components (modes) of the particle size spectrum. With the help of graphs that show the factor loadings as the functions of particle size, the modal diameter and the width of these modes were roughly assessed. Then, using the iterative least squares method, the parameters of the lognormal components were specified to obtain the best fit of the measured spectrum with the sum of lognormal components.  相似文献   

9.
As part of a pilot study into the chemical and physical properties of Australian fine particles, a suite of aerosol samples was collected at Ti Tree Bend in Launceston, Tasmania, during June and July 1997. This period represents midwinter in the Southern Hemisphere, a period when aerosol sources in Launceston are dominated by smoke from domestic wood burning. This paper describes the results from this measurement campaign, with the aim of assessing the effect of wood smoke on the chemical and physical characteristics of ambient aerosol. A micro orifice uniform deposit impactor (MOUDI) was used to measure the size distributions of the aerosol from 0.05 to 20 microns aerodynamic diameter. Continuous measurements of fine particle mass were made using a PM2.5 tapered element oscillating microbalance (TEOM) and light scattering coefficients at 530 nm were measured with nephelometers. Mass size distributions tended to be bimodal, with the diameter of the dominant mode tending to smaller sizes with increases in total mass. Non-sea salt potassium and polycyclic aromatic hydrocarbons (PAHs) were used as chemical tracers for wood smoke. Wood smoke was found to increase absolute particle mass (enough to regularly exceed air quality standards), and to concentrate mass in a single mode below 1 micron aerodynamic diameter. The acid-base equilibrium of the aerosol was altered by the wood smoke source, with free acidity hydrogen ion, non-sea salt sulfate, and ammonium concentrations being higher and the concentration of all species, including nitrate (to differing extents), focused in the fine particle size ranges. The wood smoke source also heavily influenced the aerosol scattering efficiency, adding to a strong diurnal cycle in both mass concentration and light scattering.  相似文献   

10.
Traffic-related aerosol particles are ubiquitous in the urban atmosphere. As they are produced at ground level, they can also cause adverse health effects to urban dwellers. However, knowledge of the formation, transformation and chemically resolved size distribution of urban ultrafine particles is incomplete. Thus, more of these measurements are needed for better assessment of ambient air quality and its potential health effects. The particle number concentration, aerosol black carbon (BC) concentration and size distribution of traffic-related aerosols were measured near two major roads in Kuopio, Finland, from 16 June to 5 July, 2004. Furthermore, the properties of roadside aerosol particles were examined with the Tandem Differential Mobility Analyzer technique (TDMA). A suite of TDMA instruments relying on water (hygroscopic TDMA) and ethanol (organic TDMA) condensation as well as heating (volatility TDMA) were deployed to study the composition of the nucleation and Aitken mode particles (Dp = 10–50 nm) formed from vehicle exhaust. The results show that a simple three-component model was able to reproduce characteristic insoluble, organic and water-soluble volume fractions. Insoluble constituents were dominant in the Aitken mode particles, whereas organic compounds dominated the nucleation mode sizes. On average, only a small volume fraction was water-soluble, but a clear external mixing was observed particularly when enough time was allowed after the tail pipe emissions. The contribution of the insoluble material was seen to increase as a function of particle size, being typically less than 10% at 10 nm and between 20 and 50% at 50 nm, in contrast to the organic fraction, which decreased from about 80% at nucleation mode size range to 50–60% at 50 nm.  相似文献   

11.
During the period May 18-May 22, 1999, a comprehensive study was conducted in the Tuscarora Mountain Tunnel on the Pennsylvania Turnpike to measure real-world motor-vehicle emissions. As part of this study, size distributions of particle emissions were determined using a scanning mobility particle sizer. Each measured size distribution consisted of two modes: a nucleation mode with midpoint diameter less than 20 nm and an accumulation mode with midpoint diameter less than 100 nm. The nucleation and accumulation components in some distributions also exhibited second maxima, which implies that such particle size distributions are superpositions of two particle size distributions. This hypothesis was utilized in fitting the particle size distributions that exhibited second maxima with four lognormal distributions, two for the nucleation mode and two for the accumulation mode. The fitting assumed that the observed particle size distribution was a combination of two bimodal log-normal distributions, one attributed to the heavy-duty diesel (HDD) vehicles and another attributed either to a different class of HDD vehicles or to the light-duty spark ignition vehicles. Based on this method, estimated particle production rates were 1.8 x 10(13) and 2.8 x 10(14) particles/vehicle-km for light-duty spark ignition and HDD vehicles, respectively, which agreed with independently obtained estimates.  相似文献   

12.
A mobile pollutant measurement laboratory was designed and built at the Paul Scherrer Institute (Switzerland) for the measurement of on-road ambient concentrations of a large set of trace gases and aerosol parameters with high time resolution (<15 s for most instruments), along with geographical and meteorological information. This approach allowed for pollutant level measurements both near traffic (e.g. in urban areas or on freeways/main roads) and at rural locations far away from traffic, within short periods of time and at different times of day and year. Such measurements were performed on a regular base during the project year of gas phase and aerosol measurements (YOGAM). This paper presents data measured in the Zürich (Switzerland) area on a late autumn day (6 November) in 2001. The local urban particle background easily reached 50 000 cm−3, with additional peak particle number concentrations of up to 400 000 cm−3. The regional background of the total particle number concentration was not found to significantly correlate with the distance to traffic and anthropogenic emissions of carbon monoxide and nitrogen oxides. On the other hand, this correlation was significant for the number concentration of particles in the size range 50–150 nm, indicating that the particle number concentration in this size range is a better traffic indicator than the total number concentration. Particle number size distribution measurements showed that daytime urban ambient air is dominated by high number concentrations of ultrafine particles (nanoparticles) with diameters <50 nm, which are immediately formed by traffic exhaust and thus belong to the primary emissions. However, significant variation of the nanoparticle mode was also observed in number size distributions measured in rural areas both at daytime and nighttime, suggesting that nanoparticles are not exclusively formed by primary traffic emissions. While urban daytime total number concentrations were increased by a factor of 10 compared to the nighttime background, corresponding factors for total surface area and total volume concentrations were 2 and 1.5, respectively.  相似文献   

13.
The relationship between particle mass and the number of ambient air particles for the submicrometer size range was examined using a tapered element oscillating microbalance (TEOM) to determine the mass concentration, and a scan-ning mobility particle sizer (SMPS) to determine the volume concentration and total number of particles. The techniques were validated through their application to the estimation of submicrometer particle density for two laboratory generated aerosols of known bulk density (sodium chloride and di-2-ethylhexyl-sebacate). Further evaluation was done with the submicrometer fraction of laboratory generated environmental tobacco smoke (ETS), for which the estimated density of 1.18±0.06 g/cm3 was very close to the previously reported literature value of 1.12 g cm3. Finally, ambient air particles were examined and an estimate of the average submicrometer particle densities for these aerosols was found to vary from 1.2 to 1.8 g cm-3 depending on the time of day. This high variation in the density of the ambient air submicrometer particles, makes it hard to estimate the mass concentration from the SMPS number concentration with better than 60% uncertainty, based on an assumed density value.  相似文献   

14.
ABSTRACT

As part of a pilot study into the chemical and physical properties of Australian fine particles, a suite of aerosol samples was collected at Ti Tree Bend in Launceston, Tasmania, during June and July 1997. This period represents midwinter in the Southern Hemisphere, a period when aerosol sources in Launceston are dominated by smoke from domestic wood burning. This paper describes the results from this measurement campaign, with the aim of assessing the effect of wood smoke on the chemical and physical characteristics of ambient aerosol. A micro orifice uniform deposit impactor (MOUDI) was used to measure the size distributions of the aerosol from 0.05 to 20 n m aerodynamic diameter. Continuous measurements of fine particle mass were made using a PM2.5 tapered element oscillating microbalance (TEOM) and light scattering coefficients at 530 nm were measured with nephelometers.

Mass size distributions tended to be bimodal, with the diameter of the dominant mode tending to smaller sizes with increases in total mass. Non-sea salt potassium and polycyclic aromatic hydrocarbons (PAHs) were used as chemical tracers for wood smoke. Wood smoke was found to increase absolute particle mass (enough to regularly exceed air quality standards), and to concentrate mass in a single mode below 1 μm aerodynamic diameter. The acid-base equilibrium of the aerosol was altered by the wood smoke source, with free acidity hydrogen ion, non-sea salt sulfate, and ammonium concentrations being higher and the concentration of all species, including nitrate (to differing extents), focused in the fine particle size ranges. The wood smoke source also heavily influenced the aerosol scattering efficiency, adding to a strong diurnal cycle in both mass concentration and light scattering.  相似文献   

15.
During measurement campaigns at an urban background and a rural site, simultaneous measurements of particle size distributions using a scanning mobility particle sizer (SMPS)/aerodynamic particle sizer (APS) combination and Fuchs surface using an epiphaniometer have been made. The epiphaniometer was calibrated using sub-100 nm monodisperse aerosol and it was found that a calibration based upon particle electrical mobility diameters measured with a SMPS was consistent irrespective of the use of singlet particles of sodium chloride and ammonium sulphate or clusters of carbon. The field intercomparison of surface areas derived directly from the epiphaniometer and calculated from the size distributions determined by the SMPS/APS combination showed a good agreement of Fuchs surface estimates at both measurement sites. However, attempts to estimate a “geometric” surface area from the epiphaniometer data led to significant divergence from the estimates of the SMPS/APS combination when there was a significant fraction of coarser (>700 nm) particles contributing to the aerosol surface area.  相似文献   

16.
During the Rocky Mountain Airborne Nitrogen and Sulfur (RoMANS) study, conducted during the spring and summer of 2006, a suite of instruments located near the eastern boundary of Rocky Mountain National Park (RMNP) measured aerosol physical, chemical and optical properties. Three instruments, a differential mobility particle sizer (DMPS), an optical particle counter (OPC), and an aerodynamic particle sizer (APS), measured aerosol size distributions. Aerosols were sampled by an Interagency Monitoring of Protected Visual Environments (IMPROVE) sampler and a URG denuder/filter-pack system for compositional analysis. An Optec integrating nephelometer measured aerosol light scattering. The spring time period had lower aerosol concentrations, with an average volume concentration of 2.2 ± 2.6 μm3 cm?3 compared to 6.5 ± 3.9 μm3 cm?3 in the summer. During the spring, soil was the single largest constituent of PM2.5 mass, accounting for 32%. During the summer, organic carbon accounted for 60% of the PM2.5 mass. Sulfates and nitrates had higher fractional contributions in the spring than the summer. Variability in aerosol number and volume concentrations and in composition was greater in the spring than in the summer, reflecting differing meteorological conditions. Aerosol scattering coefficients (bsp) measured by the nephelometer compared well with those calculated from Mie theory using size distributions, composition data and modeled RH dependent water contents.  相似文献   

17.
Measurements of size-resolved particle number concentrations during the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) field campaign were made at the Gosan super-site, South Korea. In East Asia, dust and precipitation phenomena play a crucial role in atmospheric environment and climate studies because they are major sources and sinks of atmospheric aerosols, especially in the springtime. Total Ozone Mapping Spectrometer (TOMS) Aerosol Index and backward trajectories are analyzed to investigate the spatial and temporal evolution of dust storms. The size distributions between dust and non-dust periods and times with and without precipitation are compared. In order to understand the temporal evolution of the aerosol size distribution during dust and precipitation events, a simple aerosol dynamics model is employed. The model predicted and observed size distributions are compared with the measured data. The results show that the coarse mode particle number concentrations increase by a factor of 10–16 during dust events. During precipitation, however, particles in the coarse mode are scavenged by impaction mechanism. It is found that the larger particles are more efficiently scavenged. The degree of scavenged particle varies depending on the rainfall rate, raindrop size distribution and aerosol size distribution.  相似文献   

18.
There is an ongoing debate on the question which size fraction of particles in ambient air may be responsible for short-term responses of the respiratory system as observed in several epidemiological studies. However, the available data on ambient particle concentrations in various size ranges are not sufficient to answer this question.Therefore, on 180 days during the winter 1991/92 daily mean size distributions of ambient particles were determined in. Erfurt, a city in Eastern Germany. In the range 0.01–0.3 μm particles were classified by an electrical mobility analyzer and in the range 0.1–2.5 μm by an optical particle counter. From the derived size distributions, number and mass concentrations were calculated.The mean number concentration over this period of time was governed by particles smaller than 0.1 μm (72%), whereas the mean mass concentration was governed by particles in the size range 0.1–0.5 pm (83%). The contribution of particles larger than 0.5 μm to the overall number concentration was negligible and so was the contribution of particles smaller than 0.1 μm to the overall mass concentration. Furthermore, total number and mass concentrations in the range 0.01–2.5 μm were poorly correlated.The results suggest that particles larger than 2.5 μm (or even larger than 0.5 μm) are rare in the European urban environment so that the inhalation of these particles is probably not relevant for human health. Since particle number and mass concentrations can be considered poorly correlated variables, more insight into health-related aspects of particulate air pollution will be obtained by correlating respiratory responses with mass and number concentrations of ambient particles below 0.5 μm.  相似文献   

19.
The properties of condensed polydisperse sulfuric acid aerosols in industrial flue gas were calculated. The condensed aqueous acid volume concentration, composition, droplet size distributions and condensed plume opacity were calculated for typical flue gas compositions, condensation nucleus size distributions and flue gas dilution ratios. The assumed initial flue gas at 170°C contained 0.035 g/acm fly ash particles, 1-20% water vapor, and 1-50 ppmv sulfuric acid vapor. The assumed gas cooling mechanism was by adiabatlc dilution with cool ambient air. Polydisperse droplet growth was calculated by assuming equal surface area increase for each particle. The calculations show that sulfuric acid condensation should have minimal effect on particles larger than 1 μm, but will form a high concentration of particles in the narrow size range of 0.05-0.5 μm diameter. Depending on the initial sulfuric acid and water vapor concentrations in the hot flue gas, the calculated maximum plume opacity following gas dilution ranged from 5% to 25%, compared to 4% for the dry condensation nucleus aerosol.  相似文献   

20.
Aerosol size distributions were measured in the air exhausted from a horizontal spike Soderberg aluminum reduction cell at the Kaiser Aluminum and Chemical Corporation plant in Tacoma, Wash. The particle size distributions were measured with the University of Washington cascade impactor, developed specifically for source testing. The particle mass concentrations and size distributions were found to vary significantly with changes in the cell process operations. For a typical aerosol size distribution at the exit of the cell hood the mass mean particle diameter was 5.5 microns and the particle size standard geometric deviation was 25.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号