首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We reconstructed the historical trends in atmospheric deposition of nitrogen to Cape Cod, Massachusetts, from 1910 to 1995 by compiling data from literature sources, and adjusting the data for geographical and methodological differences. The reconstructed data suggest that NO3-N wet deposition to this region increased from a low of 0.9 kg N ha−1 yr−1 in 1925 to a high of approximately 4 kg N ha−1 yr−1 around 1980. The trend in NO3-N deposition has remained since the early 1980s at around 3.6 kg N ha−1 yr−1. In contrast, NH4-N wet deposition decreased from more than 4 kg N ha−1 yr−1 in the mid 1920s to about 1.5 kg N ha−1 yr−1 from the late-1940s until today. Emissions of NOx-N in the Cape Cod airshed increased at a rate of 2.1 kg N ha−1 per decade since 1910, a rate that is an order of magnitude higher than NO3-N deposition. Estimates of NH3 emissions to the northeast United States and Canada have decreased slightly throughout the century, but the decrease in reconstructed N-NH4+ deposition rates does not parallel emissions estimates. The trend in reconstructed total nitrogen deposition suggests an overall increase through the century at a rate of 0.26 kg N ha−1 per decade. This overall increase in deposition may expose coastal forests to rates of nitrogen addition that, if exceeded, could induce nitrogen saturation and increase nitrogen loads to adjoining estuaries.  相似文献   

2.
The average total (wet plus dry) nitrogen deposition to the Tampa Bay Estuary was 7.3 (±1.3) kg-N ha−1 yr−1 or 760 (±140) metric tons-N yr−1 for August 1996–July 1999, estimated as a direct deposition rate to the 104,000-ha water surface. This nitrogen flux estimate accounted for ammonia exchange at the air–sea interface. The uncertainty estimate was based on measurement error. Wet deposition was 56% of the total nitrogen deposition over this period, with an average 0.78 ratio of dry-to-wet deposition. Wet nitrogen deposition rates varied considerably, from near zero to 1.3 kg-N ha−1 month−1. About 40% of the total nitrogen flux occurred during the summer months of June, July and August when rainfall was the highest, except for 1997–1998 when the El Niño phenomenon brought unseasonal rainfall. Ammonia/ammonium contributed to 58%, and nitric acid/nitrate 42%, of the total nitrogen deposition over the 3-yr period. In one summer as waters of Tampa Bay warmed above 28°C and ammonium concentrations reached 0.03 mg l−1, the estimated net flux of ammonia was from the Bay waters to the atmosphere.  相似文献   

3.
The deposition of the base cations calcium, magnesium and potassium from the atmosphere needs to be quantified in the calculation of the total deposited acidity in the critical loads approach. Of these base cations, calcium has been found to be the most important in terms of mass deposited. However, the sources of calcium to the atmosphere are not well understood. Recently, the first spatially disaggregated inventory of industrial calcium emissions for Europe was presented by Lee and Pacyna (1998) who estimated a total European emission of 0.7–0.8 Mt yr-1. However, it is thought that wind blown dust from soils contributes a substantial fraction to the deposition of calcium. In this work, the source strength of calcium from arid regions within the EMEP modelling domain was estimated using the global mineral dust emission data base of Tegen and Fung (1994) and an estimation of the calcium content of soils. This results in a “natural” calcium emission of 6 Mt yr-1. A long-range transport model, TRACK, was used to calculate the wet and dry deposition of calcium arising from these industrial and natural sources to the UK which resulted in a total deposition of 29–30 kt yr-1. Of this annual deposition, 0.6–0.7 kt arises from cement manufacturing, 0.02–0.03 kt from iron and steel manufacturing, 0.8–0.83 kt from a large point source power generation, and 28 kt from power generation from a small boiler plant. The natural emissions of calcium from arid regions result in a deposition of calcium to the UK of 0.5 kt yr-1. The measured wet deposition of calcium to the UK is 89 kt yr-1 and the estimated dry deposition 14 kt yr-1. The short-fall in the modelled deposition of calcium is thus of the order of 70 kt yr-1, which is suggested to arise from wind-blown dust from agricultural land in the UK and mainland Europe. The estimated emissions, and thus modelled deposition are rather uncertain, such that estimating deposition of calcium attributable to agricultural soil emissions by differencing has a large uncertainty. However, this is the first such study of its kind for Europe and represents a first step towards understanding the sources of calcium and their contribution to mitigating deposited acidity from acidifying pollutants such as sulphur dioxide, nitrogen oxides and ammonia.  相似文献   

4.
《Chemosphere》2007,66(11):2477-2484
Atmospheric Hg transfer to the forest soil through litterfall was investigated in a primary rainforest at Ilha Grande (Southeast Brazil) from January to December 1997. Litter mass deposition reached 10.0 t ha−1 y−1, with leaves composing 50–84% of the total litter mass. Concentrations of Hg in the total fallen litter varied from 20 to 244 ng g−1, with higher concentrations during the dry season, between June and August (225 ± 17 ng g−1), and lower concentrations during the rainy season (99 ± 54 ng g−1). This seasonal variability was reflected in the Hg flux through litterfall, which corresponded to a Hg input to the forest floor of 122 μg m−2 y−1, with average Hg deposition of 16.5 ± 1.5 μg m−2 month−1 during and just after the dry season (June–September) and 7.0 ± 3.6 μg m−2 month−1 in the rest of the year. The variability in meteorological conditions (determining atmospheric Hg availability to foliar scavenging) may explain the pulsed pattern of Hg deposition, since litterfall temporal variability was generally unrelated with such deposition, except by a peak in litterfall production in September. Comparisons with regional data on Hg atmospheric deposition show that litterfall promotes Hg deposition at Ilha Grande two to three orders of magnitude higher than open rainfall deposition in non-industrialized areas and approximately two times higher than open rainfall deposition in industrialized areas in Rio de Janeiro State. The observed input suggests that atmospheric Hg transfer through litterfall may explain a larger fraction of the total Hg input to forest soils in Southeast Brazil than those recorded at higher latitudes.  相似文献   

5.
It has been postulated that atmospheric pathways may comprise a significant source of nitrogen for aquatic ecosystems and excess atmospheric deposition to coastal areas may be a major cause of eutrophication. Dry deposition of nitrogen containing particles is a potential, but poorly quantified pathway, for atmospheric nitrogen flux. This pathway is not well quantified because deposition velocities for particles are difficult to calculate and incorporate substantial uncertainties. Herein we employ an amended version of the Hummelshøj et al. (1992, Proceedings of the 5th International Conference on Precipitation Scavenging and Atmosphere–Surface Exchange Processes. AMS, Richland, Washington, USA, 12pp.) model to calculate size-segregated dry deposition of particle inorganic nitrogen compounds to the western Baltic during the late Spring of 1997 based on data collected as part of the Air–Sea Exchange Process Study (ASEPS). The results show that over a 15 d period in April and May dry deposition fluxes varied between 30 and 400 μg m-2 d-1 for nitrate and 1 and 120 μg m-2 d-1 for ammonium. Sensitivity analyses run to assess the potential bounds on actual dry deposition indicate that, for reasonable variation of model parameters and formulation, particle nitrogen dry deposition may be varied by up to an order of magnitude. The primary sources of uncertainty are identified and are discussed in the context of alternative model formulations.  相似文献   

6.
A method is developed to estimate wet deposition of nitrogen in a 11×14 km (0.125°Lon.×0.125°Lat.) grid scale using the precipitation chemistry monitored data at 10 sites scattered over South Korea supplemented by the routinely available precipitation rate data at 65 sites and the estimated emissions of NO2 and NH3 at each precipitation monitoring site. This approach takes into account the contributions of local NO2 and NH3 emissions and precipitation rates on wet deposition of nitrogen. Wet deposition of nitrogen estimated by optimum regression equations for NO3 and NH4+ derived from annual total monitored wet deposition and that of emissions of NO2 and NH3 is incorporated to normalize wet deposition of nitrogen at each precipitation rate class, which is divided into 6 classes. The optimum regression equations for the estimation of wet deposition of nitrogen at precipitation monitoring sites are developed using the normalized wet deposition of nitrogen and the precipitation rate at 10 precipitation chemistry monitoring sites. The estimated average annual total wet depositions of NO3 and NH4+ are found to be 260 and 500 eq ha−1 yr−1 with the maximum values of 400 and 930 eq ha−1 yr−1, respectively. The annual mean total wet deposition of nitrogen is found to be about 760 eq ha−1 yr−1, of which more than 65% is contributed by wet deposition of ammonium while, the emission of NH3 is about half of that of NO2, suggesting the importance of NH3 emission for wet deposition of nitrogen in South Korea.  相似文献   

7.
During a measurement period from June till November 2004, ammonia fluxes above non-fertilized managed grassland in The Netherlands were measured with a Gradient Ammonia—High Accuracy—Monitor (GRAHAM). Compared with earlier ammonia measurement systems, the GRAHAM has higher accuracy and a quality control system.Flux measurements are presented for two different periods, i.e. a warm, dry summer period (from 18 July till 15 August) and a wet, cool autumn period (23 September till 23 October). From these measurements canopy compensation points were derived. The canopy compensation point is defined as the effective surface concentration of ammonia. In the summer period (negative) deposition fluxes are observed in the evening, night and early morning due to leaf surface wetness, while in the afternoon emission fluxes are observed due to high canopy compensation points. The mean NH3-flux in this period was 4 ng m−2 s−1, which corresponds to a net emission of 0.10 kg N ha−1 over the 28 day sampling period. The NH3-flux in the autumn period mainly shows (negative) deposition fluxes due to small canopy compensation points caused by low temperatures and a generally wet surface. The mean NH3-flux in this period is −24 ng m−2 s−1, which corresponds to a net deposition of 0.65 kg N ha−1 over the 31 day sampling period.Frequency distributions of the NH3-concentration and flux show that despite higher average ambient NH3-concentrations (13.3 μg m−3 in the summer period vs. 6.4 μg m−3 in the autumn period) there are more emission events in the summer period than in the autumn period (about 50% of the time in summer vs. 20% in autumn). This is caused by the high canopy compensation points in summer due to high temperatures and a dry surface. In autumn, deposition dominates due to a generally wet surface that induces low canopy compensation points.For our non-fertilized agricultural grassland site, the derived canopy compensation points (at temperatures between 7 and 29 °C) varied from 0.5 to 29.7 μg m−3 and were on an average 7.0 μg m−3, which is quite high for non-fertilized conditions and probably caused by high nitrogen inputs in the past or high dry deposition amounts from local sources. The average value for the ratio between NH4+ and H+ concentration in the canopy, Γc, that was derived from our data was 2200.  相似文献   

8.
Potassium carbonate sulfation plates, monitored monthly for 11 years from 48 sites in 11 cities in Gansu Province, China, provide a crude estimate of cumulative SO2 dry depositions. Measured SO2 dry deposition rates were 1.6–472 mg m−2 day−1 and had seasonal variations with maxima in winter and minima mainly during summer as a result of higher winter and lower summer SO2 concentrations. The 11-year monthly average SO2 dry deposition rates are 23.2–248.97 and 11.7–175.6 mg m−2 day−1 in the eleven cities in winter and summer, respectively. A monthly average SO2 deposition velocity was also estimated from 0.06 to 9.72 cm s−2 in the 11 cities studied with a 11-year average maximum value of about 1.1–2.7 cm s−2 in April and July and a 11-year average minimum value of about 0.2–1.0 cm s−1 in January. The SO2 dry deposition velocity also exhibits an increasing with wind speed in basins of less than 500 mm annual precipitation. In contrast, due to influences of the relative humidity in valleys of more than 500 mm annual precipitation, it shows a decreasing trend with wind speed increasing.  相似文献   

9.
Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) were measured in bulk deposition at three Danish rural forest sites with a mutual maximum distance of 450 km. At one of the forest sites concentrations in the ambient atmosphere were sampled from a 12 m high tower. Sampling was carried out within a period of 3 years with sampling intervals of 1–2 months. Mean bulk deposition fluxes were 1 ng m−2 yr−1 I-TEQ and deviated less than 30% between the sites. Yearly average PCDD/F concentrations in the atmosphere were 24 fg m−3 I-TEQ with maximum values in the winter period. During winter months atmospheric concentrations of PCDD/F and oxidized sulphur compounds showed a positive correlation, furthermore seasonal bulk deposition showed correlation between PCDD/F and sulphate.  相似文献   

10.
Atmospheric dry deposition is an important process for the introduction of aerosols and pollutants to aquatic environments. The objective of this paper is to assess, for the first time, the influence that the aquatic surface microlayer plays as a modifying factor of the magnitude of dry aerosol deposition fluxes. The occurrence of a low surface tension (ST) or a hydrophobic surface microlayer has been generated by spiking milli-Q water or pre-filtered seawater with a surfactant or octanol, respectively. The results show that fine mode (<2.7 μm) aerosol phase PAHs deposit with fluxes 2–3 fold higher when there is a low ST aquatic surface due to enhanced sequestration of colliding particles at the surface. Conversely, for PAHs bound to coarse mode aerosols (>2.7 μm), even though there is an enhanced deposition due to the surface microlayer for some sampling periods, the effect is not observed consistently. This is due to the importance of gravitational settling for large aerosols, rendering a lower influence of the aquatic surface on dry deposition fluxes. ST (mN m−1) is identified as one of the key factor driving the magnitude of PAH dry deposition fluxes (ng m−2 d−1) by its influence on PAH concentrations in deposited aerosols and deposition velocities (vd, cm s−1). Indeed, vd values are a function of ST as obtained by least square fitting and given by Ln(vd)=−1.77 Ln(ST)+5.74 (r2=0.95) under low wind speed (average 4 m s−1) conditions.  相似文献   

11.
Due to the high temporal and spatial variability of N2O fluxes, estimates of N2O emission from temperate forest ecosystems are still highly uncertain, particularly at larger scales. Although highest N2O emissions with up to 7.0 kg N ha−1 yr−1 were mainly reported for soils affected by stagnant water, most of the reported gas flux measurements were performed at forest sites with well-aerated soils yielding mostly to low mean annual emission rates less than 1.0 kg N ha−1 yr−1. This study compares N2O fluxes from upland (Cambisols) and temporally water-logged (Gleysols, Histosols) soils of the Central Black Forest (South-West Germany) over a period of 2 yr. Mean annual N2O fluxes from investigated soils ranged between 0.2 and 3.9 kg N ha−1 yr−1. The fluxes showed a large variability between the different soil types. Emissions could be clearly ranked in the following order: Cambisols (0.26–0.75 kg N ha−1 yr−1)<Gleysols (1.37–2.68 kg N ha−1 yr−1)<Histosol (3.66–3.95 kg N ha−1 yr−1). Although the Cambisols cover two-thirds of the investigated area, only about half of the overall N2O is emitted from this soil type. Therefore, regional or national N2O fluxes from temperate forest soils are underestimated if soils characterised by intermediate aeration conditions are disregarded.  相似文献   

12.
The estimated annual throughfall deposition flux of Hg in a northern mixed-hardwood forest in the Lake Huron Watershed was 10.5±1.0 μg m−2 compared to an annual precipitation Hg flux of 8.7±0.5 μg m−2 (June 1996–June 1997). The source of this additional Hg in throughfall is often attributed to wash-off of dry deposition, but foliar leaching of Hg may also be important. To determine the influence of both dry deposition and foliar leaching of Hg and other elements in throughfall, we measured a suite of trace elements (Hg, Al, Mg, V, Mn, Cu, Zn, As, Rb, Sr, Cd, Ba, La, Ce, and Pb) in throughfall, precipitation, and ambient air samples from a northern mixed-hardwood forest. Based on a multiple linear regression model, dry deposition had the most important influence on Hg, Al, La, Ce, V, As, Cu, Zn, Cd, and Pb fluxes while foliar leaching strongly influenced Mg, Mn, Rb, Sr, and Ba fluxes in net throughfall. The Hg dry deposition flux was estimated using gaseous and aerosol Hg measurements and modeled deposition velocities. The calculated dry deposition flux (∼12–14 μg m−2) of Hg to the canopy indicated that atmospheric deposition of Hg could easily account for all of the Hg deposited in net throughfall (1.9±0.1 μg m−2). Although there is a large uncertainty associated with these techniques, the modeling estimates indicate that atmospheric Hg may account for all of the Hg deposited in litterfall (11.4±2.8 μg m−2).  相似文献   

13.
Atmospheric deposition of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) was investigated at four locations, namely at Yuancun, Wushan, Haizhu and Changban in Guangzhou City, Guangdong Province. The annual deposition fluxes of tetra- to octa-CDD/Fs (total PCDD/Fs) were found to range from 170 to 3000 (mean 1500) pg m−2 day−1, and the fluxes of total 2, 3, 7, 8-substituted PCDD/F congeners ranged from 2.1 to 41 (mean 20) pg WHO-TEQ m−2 day−1 at Wushan. The average deposition fluxes of total 2, 3, 7, 8-substituted PCDD/F congeners in rainy season were found to be 37, 27 and 28 pg WHO-TEQ m−2 day−1 at Yuancun, Haizhu and Changban, respectively, and the PCDD/F deposition fluxes behaved obviously higher in rainy season than in dry season. Results from regression analysis showed that number of rainy days, the amount of wet precipitation, PCDD/F concentrations in particles and organic carbon content played important roles in the variation of PCDD/F deposition fluxes. Monthly average temperatures change little over the year. Therefore, it only played a minor role in monthly variation of PCDD/F deposition fluxes. Particle deposition fluxes were generally not considered as the factor that could cause the differences in PCDD/F deposition fluxes between rainy and dry season, but were found to be related with PCDD/F deposition fluxes in rainy season or dry season. It was found that the profiles of PCDD/F homologs or congeners in the samples were the same either spatially or temporally, indicating that the PCDD/F emission sources were similar to one another. The similarities in PCDD/F homolog patterns and the differences in deposition fluxes between samples collected from heavy-traffic roadside and nearby residence house roof indicated that vehicle exhaust might be an important source for PCDD/F in Guangzhou. PCDD/F concentrations and profiles of PCDD/F homologs in atmospheric deposition were compared with those in both total suspended particles in air and soils, and conclusions indicated that atmospheric deposition possibly tended to remove lower-chlorinated DD/Fs from air and was one of sources for PCDD/Fs in soils.  相似文献   

14.
Studies conducted in Saskatchewan and elsewhere have demonstrated the atmospheric transport of agricultural pesticides and other organic contaminants and their deposition into aquatic ecosystems. To date these studies have focused on ambient concentrations in the atmosphere and in wet precipitation. To measure the dry deposition of organic chemicals, a new sampler was designed which uses a moving sheet of water to passively trap dry particles and gasses. The moving sheet of water drains into a reservoir and, during recirculation through the sampler, is passed through an XAD-2 resin column which adsorbs the trapped organic contaminants. All surfaces which contact the process water are stainless steel or Teflon. Chemicals collected can be related to airborne materials depositing into aquatic ecosystems. The sampler has received a United States patent (number 5,413,003 – 9 May 1996) with the Canadian patent pending.XAD-2 resin adsorption efficiencies for 10 or 50 μg fortifications of ten pesticides ranged from 76% for atrazine (2-chloro-4-ethylamino-6-isopropylamino-S-triazine) to 110% for triallate [S-(2,3,3-trichloro-2-phenyl)bis(1-methylethyl)carbamothioate], dicamba (2-methoxy-3,6-dichlorobenzoic acid) and toxaphene (chlorinated camphene mixture). Field testing using duplicate samplers showed good reproducibility and amounts trapped were consistent with those from high volume and bulk pan samplers located on the same site. Average atmospheric dry deposition rates of three chemicals, collected for 5 weeks in May and June, were: dicamba, 69 ng m-2 da-1; 2,4-D (2,4-dichlorophenoxyacetic acid), 276 ng m-2 da-1: and, γ-HCH (γ-1, 2, 3, 4, 5, 6-hexachlorocyclohexane), 327 ng m-2 da-1.  相似文献   

15.
About 42 Asian-dust storms influenced the mainland and China during 2000–2002. Based on the Micaps meteorology data provided by China Meteorological Administration, the basic characteristics, including the source, movement route and influenced areas were studied for each case. It was shown that about 70% Asian-dust storms that influence China came from Mongolia, and were strengthened during the way from west to east. In 2000–2002, there was about 63.9% Asian-dust weather that might have affected China seas through three different routes. The probability is affecting the Bohai Sea was 27.4%, the Yellow Sea 30.9%, the East China Sea 12.3%, the Korea Channel 20.2% and the Japan Sea 9.2%. Annual dry deposition flux to the Yellow Sea was about 0.13 g m−2 d−1, and in spring was ∼0.20 g m−2 d−1. The total amount of dry deposition to the Yellow Sea was ∼17.9 Tg yr−1.  相似文献   

16.
Methane emissions from a flock of 14, 1-year old sheep grazing on a grass and legume pasture were measured using a micrometeorological mass-balance method and a sulphur hexaflouride (SF6) tracer technique. The former measured the mean emission, over 45 min intervals, from all the sheep within a fenced 24 m×24 m enclosure, from the enrichment of methane (CH4) in air as it passed over the sheep. The tracer technique measured emissions from a subset of 7 individual animals over 24 h periods from measurements of CH4 and SF6 concentrations in air exhaled by the sheep, and from the known rate of release of SF6 from small permeation tubes placed in the animals’ rumens. Both methods gave highly similar results for 4 out of 5 days. When the species composition of dietary intake was steady during the last two days of measurement, the mean emission rate from the mass-balance method was 11.9±1.5 (SEM) g CH4 sheep-1 d-1, while the rate from the tracer technique was 11.7±0.4 (SEM) g CH4 sheep-1 d-1. These rates are for sheep with mean live mass of 27 kg, with a measured dry matter intake of 508 g sheep-1 d-1 and pasture dry matter digestibility of 69.5%. There was close agreement between these measurements and estimates from algorithms used to predict methane emissions from sheep for the Australian National Greenhouse Gas Inventory.  相似文献   

17.
Estimates of the atmospheric deposition to Galveston Bay of polycyclic aromatic hydrocarbons (PAHs) are made using precipitation and meteorological data that were collected continuously from 2 February 1995 to 6 August 1996 at Seabrook, TX, USA. Particulate and vapor phase PAHs in ambient air and particulate and dissolved phases in rain samples were collected and analyzed. More than 95% of atmospheric PAHs were in the vapor phase and about 73% of PAHs in the rain were in the dissolved phase. Phenanthrene and napthalene were the dominant compounds in air vapor and rain dissolved phases, respectively, while 5 and 6 ring PAH were predominant in the particulate phase of both air and rain samples. Total PAH concentrations ranged from 4 to 161 ng m−3 in air samples and from 50 to 312 ng l−1 in rain samples. Temporal variability in total PAH air concentrations were observed, with lower concentrations in the spring and fall (4–34 ng m −3) compared to the summer and winter (37–161 ng m−3). PAHs in the air near Galveston Bay are derived from both combustion and petroleum vaporization. Gas exchange from the atmosphere to the surface water is estimated to be the major deposition process for PAHs (1211 μg m− 2 yr− 1), relative to wet deposition (130 μg m−2 yr− 1) and dry deposition (99 μg m−2 yr− 1). Annual deposition of PAHs directly to Galveston Bay from the atmosphere is estimated as 2  t yr−1.  相似文献   

18.
Even though dry deposition and air–water exchange of semivolatile organic compounds (SOCs) are important for surfaces in and around the urban areas, there is still no generally accepted direct measurement technique for dry deposition. In this study, a modified water surface sampler (WSS) configuration, including a filter holder and an XAD-2 resin column, was employed to investigate the polycyclic aromatic hydrocarbon (PAH) dry deposition in an urban area. The measured total (particle+dissolved) PAH fluxes to the WSS averaged to be 34 960±16 540 ng m−2 d−1. Average particulate PAH flux, determined by analyzing the filter in the WSS, was about 8% of the total PAH flux. Temporal flux variations indicated that colder months (October–April) had the highest PAH fluxes. This increase could be attributed to the residential heating as well as meteorological effects including lower mixing height. A high volume air sampler was concurrently employed to collect ambient air concentrations. The average total (gas+particle) atmospheric PAH concentration (456±524 ng m−3) was within the range of previously measured values at different urban locations. PAH concentrations in urban areas are more than two orders of magnitude higher than those measured in pristine areas and this result may indicate that urban areas have major source sectors and greater deposition rates are expected near to these areas. The average contribution of particle phase was about 10% in total concentration. Simultaneous particulate phase dry deposition and ambient air samples were collected in this study. Then, particulate phase apparent dry deposition velocities were calculated using the fluxes and concentrations for each PAH compound and they ranged from 0.1 to 1.2 cm s−1. These values are in good agreement with previously reported values.  相似文献   

19.
In order to increase knowledge of aerosol dry deposition for the regional assessment of acid deposition and transboundary air pollution in East Asia, an experimental study on PM2.5 sulfate deposition was implemented in the early summer of 2009. The experimental field was located in a deciduous forest at the foot of Mt. Asama, central Japan. Aerosol fluxes were obtained using the aerodynamic gradient method. Three aerosol samplers were placed on an experimental tower at 21, 24 and 27 m above the ground surface, and collected PM2.5 on filters for chemical analysis. Vertical concentration differences between 21 m and 27 m of PM2.5 sulfate were detected significantly when the concentration exceeded 1 μg m?3. Mean deposition velocity was estimated to be 0.9 ± 1.0 cm s?1 in the daytime and 0.3 ± 0.3 cm s?1 in the nighttime. In the case that a height-dependent correction in the roughness sub-layer was taken into account, the deposition velocities increased more, especially in daytime. Higher deposition velocities in the daytime were associated with larger friction velocities and unstable conditions. The deposition velocities observed in this study were in agreement with other experimental results found in the literature. On the other hand, they were higher than those calculated by theoretical models. Two empirical parameterizations (Wesely, M.L., Cook, D.R., Hart, R.L., 1985. Measurement and parameterization of particulate sulfur dry deposition over grass. Journal of Geophysical Research 90, 2131–2143; Ruijgrok, W., Tieben, H., Eisinga, P., 1997. The dry deposition of particles to a forest canopy: a comparison of model and experimental results. Atmospheric Environment 31, 399–415) were validated by the observations. The general trend of higher daytime and lower nighttime deposition velocities was similar among the observation and the two parameterizations. The large variability found in the measurement was not reproduced by the parameterizations, because it is attributable to random error from the differences between the samplers. The observations were in accordance with the parameterization of Ruijgrok et al. (1997) for a forest, although much larger than that of Wesely et al. (1985) for grasslands. This indicates the large difference in aerosol deposition velocities between forests and grasslands.  相似文献   

20.
Tests of the dry deposition of ozone to the surfaces of a concrete floor tile and an activated carbon cloth (ACC) sample were performed in a deposition chamber. The time-dependent deposition of ozone to the material surfaces was modelled with an adsorption, desorption, reaction model. This made it possible to find deposition velocities at equilibrium, at t=∞, from shorter time runs of 48 h. The total equilibrium deposition velocity on the concrete floor tile was found to decrease from 0.08(10) to 0.057(10) cm s−1 in three consecutive runs on the same sample, and was found to be 0.137(8) cm s−1 on an ACC. All at a linear airflow velocity of 0.092 cm s−1, RH=50% and T=22°C. Varying the airflow in the deposition chamber, the surface deposition velocity was found to equal to the total deposition velocity for the concrete floor tile. A surface deposition velocity of 0.186(8) cm s−1 was found for the ACC sample. The total real area and the reaction rate constant for the decomposition of ozone was found to be larger, and the adsorption rate constant, the desorption rate constant and the mass of ozone on the surface smaller, on the ACC sample than on the concrete floor tile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号