首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Even though dry deposition and air–water exchange of semivolatile organic compounds (SOCs) are important for surfaces in and around the urban areas, there is still no generally accepted direct measurement technique for dry deposition. In this study, a modified water surface sampler (WSS) configuration, including a filter holder and an XAD-2 resin column, was employed to investigate the polycyclic aromatic hydrocarbon (PAH) dry deposition in an urban area. The measured total (particle+dissolved) PAH fluxes to the WSS averaged to be 34 960±16 540 ng m−2 d−1. Average particulate PAH flux, determined by analyzing the filter in the WSS, was about 8% of the total PAH flux. Temporal flux variations indicated that colder months (October–April) had the highest PAH fluxes. This increase could be attributed to the residential heating as well as meteorological effects including lower mixing height. A high volume air sampler was concurrently employed to collect ambient air concentrations. The average total (gas+particle) atmospheric PAH concentration (456±524 ng m−3) was within the range of previously measured values at different urban locations. PAH concentrations in urban areas are more than two orders of magnitude higher than those measured in pristine areas and this result may indicate that urban areas have major source sectors and greater deposition rates are expected near to these areas. The average contribution of particle phase was about 10% in total concentration. Simultaneous particulate phase dry deposition and ambient air samples were collected in this study. Then, particulate phase apparent dry deposition velocities were calculated using the fluxes and concentrations for each PAH compound and they ranged from 0.1 to 1.2 cm s−1. These values are in good agreement with previously reported values.  相似文献   

2.
An 80,000-km durability test was performed on two engines using diesel and biodiesel (methyl ester of waste cooking oil) as fuel in order to examine emissions resulting from the use of biodiesel. The test biodiesel (B20) was blended with 80% diesel and 20% methyl ester derived from waste cooking oil. Emissions of regulated air pollutants, including CO, HC, NOx, particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs) were measured at 20,000-km intervals. The identical-model engines were installed on a standard dynamometer equipped with a dilution tunnel used to measure the pollutants. To simulate real-world driving conditions, emission measurements were made in accordance with the United States Environmental Protection Agency (USEPA) FTP transient cycle guidelines. At 0 km of the durability test, HC, CO and PM emission levels were lower for the B20 engine than those for diesel. After running for 20,000 km and longer, they were higher. However, the deterioration coefficients for these regulated air pollutants were not statistically higher than 1.0, implying that the emission factors do not increase significantly after 80,000 km of driving. Total (gaseous+particulate phase) PAH emission levels for both B20 and diesel decreased as the driving mileage accumulated. However, for the engine using B20 fuel, particulate PAH emissions increased as engine mileage increased. The average total PAH emission factors were 1097 and 1437 μg bhp h−1 for B20 and diesel, respectively. For B20, the benzo[a]pyrene equivalence emission factors were 0.77, 0.24, 0.20, 7.48, 5.43 and 14.1 μg bhp h−1 for 2-, 3-, 4-, 5-, 6-ringed and total PAHs. Results show that B20 use can reduce both PAH emission and its corresponding carcinogenic potency.  相似文献   

3.
Estimates of the atmospheric deposition to Galveston Bay of polycyclic aromatic hydrocarbons (PAHs) are made using precipitation and meteorological data that were collected continuously from 2 February 1995 to 6 August 1996 at Seabrook, TX, USA. Particulate and vapor phase PAHs in ambient air and particulate and dissolved phases in rain samples were collected and analyzed. More than 95% of atmospheric PAHs were in the vapor phase and about 73% of PAHs in the rain were in the dissolved phase. Phenanthrene and napthalene were the dominant compounds in air vapor and rain dissolved phases, respectively, while 5 and 6 ring PAH were predominant in the particulate phase of both air and rain samples. Total PAH concentrations ranged from 4 to 161 ng m−3 in air samples and from 50 to 312 ng l−1 in rain samples. Temporal variability in total PAH air concentrations were observed, with lower concentrations in the spring and fall (4–34 ng m −3) compared to the summer and winter (37–161 ng m−3). PAHs in the air near Galveston Bay are derived from both combustion and petroleum vaporization. Gas exchange from the atmosphere to the surface water is estimated to be the major deposition process for PAHs (1211 μg m− 2 yr− 1), relative to wet deposition (130 μg m−2 yr− 1) and dry deposition (99 μg m−2 yr− 1). Annual deposition of PAHs directly to Galveston Bay from the atmosphere is estimated as 2  t yr−1.  相似文献   

4.
《Chemosphere》2013,90(11):1287-1294
Exhaust emissions of seventeen 2,3,7,8-substituted polychlorinated dibenzo-p-dioxin/furan (PCDD/F) congeners, tetra–octa PCDD/F homologues, 12 WHO 2005 polychlorinated biphenyl (PCB) congeners, mono–nona chlorinated biphenyl homologues, and 19 polycyclic aromatic hydrocarbons (PAHs) from three legacy diesel engines were investigated. The three engines tested were a 1985 model year GM 6.2 J-series engine, a 1987 model year Detroit Diesel Corporation 6V92 engine, and a 1993 model year Cummins L10 engine. Results were compared to United States’ mobile source inventory for on-road diesel engines, as well as historic and modern diesel engine emission values. The test fuel contained chlorine at 9.8 ppm which is 1.5 orders of magnitude above what is found in current diesel fuel and 3900 ppm sulfur to simulate fuels that would have been available when these engines were produced. Results indicate PCDD/F emissions of 13.1, 7.1, and 13.6 pg International Toxic Equivalency (I-TEQ) L−1 fuel consumed for the three engines respectively, where non-detects are equal to zero. This compares with a United States’ mobile source on-road diesel engine inventory value of 946 pg I-TEQ L−1 fuel consumed and 1.28 pg I-TEQ L−1 fuel consumed for modern engines equipped with a catalyzed diesel particle filter and urea selective catalytic reduction. PCB emissions are 2 orders of magnitude greater than modern diesel engines. PAH results are representative of engines from this era based on historical values and are 3–4 orders of magnitude greater than modern diesel engines.  相似文献   

5.
An on-line supercritical fluid extraction–liquid chromatography–gas chromatography–mass spectrometry (SFE–LC–GC–MS) method was developed for the analysis of the particulate polycyclic aromatic hydrocarbons (PAHs). The limits of detection of the system for the quantification standards were in the range of 0.25–0.57 ng, while the limits of determinations for filter samples varied from 0.02 to 0.04 ng m−3 (24 h sampling). The linearity was excellent from 5 to 300 ng (R2>0.967). The analysis could be carried out in a closed system without tedious manual sample pretreatment and with no risk of errors by contamination or loss of the analytes. The results of the SFE–LC–GC–MS method were comparable with those for Soxhlet and shake-flask extractions with GC–MS. The new method was applied to the analysis of PAHs collected by high-volume filter in the Helsinki area to study the seasonal trend of the concentrations. The individual PAH concentrations varied from 0.015 to more than 1 ng m−3, while total PAH concentrations varied from 0.81 to 5.68 ng m−3. The concentrations were generally higher in winter than in summer. The mass percentage of the total PAHs in total suspended particulates ranged from 2.85×10−3% in July to 15.0×10−3% in December. Increased emissions in winter, meteorological conditions, and more serious artefacts during the sampling in summer season may explain the concentration profiles.  相似文献   

6.
Aluminium (Al) is one of the trace inorganic metals present in atmospheric particles. Al speciation study is essential to better evaluate the mobility, availability, and persistence of trace Al and Al species in the atmosphere. This paper reports Al distribution and speciation in atmospheric particles with aerodynamic diameters >10.0, 10.0–2.5 and <2.5 μm in the urban area of Nanjing, China. Urban particles were collected with a high-volume sampling system equipped with a cascade impactor, which effectively separates the particulate matter into three size ranges. Particulate Al was fractionated into five different forms (insoluble, oxide, organic, carbonate, and exchangeable species) by the modified five-step Tessier's sequential extraction procedure. The main points are as follows: (1) The average levels of Al in PM2.5, PM2.5–10 and PM>10 are 2.02±0.35, 3.04±0.43 and 6.32±0.76 μg m−3, respectively, with PM2.5, PM2.5–10 and PM>10 constituting respectively, 17.8±3.1%, 26.7±3.8% and 55.5±6.7% of suspended particulate matter (SPM) mass (11.38 μg m−3). (2) The vertical profile of airborne Al in the above three size fractions has been estimated. A significant increase in airborne Al concentrations was found for PM2.5, PM2.5–10 and PM>10 as the sampling height above the ground increased from 2.5 to 17.5 m; however, there was an obvious decrease in airborne Al concentrations between 17.5 and 40.0 m. The maximum mean of total Al in PM2.5, PM2.5–10 and PM>10 occurred between 12.5 and 20.0 m above the ground. (3) The distribution of Al speciation was studied. It was found that the size distribution of airborne Al species followed the order: insoluble species>oxide species>organic species>carbonate species>exchangeable species.  相似文献   

7.
The global atmospheric emissions of the 16 polycyclic aromatic hydrocarbons (PAHs) listed as the US EPA priority pollutants were estimated using reported emission activity and emission factor data for the reference year 2004. A database for emission factors was compiled, and their geometric means and frequency distributions applied for emission calculation and uncertainty analysis, respectively. The results for 37 countries were compared with other PAH emission inventories. It was estimated that the total global atmospheric emission of these 16 PAHs in 2004 was 520 giga grams per year (Gg y?1) with biofuel (56.7%), wildfire (17.0%) and consumer product usage (6.9%) as the major sources, and China (114 Gg y?1), India (90 Gg y?1) and United States (32 Gg y?1) were the top three countries with the highest PAH emissions. The PAH sources in the individual countries varied remarkably. For example, biofuel burning was the dominant PAH source in India, wildfire emissions were the dominant PAH source in Brazil, while consumer products were the major PAH emission source in the United States. In China, in addition to biomass combustion, coke ovens were a significant source of PAHs. Globally, benzo(a)pyrene accounted for 0.05% to 2.08% of the total PAH emission, with developing countries accounting for the higher percentages. The PAH emission density varied dramatically from 0.0013 kg km?2 y in the Falkland Islands to 360 kg km?2 y in Singapore with a global mean value of 3.98 kg km?2 y. The atmospheric emission of PAHs was positively correlated to the country's gross domestic product and negatively correlated with average income. Finally, a linear bivariate regression model was developed to explain the global PAH emission data.  相似文献   

8.
In this study, the most dominant regional transport pathways for the city of Thessaloniki, Greece were identified and linked to air quality issues with respect to particulate matter (PM). Using air mass trajectories, cluster analysis techniques and PM10 measurements of a background-urban station of the greater Thessaloniki area during 2001–2004, it was found that north-eastern and southern flows were the most frequent in appearance with high potential to influence the city of Thessaloniki, especially when coinciding with biomass burning or Saharan dust events correspondingly. These incidents appeared to occur mostly during summer adding to a PM10 monthly mean up to 10 μg m?3. High concentrations of surface PM10 related to north-eastern flows were in most cases accompanied with high aerosol columnar optical depths implying that particulate matter transport from the North-East was multi-layered. South-southwesterly flows originating from N. Africa, though less frequent, seemed to affect decisively Thessaloniki's aerosol budget especially during transition seasons. These flows were related with an increase of the monthly PM10 average up to 20–30 μg m?3 for the time period studied. Finally, northerly flows were found to transport rather clean air masses that did not seem to contribute to the air quality deterioration of the city.  相似文献   

9.
Sampling and analysis of carbonaceous compounds in particulate matter presents a number of difficulties related to artefacts during sampling and to the distinction between organic (OC) and elemental carbon (EC) during analysis. Our study reports on a comparative analysis of OC, EC and WSOC (water-soluble organic carbon) concentrations, as well as sampling artefacts, for PM2.5 aerosol in three European cities (Amsterdam, Barcelona and Ghent) representing Southern and Western European urban environments. Comparability of results was ensured by using a single system for sample analysis from the different sites. OC and EC concentrations were higher in the vicinity of roads, thus having higher levels in Amsterdam (3.9–6.7 and 1.7–1.9 μg m−3, respectively) and Barcelona (3.6–6.9 and 1.5–2.6 μg m−3) than in Ghent (2.7–5.4 and 0.8–1.2 μg m−3). A relatively larger influence of secondary organic aerosols (SOA), as deduced from a larger OC/EC ratio, was observed in Ghent. In absolute sense, WSOC concentrations were similar at the three sites (1.0–2.3 μg m−3). Positive artefacts were higher in Southern (11–16% of the OC concentration in Barcelona) than in Western Europe (5–12% in Amsterdam, 5–7% in Ghent). During special episodes, the contribution of carbonaceous aerosols from non-local sources accounted for 67–69% of the OC concentration in Western Europe, and for 44% in Southern Europe.  相似文献   

10.
Improvements in measurement technology are permitting development of a more detailed scientific understanding of the cycling of mercury in the global atmospheric environment. Critical to advancing the state of knowledge is the acquisition of accurate measurement of speciated mercury (gaseous and particulate) at ground research stations in a variety of settings located around the globe. This paper describes one such research effort conducted at TVA's Look Rock air quality monitoring site in Tennessee—a mountain top site (813 m elevation) just west of the Great Smoky Mountains National Park. The Great Smoky Mountains National Park is the largest National Park in the eastern US and it receives environmental protection under a variety of US statutes. Gaseous and particle mercury species along with some additional trace gases were measured at Look Rock during two field studies totaling 84 days in the spring and summer of 2004. Average results for the entire sampling period are: gaseous elemental mercury Hg(0): 1.65 ng m−3, reactive gaseous mercury RGM: 0.005 ng m−3, particulate mercury Hg(p): 0.007 ng m−3. Literature review indicates that these levels are within the range found for other rural/remote sites in North America and worldwide. Reactive and particulate mercury comprised together less than 1%, on average, of total airborne mercury at Look Rock. When compared to the global background mercury literature, the Look Rock measurements demonstrate that the atmospheric mercury levels in the vicinity of the Great Smoky Mountains National Park are clearly dominated by the global atmospheric pool, not by local or regional sources.  相似文献   

11.
Methylcyclopentadienyl manganese tricarbonyl (MMT) is a manganese-based gasoline additive used to enhance automobile performance. MMT has been used in Canadian gasoline for about 20 yr. Because of the potential for increased levels of Mn in particulate matter resulting from automotive exhausts, a large-scale population-based exposure study (∼1000 participant periods) was conducted in Toronto, Canada, to estimate the distribution of 3-day average personal exposures to particulate matter (PM2.5 and PM10) and Mn. A stratified, three-stage, two-phase probability, longitudinal sample design of the metropolitan population was employed. Residential indoor and outdoor, and ambient levels (at a fixed site and on a roof) of PM2.5, PM10, and Mn were also measured. Supplementary data on traffic counts, meteorology, MMT levels in gasoline, personal occupations, and activities (e.g. amount of vehicular usage) were collected. Overall precision (%RSD) for analysis of duplicate co-located samples ranged from 2.5 to 5.0% for particulate matter and 3.1 to 5.5% for Mn. The detection limits were 1.47 and 3.45 μg m-3 for the PM10 and PM2.5 fractions, respectively, and 5.50 and 1.83 ng m-3 for Mn in PM10 and PM2.5, respectively. These low detection limits permitted the reporting of concentrations for >98% of the samples. For PM10, the personal particulate matter levels (median 48.5 μg m-3) were much higher than either indoor (23.1 μg m-3) or outdoor levels (23.6 μg m-3). The median levels for PM2.5 for personal, indoor, and outdoor were 28.4, 15.4 and 13.2 μg m-3, respectively. The correlation between PM2.5 personal exposures and indoor concentrations was high (0.79), while correlations between personal and the outdoor, fixed site and roof site were low (0.16–0.27). Indoor Mn concentration distributions (in PM2.5 and PM10), unlike particulate matter, exhibited much lower and less variable levels that the corresponding outdoor data. The median personal exposure was 8.0 ng m-3, compared with 4.7 and 8.6 ng m-3, respectively, for the indoor and outdoor distributions. The highest correlations occurred for personal vs indoor data (0.56) and for outdoor vs roof site data (0.66), and vs fixed site data (0.56). The concentration of Mn in particulate matter, expressed in ppm (w/w), revealed that the fixed site was the highest, followed by the roof site, outdoor, indoor, and personal. The personal and indoor data showed a statistically significant correlation (0.68) while all other correlations between personal or indoor data and outdoor or fixed-site data were quite small. The low correlations of personal and indoor levels with outdoor levels suggest that different sources in the indoor and outdoor microenvironments produce particle matter with dissimilar composition. The correlation results indicate that neither the roof- nor fixed-site concentrations can adequately predict personal particulate matter or Mn exposures.  相似文献   

12.
Recent research interest has been focused on road dust resuspension as one of the major sources of atmospheric particulate matter in an urban environment. Given the dearth of studies on the variability of the PM10 fraction of road deposited sediments, our understanding of the main factors controlling this pollutant is incomplete. In the present study a new sampling methodology was devised and applied to collect PM10 deposited mass from 1 m2 of road pavement. PM10 road dust fraction was sampled directly from active traffic lanes at 23 sampling sites during a campaign in Barcelona (Spain) in June 2007. The aim of the study was to gain more insight into the variability of mass and chemistry of road dust in different urban environments, such as the city centre, ring roads, and locations nearby demolition/construction sites. The city centre showed values of PM10 road dust within a range of 3–23 mg m?2, whereas levels reached 24–80 mg m?2 in locations affected by transport of uncovered heavy trucks. The largest dust loads were measured in the proximity of demolition/construction sites and the harbor entry with values up to 328 mg m?2.The city centre road dust profiles (%) were enriched in OC, EC, Fe, S, Cu, Zn, Mn, Cr, Sb, Sn, Mo, Zr, Hf, Ge, Ba, Pb, Bi, SO42?, NO3?, Cl? and NH4+, but several crustal components such as Ca, Ti, Na, and Mg were also considerably concentrated. Locations affected by construction and demolition activities had high levels of crustal components such as Ca, Li, Sc, Sr, Rb and also As whereas ring roads, characterized by a higher load of uncovered heavy trucks showed an intermediate composition.Levels of PM10 components per area were also evaluated to quantify the resuspendable amount of each element from 1 m2. In the inner city environment mean values of 1363 μg Ca m?2, 816 μg OC m?2, 239 μg EC m?2, 13 μg Cu m?2, 12 μg Zn m?2, 1.9 μg Sb m?2 and 2.0 μg Pb m?2, in PM10 in all cases, were registered.Moreover the deposited PM load at demolition/construction sites acts as a reservoir or trap for traffic-related particles, which gives rise to large amounts of hazardous pollutants, available for resuspension.  相似文献   

13.
Comparative biogeochemical studies performed on the same plant species in remote areas enable pinpointing interspecies and interregional differences of chemical composition. This report presents baseline concentrations of PAHs and trace elements in moss species Hylocomium splendens and Pleurozium schreberi from the Holy Cross Mountains (south-central Poland) (HCM) and Wrangell–Saint Elias National Park and Preserve (Alaska) and Denali National Park and Preserve (Alaska). Total PAH concentrations in the mosses of HCM were in the range of 473–2970 μg kg?1 (dry weight basis; DW), whereas those in the same species of Alaska were 80–3390 μg kg?1 DW. Nearly all the moss samples displayed the similar ring sequence: 3 > 4 > 5 > 6 for the PAHs. The 3 + 4 ring/total PAH ratios show statistically significant differences between HCM (0.73) and Alaska (0.91). The elevated concentrations of PAHs observed in some sampling locations of the Alaskan parks were linked to local combustion of wood, with a component of vehicle particle- and vapor-phase emissions. In HCM, the principal source of PAH emissions has been linked to residential and industrial combustion of coal and vehicle traffic. In contrast to HCM, the Alaskan mosses were distinctly elevated in most of the trace elements, bearing a signature of the underlying geology. H. splendens and P. schreberi showed diverse bioaccumulative capabilities of PAHs in all three study areas.  相似文献   

14.
Most foods from plant origin usually contain 1–10 mg/kg (dry weight) of non-resolved isomeric alkanes in the range of the n-alkanes C20–C50 which are assumed to be residues from mineral oil products (in addition to the natural paraffins). In edible vegetable oils, concentrations may exceed 100 mg/kg. Since it was suspected that this contamination was mostly of environmental origin, particulate matter from air was analysed for the same range of paraffins. In a road tunnel, around 5 μg/m3 of such paraffins were found, corresponding to about 3% of the fine dust (PM10). The composition corresponded to that found in the particulate matter from the exhaust of diesel engines, which in turn largely corresponded to engine (lubricating) oil. In Swiss cities, the C20–C50 mineral paraffins in the PM10 from ambient air amounted to 0.1–1.5 μg/m3 (about 1% of the dust) and seemed to primarily originate from incomplete combustion of heating and diesel oil, lubricating oil, and road tar debris. On the countryside, the concentrations were around 0.03 μg/m3 (0.3% of the dust). Soil contained 0.5–10 mg/kg of these paraffins. The similarity of the molecular weight (volatility) distribution suggests that the food contamination with paraffins, is mostly from the air. A substantial proportion probably consists of lubricating oil. If this hypothesis is confirmed, measures should be investigated to reduce this contamination.  相似文献   

15.
The tests of standard mixtures and four sets of atmospheric particulate samples showed that an acid-wash (AW) pretreatment of fluorocarbon-coated glass fiber filters prior to aerosol sampling enhanced the quantifiable organic compounds for more than 29% (or 66 ng m−3); in particular, 47–273 ng m−3 (21–366%) more water-soluble organic compounds (WSOCs) were measured. When the acid-pretreated filters were employed, up to nine more organic species were measured in the individual daily samples. Because the acid pretreatment reduced the metal contaminants in the glass fiber filters, using the AW filters for aerosol sampling allows higher extraction recoveries of organic compounds. Since the fingerprinting compounds were more accurately determined when the aerosol samples were collected on the AW filters, better assessment of emission sources and toxicity of air pollutants can be obtained.  相似文献   

16.
Atmospheric aerosol particulate matter was directly collected in the free troposphere over the Japan Sea coast between 1992 and 1994 using an aircraft-borne nine-stage cascade impactor (particle size range: 0.1–8 μm). The water-soluble components in the aerosol particulate matter were analyzed by ion chromatography. Particulate sulfate and ammonium were detected in most of the samples and their size distributions showed noticeable peaks below the 1 μm particle size range. Water-soluble calcium (Ca2+) was detected in half of the samples; the size distribution showed that the maximum particle size was larger than 1 μm. Highly concentrated Ca2+ in larger particles was possibly due to transport of Kosa aerosols from the Asian continent in the free troposphere. The concentration of fine particulate sulfate and ammonium tended to increase whenever Ca2+ was detected, which suggests possible mixing of Kosa aerosols and non-Kosa aerosols during long-range transport of air masses containing Kosa particles.  相似文献   

17.
Twenty-four hour PM2.5 samples from a rural site, an urban site, and a suburban site (next to a major highway) in the metropolitan Atlanta area in December 2003 and June 2004 were analyzed for 19 polycyclic aromatic hydrocarbons (PAH). Extraction of the air samples was conducted using an accelerated solvent extraction method followed by isotope dilution gas chromatography/mass spectrometry determination. Distinct seasonal variations were observed in total PAH concentration (i.e. significantly higher concentrations in December than in June). Mean concentrations for total particulate PAHs in December were 3.16, 4.13, and 3.40 ng m?3 for the urban, suburban and rural sites, respectively, compared with 0.60, 0.74, and 0.24 ng m?3 in June. Overall, the suburban site, which is impacted by a nearby major highway, had higher PAH concentration than did the urban site. Total PAH concentrations were found to be well correlated with PM2.5, organic carbon (OC), and elemental carbon (EC) in both months (r2 = 0.36–0.78, p < 0.05), although the slopes from the two months were different. PAHs represented on average 0.006% of total PM2.5 mass and 0.017% of OC in June, compared with 0.033% of total PM2.5 and 0.14% of OC in December. Total PAH concentrations were also correlated with potassium ion (r2 = 0.39, p = 0.014) in December, but not in June, suggesting that in winter biomass burning can potentially be an important source for particulate PAH. Retene was found at a higher median air concentration at the rural site than at the urban and suburban sites—unlike the rest of the PAHs, which were found at lower levels at the rural site. Retene also had a larger seasonal difference and had the weakest correlation with the rest of the PAHs measured, suggesting that retene, in particular, might be associated with biomass burning.  相似文献   

18.
In this study, the leaves of Quercus ilex L. were selected as possible bioaccumulators of polycyclic aromatic hydrocarbons (PAHs). Quercus is an evergreen plant that occurs widely in both urban and rural areas. Several sites (urban roadside, urban, urban park, suburban and rural) in and around Palermo city were investigated.The purpose of this research was to optimize analytical method for quercus leaves, investigate the degree of contamination in the urban area of Palermo by comparing PAH concentration in leaves of quercus from the several sites, establish distribution patterns and relate them to possible sources of PAHs. To this aim, the 16 recommended as priority pollutants by the Environmental Protection Agency (EPA) and perylene were analyzed. PAHs were positively correlated to atmospheric particulate gravimetrically determined on filters aspiring a known volume of air in the various stations.The analyses have been performed by gas chromatography coupled to mass spectrometry (GC–MS) in selected ion monitoring (SIM) mode. The total PAH content in the samples ranged from 92 to 1454 μg kg−1 d.w. The higher amounts of PAHs detected in leaves of quercus from the urban area of Palermo compared with the control site are diagnostic of air contamination, in particular in the zones with heavy traffic. The determination of PAHs in the leaves of quercus allows us, with very simple and fast procedures, to assess the quality of the air over a longer period, since PAHs are accumulated over the whole lifetime of the leaves, irrespective of atmospheric conditions at the moment of sampling.  相似文献   

19.
Size-fractionated particles were collected at two sites from July 2004 to April 2006 in Shanghai. The mercury in particles was extracted and divided operationally into four species: exchangeable particulate mercury (EXPM), HCl-soluble particulate mercury (HPM), elemental particulate mercury (EPM) and residual particulate mercury. The total particulate Hg concentration during the study period ranged from 0.07 ng m?3 to 1.45 ng m?3 with the average 0.56 ± 0.22 ng m?3 at site 1, while 0.20 ng m?3–0.47 ng m?3 with the average 0.33 ± 0.09 ng m?3 at site 2, which is far higher than some foreign cities and comparable to some cities with heavy air pollution in China. The Hg mass content also displayed evident size distribution, with higher value in PM1.6–3.7, somewhat higher or lower than the source profile. EXAM was only found in the summer, HPM have higher percentage in summer and fall rather than in winter and spring. The different mercury species showed different correlation to temperature, relative humidity, wind speed. HPM positively depends on temperature at both sites which implies the importance of mercury transformation on particles. In foggy days TPM increased greatly, but HPM didn't vary greatly as anticipated. Instead, RPM gained a distinguished increase. It demonstrated that aqueous reaction and complex heterogenic reactions in droplet might happen in acidic environment. The correlation of mercury with other pollutants including SO2, NO2, CO and PM10 varies with the different mercury forms. Hybrid single-particle lagrangian integrated trajectories (HYSPLIT) model was used to back trace air mass at different representative days and results indicated that transportation from Huabei Plain will increase mercury concentration in winter and fall to some extent. The possible existing compounds and their atmospheric behavior of HPM, EPM and RPM were calculated and the compared to analyze its implication on atmospheric mercury cycle.  相似文献   

20.
A new application of the quasi-simultaneous gas/particle phase sampling and analysis principle first proposed by Simon and Dasgupta (Anal. Chem. 34 (1995) 71) is described. For the first time, a gradient chromatograph is used in connection with such a sampling system to allow the simultaneous determination of major organic (formic, acetic, propionic, oxalic, malonic and succinic) and inorganic (SO2, HNO2, HNO3, HCl and H2F2) acidic gases and related particles. Another addition to the previous systems is the analysis of cations other than ammonium from the particulate phase. The time resolution of the instrument still remains high, 1 h, during which gaseous water-soluble acidic compounds, ammonia, as well as related anionic particles and inorganic major cations are analysed. Sampling is based on diffusion in a wetted parallel plate denuder for gases and on growth in supersaturated water vapour for particles. The determination limits range from 2 ppt (acetate) to 0.4 ppb (ammonia) in the gas phase and 0.01 μg m−3 (citric acid) to 0.79 μg m−3 (calcium) for particulate matter. Collection efficiencies for gas and aerosol sampling were quantified and the supersaturation in the aerosol sampling apparatus investigated. The system has been used for field measurements at a background station; selected results of these measurements are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号