首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

This study considers the characteristics of ground-level ozone (O3) in five Korean cities over a time period of 6-8 years. The focus of this study is daily maximum 1-hr and 8-hr concentrations. For all the study cities in the period examined, the mean and most of the percentiles (5, 10, 25, 50, 75, 90, and 95) for the daily maximum 1-hr and 8hr concentrations showed increasing trends, although not all trends were statistically significant. The daily maximum 1-hr and 8-hr concentrations slowly increased during late winter, and peaks were attained during the summer season (from May to September). All the selected cities exhibited a high degree of correlation between their daily maximum 8-hr and 1-hr concentrations. The daily maximum 8-hr concentrations, which were climatologi-cally equivalent to the Korean 1 hr/100 parts per billion (ppb) standard, were higher than the current 8 hr/60 ppb by a difference of 8-16 ppb. Compared with other cities in Korea, Seoul recorded a substantially higher frequency of days and hours with concentrations above 1 hr/100 ppb, and a higher frequency of days with concentrations above 8 hr/60 ppb and 8 hr/80 ppb. Seoul also recorded a substantially higher frequency of hours with concentrations above 1 hr/100 ppb than days with concentrations above 1 hr/100 ppb, implying that on some days severe exceedances persisted for more than one hour per day. During multiple-day episodes a North Pacific High dominated Korea, which is quite typical in Korea during the summer season.  相似文献   

2.
This study focuses on applying a Takagi–Sugeno fuzzy system and a nonlinear regression (NLR) model for ozone predictions in six Kentucky metropolitan areas. The fuzzy “c-means” clustering technique coupled with an optimal output predefuzzification approach (least square method) was used to train the Takagi–Sugeno fuzzy system. The fuzzy system was tuned by specifying the number of rules and the fuzziness factor. The NLR models were based in part on a previously reported, trajectory-based hybrid NLR model that has been used for years for forecasting ground-level ozone in Louisville, KY. The NLR models were each composed of an interactive nonlinear term and several linear terms. Using a common meteorological parameter set as input variables, the NLR models and the Takagi–Sugeno fuzzy systems model exhibited equivalent forecasting performance on test data from 2004. For all 2004 ozone season forecasts for the six metropolitan areas, the mean absolute error was 8.1 ppb for the NLR model and 8.0 ppb for the Takagi–Sugeno fuzzy model. When a nonlinear term (which was part of the NLR model) was included in the fuzzy model, the combined NLR–fuzzy model had slightly better performance than the original NLR model. For all 2004 metropolitan area forecasts, the mean absolute error of the NLR–fuzzy model forecasts was 7.7 ppb. These small differences may be statistically significant, but for practical purposes the performance of the fuzzy models was equivalent to that of the NLR models.  相似文献   

3.
Because of the confluence of several factors (persistent multiday inversions, petroleum production, and snow cover), the Uintah Basin of eastern Utah, USA, exhibits high concentrations of winter ozone. A regression analysis is presented that successfully predicts daily ozone concentration with a standard error of about 11 ppb. It also predicts with 90% accuracy whether any given day will exceed the National Ambient Air Quality Standard for ozone, 70 ppb. An analysis is introduced for calculating a “pseudo-lapse rate,” a determination of inversion intensity in the absence of sounding data. By combining the model with historical meteorological data, it is possible to make long-range predictions about ozone formation. The odds of observing no exceedance days in any given season are 38%. The odds of only three or fewer exceedance days in any given season are 46%.

Implications: This paper provides an improved understanding of the scientific underpinnings of the winter ozone phenomenon and an ability to make long-range predictions.  相似文献   


4.
This study considers the characteristics of ground-level ozone (O3) in five Korean cities over a time period of 6-8 years. The focus of this study is daily maximum 1-hr and 8-hr concentrations. For all the study cities in the period examined, the mean and most of the percentiles (5, 10, 25, 50, 75, 90, and 95) for the daily maximum 1-hr and 8-hr concentrations showed increasing trends, although not all trends were statistically significant. The daily maximum 1-hr and 8-hr concentrations slowly increased during late winter, and peaks were attained during the summer season (from May to September). All the selected cities exhibited a high degree of correlation between their daily maximum 8-hr and 1-hr concentrations. The daily maximum 8-hr concentrations, which were climatologically equivalent to the Korean 1 hr/100 parts per billion (ppb) standard, were higher than the current 8 hr/60 ppb by a difference of 8-16 ppb. Compared with other cities in Korea, Seoul recorded a substantially higher frequency of days and hours with concentrations above 1 hr/100 ppb, and a higher frequency of days with concentrations above 8 hr/60 ppb and 8 hr/80 ppb. Seoul also recorded a substantially higher frequency of hours with concentrations above 1 hr/100 ppb than days with concentrations above 1 hr/100 ppb, implying that on some days severe exceedances persisted for more than one hour per day. During multiple-day episodes a North Pacific High dominated Korea, which is quite typical in Korea during the summer season.  相似文献   

5.
This research was motivated by the need to warn the population of Milwaukee, WI, on high-ozone days. A statistical model for the peak daily 1-hr ozone level is proposed. A Regression with Time Series Errors (RTSE) model, which includes a principal component (PC) trigger, is the basis for forecasting the peak daily 1-hr ozone level. The RTSE model, with a PC trigger, is first employed to estimate daily peak ozone measured at the University of Wisconsin, Milwaukee-North (UWM-N), during the 1991 ozone season. The RTSE model uses peak daily temperature, morning vector average wind direction, and the PC trigger as predictor variables. The PC trigger was designed to summarize atmospheric circumstances when peak ozone was greater than 100 parts per billion (ppb). It is verified that the RTSE model, with a PC trigger, significantly improves the prediction of peak daily ozone, particularly peak ozone greater than 100 ppb. In comparison with the RTSE model without the PC trigger, the RTSE model with a PC trigger raised the R2 from 0.680 to 0.809. It is suggested that the RTSE model, with the PC trigger, is an adequate statistical model that has the potential for real-time ozone forecasting.  相似文献   

6.
7.
An automated forecast system for ozone in seven Kentucky metropolitan areas has been operational since 2004. The forecast system automatically downloads the required input data twice each day, produces next-day forecasts of metro area peak 8-h average ozone concentration using a computer coded hybrid nonlinear regression (NLR) model, and posts the results on a website. The automated models were similar to previous NLR models, first applied to forecasting ozone in the Louisville metro area. The forecast system operated reliably during the 2004 and 2005 O3 seasons, producing at least one forecast per day better than 99% of the time. The forecast accuracy of the automated system was good. For all 2004 and 2005 forecasts, the mean absolute error was equal to 8.7 ppb, or 15.6% of the overall mean concentration. The overall detection rate of air quality standard exceedences was 56%, and the overall false alarm rate was 42%. In Louisville, the performance of the automated system was comparable to that of expert forecasters using the NLR model as a forecast tool.  相似文献   

8.
Abstract

Many large metropolitan areas experience elevated concentrations of ground-level ozone pollution during the summertime “smog season”. Local environmental or health agencies often need to make daily air pollution forecasts for public advisories and for input into decisions regarding abatement measures and air quality management. Such forecasts are usually based on statistical relationships between weather conditions and ambient air pollution concentrations. Multivariate linear regression models have been widely used for this purpose, and well-specified regressions can provide reasonable results. However, pollution-weather relationships are typically complex and nonlinear—especially for ozone—properties that might be better captured by neural networks. This study investigates the potential for using neural networks to forecast ozone pollution, as compared to traditional regression models. Multiple regression models and neural networks are examined for a range of cities under different climate and ozone regimes, enabling a comparative study of the two approaches. Model comparison statistics indicate that neural network techniques are somewhat (but not dramatically) better than regression models for daily ozone prediction, and that all types of models are sensitive to different weather-ozone regimes and the role of persistence in aiding predictions.  相似文献   

9.
This study describes and evaluates the newly developed European scale Eulerian chemistry transport model CHIMERE-continental. The model is designed for seasonal simulations and real time forecasts without the use of super-computers. For the purpose of model evaluation simulated ozone mixing ratios for the period between 1 May 1998 and 30 September 1998 are compared to observational data from 115 European surface sites. In order to facilitate the interpretation of future forecasts a statistic is established to estimate the reliability of a simulated pollution level. Besides this, the comparison is done by means of time series, scatter plots, a spectral analysis and the calculation of RMS-errors and biases of the model results corresponding to each observation site. It turns out that the mean RMS-error of the simulated daily maximum ozone mixing ratio for the sites considered a priori as well suited for a model comparison is about 10 ppb. For the same period but a reduced number of sites observed concentrations of NO2 and ethene are compared to simulated values. Difficulties encountered with the representativeness of observations when trying to evaluate a mesoscale air pollution model are discussed.  相似文献   

10.
The high ozone episode in the greater Seoul area (GSA) for the period of 27 July–1 August 1997 was modeled by the California Institute of Technology (CIT) three-dimensional photochemical model. During the period, ozone concentrations around 140 ppb were observed for 2 days. Two sets of diagnostic wind fields were constructed by using observations from the weather stations operated by the Korea Meteorological Administration. One set of wind fields utilized only observations from the surface weather stations (SWS) and the other set also utilized observations from the automatic weather stations (AWS) that were more densely distributed than the SWS. The results showed that utilizing observations from the AWS could represent fine variations in the wind field such as those caused by topography. A better wind field gave a more reasonable spatial distribution of ozone concentrations. The model performance of ozone prediction was also improved to some extent, but only marginally acceptable owing to large day-to-day variations. Overshoots of primary pollutants particularly for NO2 were observed as pollutants were accumulated where low wind speeds were maintained. More precise information on diurnal and daily variations in emissions was warranted in order to better model the photochemical phenomena over the GSA.  相似文献   

11.
This analysis represents the first characterization of the photochemistry and transport of ozone in the Detroit metropolitan area and provides a basis for comparing data for Detroit to that for other cities. The characterization is based on a comprehensive set of meteorological and chemical measurements obtained at a site in the urban core of Detroit during the summer of 1981, together with measurements of O3, nitrogen oxides (NO X ), and nonmethane organic compounds (NMOC) from rural, suburban, and urban areas in southeastern Michigan and adjacent areas of Ontario.

For the quartile (23 days) with highest ozone maxima (97-180 ppb), the maxima occurred 10-70 km north-northeast of the city on days that were warm and hazy with light southsouthwest winds. On such days there was a marked accumulation of ozone precursors (NMOC and NOX) in the early morning, as well as a rapid chemical removal of NO X (NO X half-life of ~5 h) from morning to midday. The timing of the daily ozone increase across the study region suggests that local photochemical generation in a moving plume was responsible for more than half of the ozone measured downwind. However, there was also evidence that ozone transported into Detroit as part of the regional background was a significant part of the O3 maxima on high ozone days. The average contributions of photochemistry and transport for the 23 days with the highest ozone maxima were estimated to be 57 ppb and 47 ppb, respectively.  相似文献   

12.
Abstract

A modified time series approach, a Box-Jenkins regression with time series errors (RTSE) model plus a principal component (PC) trigger, has been developed to forecast peak daily 1-hr ozone (O3) in real time at the University of Wisconsin-Milwaukee North (UWM-N) during 1999 and 2002. The PC trigger acts as a predictor variable in the RTSE model. It tries to answer the question: will the next day be a possible high O3 day? To answer this question, three PC trigger rules were developed: (1) Hi-Low Checklist, (2) Discriminant Function Approach I, and (3) Discriminant Function Approach II. Also, a pure RTSE model without including the PC trigger and a persistence approach were tested for comparison. The RTSE model with DFA I successfully forecast the only two 1-hr federal exceedances (124 ppb), one in 1999 and one in 2002. In terms of the O3 100-ppb exceedances, 60–80% of the incorrect forecasts occurred with incorrect PC decisions. A few others may have been caused by unexpected O3- weather relations. When the three approaches used UWM-N data to forecast a 100-ppb exceedance somewhere in the Milwaukee, WI, metropolitan area, their performance was dramatically improved: the false alarm rate was reduced from 0.89 to 0.44, and the probability of detection was increased from 0.71 to 0.88.  相似文献   

13.
Large day-to-day variability in O3 and CO was observed at Chongming, a remote rural site east of Shanghai, in August 2010. High ozone periods (HOPs) that typically lasted for 3?C5?days with daily maximum ozone exceeding 102?ppb were intermittent with low ozone periods (LOPs) with daily maximum ozone less than 20?ppb. The correlation analysis of ozone with meteorological factors suggests that the large variations of surface ozone are driven by meteorological conditions correlated with the changes in the location and intensity of the west Pacific subtropical high (WPSH) associated with the East Asian summer monsoon (EASM). When the center of WPSH with weaker intensity is to the southeast of Chongming site, the mixing ratios and variability of surface ozone are higher. When the center of WPSH with stronger intensity is to the northeast of Chongming site, the mixing ratios and variability of surface ozone are lower. Sensitivity simulations using the GEOS-Chem chemical transport model indicate that meteorological condition associated with WPSH is the primary factor controlling surface ozone at Chongming in August, while local anthropogenic emissions make significant contributions to surface ozone concentrations only during HOP.  相似文献   

14.
Abstract

The National Oceanic and Atmospheric Administration recently sponsored the New England Forecasting Pilot Program to serve as a “test bed” for chemical forecasting by providing all of the elements of a National Air Quality Forecasting System, including the development and implementation of an evaluation protocol. This Pilot Program enlisted three regional-scale air quality models, serving as prototypes, to forecast ozone (O3) concentrations across the northeastern United States during the summer of 2002. A suite of statistical metrics was identified as part of the protocol that facilitated evaluation of both discrete forecasts (observed versus modeled concentrations) and categorical forecasts (observed versus modeled exceedances/nonexceedances) for both the maximum 1-hr (125 ppb) and 8-hr (85 ppb) forecasts produced by each of the models. Implementation of the evaluation protocol took place during a 25-day period (August 5–29), utilizing hourly O3 concentration data obtained from over 450 monitors from the U.S. Environment Protection Agency’s Air Quality System network.  相似文献   

15.
Ground level ozone, NOx and specific C2-C6 hydrocarbon measurements from a rural site in N-W England during a photochemical pollution episode are presented. Maximum hourly ozone concentrations exceeded 80 ppb for ten consecutive days with a maximum of 156 ppb. Mid-morning ozone concentrations were found to be indicative of the amount of ozone from continental sources. The air mass trajectories, total NMHC and alkane : alkene ratios all indicate that in the early to middle stages of the episode the air had been exposed to recent precursor emissions relative to more aged air before and after this period. The measurements are compared with the predictions of recent theoretical models of ozone formation over England.  相似文献   

16.
The mixing ratios of surface ozone at two rural/remote sites in Thailand, Inthanon and Srinakarin, have been measured continuously for the first time. Almost identical seasonal variations of O3 with dry season maximum and a wet season minimum with a large seasonal amplitude are observed at both sites during 1996–1998. At Inthanon, the monthly averaged O3 mixing ratios range 9–55 ppb, with the annual average of 27 ppb. The ozone mixing ratios at Srinakarin are in the similar range, 9–45 ppb with annual average of 28 ppb. Based on trajectory analysis of O3 data at Inthanon, the long-range transport of O3 under Asian monsoon regime could primarily explain the low O3 mixing ratios of 13 ppb in clean marine air mass from Indian Ocean during wet season but only partly explain the relatively low O3 mixing ratios, 26 ppb or less, in continental air mass from northeast Asia either in wet or dry season. The highest O3 mixing ratios are found in air masses transported within southeast Asia, averaged 46 ppb in dry season. The high O3 mixing ratios during the dry season are suggested to be significantly due to the local/sub-regional scale O3 production triggered by biomass burning in southeast Asia rather than long-range transport effect.  相似文献   

17.
Ozone concentrations at a rural-remote site in a forested region of north-central West Virginia were monitored during 1988 and 1989, a drought and wet year, respectively. During 1988, the absolute maximum average concentration for a single hour was 156 ppb, while it was only 107 ppb in 1989. Overall, the frequency of high concentrations was greater during 1988; the 120 ppb National Ambient Air Quality Standard was exceeded 17 times. The 7-h period encompassing the highest growing season concentrations for this site over the 2-yr period is 1100- 1759 h EST, rather than the period 0900-1559 h originally used by the National Crop Loss Assessment Network. The 7-h growing season means (0900-1559 h) of 52.6 ppb and 47.1 ppb for 1988 and 1989, respectively, compare well to those reported for the Piedmont/Mountain/Ridge-Valley area, but are higher than those for other surrounding areas. The diurnal ozone patterns, as well as the distribution of concentration ranges and timing of seasonal maxima, suggest that long-range transport of ozone and its precursors probably is an important factor at this site, given its remote and rural character.  相似文献   

18.
Ozone and related trace gases (CO, NOx, and SO2) were measured from June 1999 to July 2000 at a rural site in the Yangtze Delta of China, a region of intensive anthropogenic activity. Elevated ozone levels were frequently observed during the study period, with the highest frequency in late spring and early summer. Over a 1 yr period, 21 d were found to have ozone concentrations exceeding the new US 8-h 80 ppb health standard. Calculation of the “SUM06” exposure index also shows relatively high (>15 ppm h) values for each season except winter. At these levels ozone may have adverse effects on human health as well as agricultural crops. Analysis of meteorological data shows that the high ozone days were associated with large-scale stagnation, intense solar radiation, and minimum rainfall. Large-scale back trajectories indicate a slow-moving/re-circulating airmass during the episodic days. Examination of chemical data shows that the observed daytime high ozone concentrations were due to downward mixing of ozone-rich air, in situ photochemical formation, and in some cases, advection to the site of aged plumes. The very high CO levels (and high CO to NOx ratios) were found to coincide with many of the ozone episodes, suggesting a contribution from sources of emission involving incomplete combustion. It is suggested that the burning of biomass (e.g., biofeuls and crop residues) may be an important source for the observed high CO and O3 values.  相似文献   

19.
On hot summer days in the eastern United States, electricity demand rises, mainly because of increased use of air conditioning. Power plants must provide this additional energy, emitting additional pollutants when meteorological conditions are primed for poor air quality. To evaluate the impact of summertime NOx emissions from coal-fired electricity generating units (EGUs) on surface ozone formation, we performed a series of sensitivity modeling forecast scenarios utilizing EPA 2018 version 6.0 emissions (2011 base year) and CMAQ v5.0.2. Coal-fired EGU NOx emissions were adjusted to match the lowest NOx rates observed during the ozone seasons (April 1–October 31) of 2005–2012 (Scenario A), where ozone decreased by 3–4 ppb in affected areas. When compared to the highest emissions rates during the same time period (Scenario B), ozone increased ~4–7 ppb. NOx emission rates adjusted to match the observed rates from 2011 (Scenario C) increased ozone by ~4–5 ppb. Finally in Scenario D, the impact of additional NOx reductions was determined by assuming installation of selective catalytic reduction (SCR) controls on all units lacking postcombustion controls; this decreased ozone by an additional 2–4 ppb relative to Scenario A. Following the announcement of a stricter 8-hour ozone standard, this analysis outlines a strategy that would help bring coastal areas in the mid-Atlantic region closer to attainment, and would also provide profound benefits for upwind states where most of the regional EGU NOx originates, even if additional capital investments are not made (Scenario A).

Implications: With the 8-hr maximum ozone National Ambient Air Quality Standard (NAAQS) decreasing from 75 to 70 ppb, modeling results indicate that use of postcombustion controls on coal-fired power plants in 2018 could help keep regions in attainment. By operating already existing nitrogen oxide (NOx) removal devices to their full potential, ozone could be significantly curtailed, achieving ozone reductions by up to 5 ppb in areas around the source of emission and immediately downwind. Ozone improvements are also significant (1–2 ppb) for areas affected by cross-state transport, especially Mid-Atlantic coast regions that had struggled to meet the 75 ppb standard.  相似文献   


20.
Abstract

A research site for atmospheric chemistry and air pollution measurements was established at Pinnacle State Park in Addison, NY, in 1995. This paper presents an overview of the site characteristics and measurement program, as well as monthly average concentrations for many of the trace gas and aerosol pollutants over the full measurement period. Monthly averaged ozone concentrations range from values as low as 15 parts per billion (ppb) during cold-season months, to values approaching 50 ppb during some spring and summer months. Sulfur dioxide (SO2), oxides of nitrogen (NOx), and reactive odd nitrogen (NOy) all show distinct seasonal variation, with summertime monthly averages as low as 1–3 ppb, and wintertime monthly averages from 6–12 ppb. The variation in carbon monoxide (CO) is much smaller, with minimums of approximately 150 ppb and maximums only rarely exceeding 250 ppb. Data for three hydrocarbon species propane, benzene, and isoprene—are presented. Propane and benzene show higher monthly averaged concentrations in the winter and lower values in the summer, with values ranging over a factor of 4–5. Isoprene, on the other hand has much higher values during the summer season, sometimes a factor of 10 or more greater than concentrations measured in the winter. Monthly averaged plots for fine particulate matter (PM2.5) beginning in 1999 show a robust summer maximum and winter minimum, and roughly a factor of two difference between the two. An empirical measure of ozone production using the correlation of hour-averaged ozone and NOy data illustrates relatively robust ozone production during some, but not all, summertime months over the time period. Also, an analysis of the frequency distribution of the hours of maximum ozone concentration shows a strong mid-afternoon peak, as expected, but also a prominent secondary maximum centered around midnight. The secondary peak is interpreted as ozone transported from ozone-producing areas to the west, including Buffalo, Cleveland, Pittsburgh, and the Ohio Valley. Finally, SO2 concentrations as a function of wind direction clearly indicate maximum impacts when the winds are out of the south (Pittsburgh and Philadelphia), with a secondary peak when the winds are from the north-northeast, consistent with the locations of major SO2 emission sources in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号