首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six oil spill booms produced by five manufacturers for use as fire resistant booms, were tested at the Minerals Management Service's Ohmsett Facility, NWS-Earle, Leonardo, New Jersey. The tests were conducted between July 16, 1996 and October 4, 1996. Prior to being exposed to any fire, the booms were tested for: first loss tow speed, loss rate, critical tow speed, and wave conformance. No fires were used during these tests. Four of the booms performed within speed and rate loss ranges that have been measured for commercial non-fire resistant booms. One boom was found to be superior in wave conformance and critical tow speed. However, this boom was at the lower edge of the range for first loss tow speed. A prototype boom, with a unique paddle wheel operating principal was the sixth boom included in the study. This boom was found to need further development.  相似文献   

2.
3.
Most response plans for in situ burning of oil at sea call for the use of a fire-resistant boom to contain the oil during a burn. Presently, there is no standard method for the user of a fire-resistant boom to evaluate the anticipated performance of different booms. The ASTM F-20 committee has developed a draft standard, “Standard Guide for in situ Burning of Oil Spills on Water: Fire-Resistant Containment Boom”; however, the draft provides only general guidelines and does not specify the details of the test procedure. Utilizing the guidelines in the draft standard, a series of experiments were conducted to evaluate a protocol for testing the ability of fire-resistant booms to withstand both fire and waves.  相似文献   

4.
Most response plans for in situ burning of oil at sea call for the use of a fire-resistant boom to contain the oil during a burn. Presently, there is no standard method for the user of fire-resistant boom to evaluate the anticipated performance of different booms. The American Standard for Testing Materials (ASTM) F-20 Committee has developed a draft standard, `Standard Guide for in situ Burning of Oil Spills on Water: Fire-Resistant Containment Boom'; however, the draft provides only general guidelines and does not specify the details of the test procedure. Utilizing the guidelines in the draft standard, a second series of experiments was conducted to evaluate a protocol for testing the ability of fire-resistant booms to withstand both fire and waves.  相似文献   

5.
The Oil Pollution Act of 1990 (OPA 90) was largely driven by the catastrophic EXXON VALDEZ tanker spill and several other major tanker spills that followed in 1989. Under the OPA 90 mandate, the US Coast Guard, in partnership with other Federal agencies and industry have implemented a number of initiatives that have significantly enhanced the national oil spill prevention, preparedness and response capability. Declining trends in the volume of oil spilled into US waters indicates that these initiatives are at least in some measure successful.The Coast Guard is now concerned about what the future may hold in terms of oil pollution threats, and prevention, preparedness and response program shortcomings and opportunities in the future. To address this issue, the Coast Guard, in partnership with other National Response Team agencies and industry, is conducting a Broad-Based Programmatic Risk Assessment to develop a comprehensive vision and strategy for the Oil Spill Prevention, Preparedness and Response (OSPPR) Program in the 21st Century. This study will characterize the current and emerging oil spill threats by source category, assess the potential impacts of these threats to define overall risk, and examine the current and projected effectiveness of OSPPR initiatives in minimizing these risks. Key issues, problems and focus areas will be identified and targeted for follow-on risk analysis and management activities by the Coast Guard and agency and industry stakeholders.  相似文献   

6.
For over 10 years scientists have studied the effects of in situ burning of oil on air and water quality and potential related health issues. The recent Newfoundland Offshore Burn experiment, conducted by Environment Canada, was the culmination of several years of work. The results of this experiment found that ‘emissions from the in situ oil fire were lower than expected and all compounds and parameters measured were below health concerns at 150 m from the fire’ (The Newfoundland Offshore Burn Experiment—NOBE, Preliminary Results of Emissions Measurement). Polyaromatic Hydrocarbons (PAHs) were found to be lower in the soot generated from the fire than in the starting oil prior to the fire. The conclusion reached was that the environmental benefits resulting from the burning of oil spills far outweigh the potential air pollution caused from the smoke. These findings now open the door on the use of in situ burning of oil as a major tool to be used to mitigate environmental damage from oil spills.As a result of these and other test findings, Region 6 of the Regional Response Team (made up of the U.S. Coast Guard, The Minerals Management Service, The Department of Environmental Quality, The U.S. Environmental Protection Agency, and other state and federal agencies) had pre-approved the use of in situ burning of oil spills for offshore Louisiana and Texas. Other parts of the country and other countries are evaluating the use of in situ burning to combat oil spills. Now that the scientific community has weighed the environmental costs and benefits of in situ burning it is time to address the operational and procedural issues.  相似文献   

7.
Ohmsett – the National Oil Spill Response Test Facility, is the world's largest tow/wave tank designed to evaluate the performance of equipment that detects, monitors and clears up oil spills under environmentally safe conditions. Ohmsett is the only facility capable of testing and training with oil, using full-scale response equipment.  相似文献   

8.
The common response to an oil spill on water is to contain the oil with booms and recover it with skimming devices. In some situations, however, the booms cannot hold the oil and the oil will escape underneath the boom due to hydrodynamic forces. Computational fluid dynamics (CFD) is a powerful modelling tool combining fluid dynamics and computer technology. We have utilized a commercial CFD program, Fluent, to simulate the oil-water flow around a boom. The studies accurately model channel experiments conducted in recent years. The studies show that the flow patterns around booms are modified by the presence of oil and, therefore, suggest that towing and wave-conformity tests of booms will not be meaningful unless they are undertaken with the presence of oil.  相似文献   

9.
Lessons learned procuring U.S.$30 500 000 of oil pollution recovery equipment for the United States Coast Guard (USCG) in response to requirements of the Oil Pollution Act of 1990 (OPA-90) are presented. A generic requirements analysis and a selection process useful for making equipment acquisitions and staging site selections are described. Response mission, oil spill threat, response area peculiarities, available resources, equipment capabilities, training requirements and life cycle costs are all factors which must be carefully considered in outfitting a response organization. A method to ensure you obtain quality equipment which meets your functional requirements is outlined. Long range concerns about logistics support, training and maintenance are also important considerations.Leveraging existing resources such as existing USCG vessels, commercial vessels available on short notice for lease and the original oil response equipment inventory of the two USCG Strike Teams proved to be extremely cost effective. Selection of a vessel of opportunity skimming system (VOSS) and outfitting replacement offshore buoy tenders with an on-board spilled oil recovery system (SORS) eliminated the costly option of procuring dedicated pollution response vessels which are generally underutilized as a single mission platform. A first article field and factory acceptance testing program ensured all equipment functioned as specified, eliminating costly errors. This process also provided valuable customer input and significant equipment improvements before production started. Quality assurance testing and Government oversight ensured production units were fabricated properly with specified materials identical to the approved first articles adding reliability to the entire delivered system. Staging equipment at three Strike Teams and 19 sites near existing Coast Guard buoy tenders best used the available personnel and vessel resources adjacent to primary oil spill threat areas.  相似文献   

10.
The objective of this paper is to quantitatively analyze the arrangement of booms to improve their effectiveness in protecting natural resources. The boom arrangements tested were parallel booms placed at angles of 60°, 90°, and 120° to the shore-line. It was found that the angle between the shoreline and the parallel booms was effective in the range of 45° and 75° for all velocities. The arrangement that was found to be particularly effective was principally a set of three parallel booms placed at an angle of 60° to the shore-line with cylinders placed along the center-line.The open channel experiment was carried out for four different flow velocities, ranging from 0.2 to 0.7 knot. For each speed the position of the parallel booms and the size of the cylinders were changed. Cylinder sizes varied from 4.5 to 7.5 cm. A volume analysis was performed to determine the volume of oil contained. The variation of the length scales for the position of the parallel booms and the size of the cylinders were used to determine the optimum position for the parallel booms and the optimum cylinder diameter for each velocity. A relationship of effectiveness vs U2/gR was found which displayed a maximum. This relationship was tested experimentally with random parameters, and verified. With a particular velocity U, the graph may be used to find the optimum radius R for the cylinders to be used. The maximum in the relationship can be explained as follows: for cylinders with smaller diameters the effectiveness increases with increase in diameter because of the increased contribution of the centrifugal forces. A maximum is reached because of the physical relationship between the cylinder diameter and the channel width.  相似文献   

11.
This paper identifies and estimates time periods as ‘windows-of-opportunity’ where specific response methods, technologies, equipment, or products are more effective in clean-up operations for several oils. These windows have been estimated utilizing oil weathering and technology performance data as tools to optimize effectiveness in marine oil spill response decision-making. The windows will also provide data for action or no-action alternatives. Crude oils and oil products differ greatly in physical and chemical properties, and these properties tend to change significantly during and after a spill with oil aging (weathering). Such properties have a direct bearing on oil recovery operations, influencing the selection of response methods and technologies applicable for clean up, including their effectiveness and capacity, which can influence the time and cost of operations and the effects on natural resources.The changes and variations in physical and chemical properties over time can be modeled using data from weathering studies of specific oils. When combined with performance data for various equipment and materials, tested over a range of weathering stages of oils, windows-of-opportunity can be estimated for spill response decision-making. Under experimental conditions discussed in this paper, windows-of-opportunity have been identified and estimated for four oils (for which data are available) under a given set of representative environmental conditions. These ‘generic’ windows have been delineated for the general categories of spill response namely: (1) dispersants, (2) in situ burning, (3) booms, (4) skimmers, (5) sorbents, and (6) oil-water separators. To estimate windows-of-opportunity for the above technologies (except booms), the IKU Oil Weathering Model was utilized to predict relationships—with 5 m s−1 wind speed and seawater temperatures of 15°C.The window-of-opportunity for the dispersant (Corexit 9527®) with Alaska North Slope (ANS) oil was estimated from laboratory data to be the first 26 h. A period of ‘reduced’ dispersibility, was estimated to last from 26–120 h. The oil was considered to be no longer dispersible if treated for the first time after 120 h. The most effective time window for dispersing Bonnic Light was 0–2 h, the time period of reduced dispersibility was 2–4 h, and after 4 h the oil was estimated to be no longer dispersible. These windows-of-opportunity are based on the most effective use of a dispersant estimated from laboratory dispersant effectiveness studies using fresh and weathered oils. Laboratory dispersant effectiveness data cannot be directly utilized to predict dispersant performance during spill response, however, laboratory results are of value for estimating viscosity and pour point limitations and for guiding the selection of an appropriate product during contingency planning and response. In addition, the window of opportunity for a dispersant may be lengthened if the dispersant contains an emulsion breaking agent or multiple applications of dispersant are utilized. Therefore, a long-term emulsion breaking effect may increase the effectiveness of a dispersant and lengthen the window-of-opportunity.The window-of-opportunity of in situ burning (based upon time required for an oil to form an emulsion with 50% water content) was estimated to be approximately 0–36 h for ANS oil and 0–1 h for Bonnie Light oil after being spilled. The estimation of windows-of-opportunity for offshore booms is constrained by the fact that many booms available on the market undergo submergence at speeds of less than 2 knots. The data suggest that booms with buoyancy to weight ratios less than 8:1 may submerge at speeds within the envelope in which they could be expected to operate. This submergence is an indication of poor wave conformance, caused by reduction of freeboard and reserve net buoyancy within the range of operation. The windows-of-opportunity for two selected skimming principles (disk and brush), were estimated using modeled oil viscosity data for BCF 17 and BCF 24 in combination with experimental performance data developed as a function of viscosity. These windows were estimated to be within 3–10 h (disk skimmer) and after 10 h (brush skimmer) for BCF 17. Whereas for BCF 24, it is within 2–3 d (disk skimmer) and after 3 d (brush skimmer).For sorbents, an upper viscosity limit for an effective and practical use has in studies been found to be approximately 15,000 cP, which is the viscosity range of some Bunker C oils. Using viscosity data for the relative heavy oils, BCF 17 and BCF 24 (API gravity 17 and 24), the time windows for a sorbent (polyamine flakes) was estimated to be 0–4 and 0–10 d, respectively. With BCF 24, the effectiveness of polyamine flakes, was reduced to 50% after 36 h, although it continued to adsorb for up to 10 d. For BCF 17, the effectiveness of polyamine flakes was reduced to 50% after 12 h, although it continued to adsorb for up to 4 d. The windows-of-opportunity for several centrifuged separators based upon the time period to close the density gap between weathered oils and seawater to less than 0.025 g ml−1 (which is expected to be an end-point for effective use of centrifugal separation technology), were estimated to be 0–18 (ANS) and 0–24 h (Bonnie Light) after the spill. Utilizing the windows-of-opportunity concept, the combined information from a dynamic oil weathering model and a performance technology data base can become a decision-making tool; identifying and defining the windows of effectiveness of different response methods and equipment under given environmental conditions. Specific research and development needs are identified as related to further delineation of windows-of-opportunity.  相似文献   

12.
This paper summarizes the development, field testing and performance evaluation of the Transrec oil recovery system including the Framo NOFO Transrec 350 skimmer and multi-functional oil spill prevention and response equipment and presents performance data, not published before, from full-scale experimental oil spills in the North Sea from 1981 to 1990. The rare data provides useful information for evaluation of mechanical clean-up capabilities and efficiency, in particular, for responders who are using this equipment in many countries around the world.The development of the Transrec oil recovery system represents one of the most comprehensive efforts funded to date by the oil industry in Norway to improve marine and open ocean oil spill response capabilities. The need for improvements was based upon early practical user experience with different oil recovery systems, and test results from experimental oil spills in the North Sea.The result of the development efforts increased: (1) skimmer efficiency from approximately 15–75% (it reached 100% under favorable environmental conditions); (2) oil emulsion recovery rate from approximately 20–300 m3/h; (3) recovery system efficiency from approximately 15–85% in 1.5 m significant wave height; (4) oil emulsion thickness from approximately 15–35 cm; (5) weather-window for mechanical recovery operations from 1.5 to 3.0 m significant wave height; (6) capability for transfer of recovered oil residue to shuttle tankers in up to 4 m significant wave height and 45 knot winds; (7) capability for operations at night.The new Transrec oil recovery system with the special J-configuration virtually eliminated skimming operation downtime, and damage to booms and equipment failures that had been caused by oil spill response vessel (OSRV) problems with maintaining skimming position in the previous three-vessel oil recovery system with the boom towed in U-configuration. The time required to outfit OSRVs dropped from approximately 30–<1 h, reducing time from notification to operation on site by more than 24 h.Improvement in oil recovery resulted in the acceptance of a new oil spill preparedness and response plan. The new plan reduced the need for oil recovery systems from 21 to 14, towing vessels in preparedness from 42 to 18, and personnel on stand-by from 135 to 70, which subsequently reduced the total contingency and operational costs by almost 50%. These cost reductions resulted from lower contingency fees for personnel, fewer towing vessels on stand-by, less expensive open ocean training and exercises, less equipment and reduced storage space to lease, and simplified equipment maintenance.  相似文献   

13.
针对油田单井拉油罐非密封生产带来的油气泄漏问题,建立小型原油储油罐挥发损耗实验模拟平台,通过气相色谱法探究各因素对其损耗的影响,利用Fluent仿真软件模拟储油罐的泄漏扩散。结果表明:储液温度和有无风环境对储油罐非甲烷总烃(NMHC)挥发影响较大,储液高度和环境温度对其影响较小;仿真模拟无风环境下,储油罐泄漏口短时间内存在油气积聚现象;有风环境下,当风速为1 m/s,油气积聚不明显;随风速增大,扩散浓度场面积不断增大,油品损耗量增大,在风速为5 m/s的环境下,扩散300 s时的浓度场面积相比扩散200 s时较小,但泄漏口处的油气积聚面积增大。  相似文献   

14.
Wave action is the most effective natural cleaning agent of oiled shorelines. Therefore, the degree of exposure of a shoreline to wave action dictates how quickly that shoreline will be cleaned by natural processes. In the absence of recorded wave data, a simplified exposure index, tested on the shorelines of Prince William Sound, Alaska oiled during the Exxon Valdez oil spill, can be used to predict potential cleansing by wave action. Wind gauge data correlated with three effective fetch distances measured perpendicular to and at 45° to the shoreline are used to calculate the exposure index. In Prince William Sound, both biological and geomorphological criteria for exposure to waves agreed with the readings calculated for the index. Surface oil on the exposed shorelines was removed quickly during the first storm season. Sheltered coasts were cleaned more slowly. This technique should also work well for other partially enclosed water bodies.  相似文献   

15.
The Svalbard Shoreline Field Trials quantified the effectiveness of sediment relocation, mixing, bioremediation, bioremediation combined with mixing, and natural attenuation as options for the in situ treatment of oiled mixed-sediment (sand and pebble) shorelines. These treatments were applied to oiled plots located in the upper beach at three experimental sites, each with different sediment character and wave-energy exposure. Systematic monitoring was carried out over a 400-day period to quantify oil removal and to document changes in the physical character of the beach, oil penetration, oil loading, movements of oil to the subtidal environment, biodegradation, toxicity, and to validate oil-mineral aggregate formation.The results of the monitoring confirmed that sediment relocation significantly accelerated the rate of oil removal and reduced oil persistence where oil was stranded on the beach face above the level of normal wave activity. Where the stranded oil was in the zone of wave action, sediment relocation accelerated the short-term (weeks) rate of oil loss from the intertidal sediments.Oil removal rates on a beach treated by mechanical mixing or tilling were not significantly higher than those associated with natural recovery. However there is evidence that mixing/tilling may have enhanced microbial activity for a limited period by increasing the permeability of the sediment.Changes in the chemical composition of the oil demonstrated that biodegradation was significant in this arctic environment and a bioremediation treatment protocol based on nutrient enrichment effectively doubled the rate of biodegradation. However, on an operational scale, the success of this treatment strategy was limited as physical processes were more important in causing oil loss from the beaches than biodegradation, even where this oil loss was stimulated by the bioremediation protocols.  相似文献   

16.
Field‐scale estimation of gas permeability and subsequent computation of pore‐gas velocity profiles are critical elements of sound soil venting design. It has been our experience, however, in U.S. Environmental Protection Agency's (EPA's) technical assistance program, provided by the Office of Research and Development in support EPA regional offices, that many venting practitioners are unaware of equations and data interpretation methods appropriate for gas permeability estimation and pore‐gas velocity computation. To ameliorate this situation, we use data collected at a U.S. Coast Guard Station in Traverse City, Michigan, to demonstrate gets permeability estimation and pore‐gas velocity calculation for steady‐state, axisymmetric, two‐dimensional gas flow in a domain open to the atmosphere. For gas permeability estimation, we use random guesses constrained with decreasing intervals of radial and vertical permeabilityand analysis of root mean square errors to ensure attainment of a global versus local minimum. We demonstrate confidence in permeability estimation by providing plots of observed versus simulated pressure response. Finally, we illustrate how plots of pore‐gas velocity as a function of distance and flow rate can be helpful in venting design.  相似文献   

17.
共基质和无机盐对原油降解菌株降解原油效果的影响   总被引:1,自引:1,他引:0  
从大港油田石油污染土壤中分离筛选出1株原油降解菌X3,对原油的降解率达72.6%,经鉴定X3菌株属于假单胞菌属(Psedomonas)。利用生物摇床对X3菌株降解原油的实验发现,共代谢基质α-乳糖对X3菌株降解原油有促进作用,可使原油降解率提高到80.3%;而葡萄糖和蔗糖对X3菌株降解原油有抑制作用。Fe2+对X3菌株的降解原油也有促进作用,在α-乳糖和Fe2+的共同作用下,X3菌株对原油的降解率可达82.3%;K+和Mg2+对X3菌株降解原油则有抑制作用。在FeSO4质量浓度为0.2~0.3mg/L时,X3菌株对原油的降解率最高,FeSO4质量浓度继续增加,X3菌株对原油的降解率下降。  相似文献   

18.
Analysis of oil spills data confirms that accidental oil spills are natural phenomenon and that there is a relationship between accidental oil spills and variables like vessel size, vessel type, time and region of spill. The volume of oil spilled bears relationship with the volume of petroleum imports and domestic movement of petroleum and proportion of large oil spills. Finally, navigational risk increases with increase in marine traffic and is also determined by variables like hydrographic and meteorological conditions, water configuration, maneuvering space, obstructions and nuisance vessels. The Oil Pollution Act, 1990 (OPA 90) was passed by the US Congress in the aftermath of 11 million gallon spill of crude oil in Prince William Sound, Alaska. The objective of OPA 90 was to minimize marine casualties and oil spills by addressing preventive, protective, deterrent and performance aspects of accidental oil spills. The arm of various regulations like double-hull tankers and vessel response plans extended to both US flagged and foreign-flagged tank vessels. The cost–benefit analysis of major regulations shows that the estimated costs exceed estimated benefits. We observe from USCG data on oil spills by size, by vessel type, Coast guard district and type of petroleum product that there have been significant reductions in the number and the quantity of oil spills. Our regression results show that the quantity of oil spilled increases with increase in oil imports but increases at a decreasing rate. The quantity of oil spilled decreases with increases in the domestic oil movements. Furthermore, percent of oil spills larger than 10,000 gallons also increases the potential quantity of oil spilled. OPA 90 has been a deterrent to accidental oil spills but the finding is not conclusive.  相似文献   

19.
以某石化企业内浮顶罐为实例,根据AP-42公式,从浮顶罐结构、油品性质、周转量及环境因素4个方面对内浮顶储罐的VOCs排放进行研究。计算结果表明:浮盘缝隙损耗和挂壁损耗是内浮顶储罐VOCs排放的主要来源;浮盘构造、周转量、罐壁锈蚀程度及边缘密封形式是内浮顶罐VOCs损耗的主要影响因素;罐漆颜色、储罐直径、油品种类及储液温度为次要影响因素;固定顶支撑柱数量、环境湿度及环境风速对储罐挥发损耗的影响较小。针对分析结果,提出降低储罐VOCs挥发损耗的措施。  相似文献   

20.
Acrylonitrile–Butadiene–Styrene (ABS), Polycarbonate (PC) and their alloys are widely used in automotive industry, computer and equipment housings. With increasing disposal of end-of-life electronic equipment, there is also an increased demand for recycling of these materials so that they do not pose environmental challenge as solid waste. One of the recycling approaches is mechanical recycling of these thermoplastics where recycled plastic is melt blended with virgin materials to obtain a high quality product. Besides obtaining desirable mechanical properties, such blends should also conform to fire safety standards. In this work, a series of blends were prepared using PC and ABS recovered from discarded computers and virgin materials using a twin-screw extruder. Their flammability properties were evaluated using burner flammability tests and Ohio State University (OSU) release rate tests. It was found that the extinguishing time, burning extent and weight loss appears to progressively decrease with the addition of both virgin or recycled PC to virgin or recycled ABS. It was also seen that the addition of the 70% of PC, virgin or recycled, to ABS virgin or recycled, appears to significantly decrease heat release and smoke evolution. The results of this study indicate that recycled polycarbonate can be used as an additive for virgin or recycled ABS, as a means of giving flame resistance to ABS in high-value applications. This result is significant when related to the result obtained by a separate study indicating that up to 25% of recycled material can be used without degradation of mechanical properties in the presence of 15% short glass fiber reinforcement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号