首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For a quantitative estimate of the ozone effect on vegetation reliable models for ozone uptake through the stomata are needed. Because of the analogy of ozone uptake and transpiration it is possible to utilize measurements of water loss such as sap flow for quantification of ozone uptake. This technique was applied in three beech (Fagus sylvatica) stands in Switzerland. A canopy conductance was calculated from sap flow velocity and normalized to values between 0 and 1. It represents mainly stomatal conductance as the boundary layer resistance in forests is usually small. Based on this relative conductance, stomatal functions to describe the dependence on light, temperature, vapour pressure deficit and soil moisture were derived using multivariate nonlinear regression. These functions were validated by comparison with conductance values directly estimated from sap flow. The results corroborate the current flux parameterization for beech used in the DO3SE model.  相似文献   

2.
For aerosol measurements, especially those concerned with the aerosol particle size distribution, it is important to sample in isokinetic conditions. Most available instrumentation for aerosol measurements is intended for use on the ground under light wind conditions; intake air speeds rarely exceed a few meters per second. If the same instrumentation is used onboard an aircraft, the air must be decelerated 60 or more m/sec before It is sampled by individual instruments.

On The Pennsylvania State University Meteorology research aircraft, the air for all aerosol instruments is decelerated in a single isokinetic sampler located above the roof of the cabin outside the aircraft boundary layer. The air enters the sampler through a carefully designed circular intake. Its velocity is reduced as the cross section increases along a 7° conical diffuser. The expansion cone terminates in a cylindrical chamber in which the air velocity is 1/16 the aircraft speed. Behind the sampling chamber the air is accelerated in a second conical section to an end exhaust port. Exhaust porf "pumping" is used to compensate internal losses and, thus, helps preserve the isokinetic nature of the sampler.

Tubes leading to individual instruments are located in the sampling chamber and may be individually adapted to match the air sampling velocity with the local air speed inside the sampling chamber. The level of turbulence (urms/û) in the sampling section is =^0.05.

The sampler has been thoroughly wind tunnel and flight tested and successfully used in August and November, 1974, for field programs in the St. Louis and Tucson metropolitan areas, respectively.  相似文献   

3.
4.
VOCs are important precursors of the atmospheric ozone formation species. This study investigated the airborne concentrations of 52 VOCs at two air quality monitoring stations, Daliao and Tzouying, during wintertime in southern Taiwan. Airborne VOCs samples were taken in stainless steel canisters four times per day and analyzed via gas chromatography/mass spectrometry. Maximum increment reactivity (MIR) was used to evaluate the ozone formation potential in this ozone non-attainment region. Toluene, propane, isopentane, propene, n-butane, n-pentane and isoprene contributed 78–79% of the 52 VOCs in Daliao. Toluene, 1-butene, isopentane, propene, propane, n-undecane, and n-butane contributed 71–77% of the 52 VOCs in Tzouying. The VOCs concentrations were higher in Daliao due to the high toluene emissions from a paint plant and a solvent plant in the nearby industrial district. The 24-h VOC concentrations averaged 25 ppb higher in Tzouying than in Daliao. The ozone formation potential of airborne VOCs was 1687–2730 and 1717–2261 μg-O3/g-VOCs in Daliao and Tzouying, respectively. Ozone concentrations in Tzouying were 44 ppb higher than in Daliao during the 1200–1600 sampling period.  相似文献   

5.
Susan Solomon 《Ambio》2021,50(1):44
Crutzen (1974) and Crutzen and Ehhalt (1977) presented two key papers in Ambio that in Ambioexemplify how science first revealed to humankind the potential for damage to our ozone shield in the Anthropocene. Crutzen’s (1974) review is a sweeping summary of the risks to the ozone layer from supersonic aircraft, chlorofluorocarbons, as well as nuclear weapons testing and nuclear war. Crutzen and Ehhalt (1977) described how the nitrous oxide produced from fertilizers could pose another threat to the stability of the stratospheric ozone layer. The two papers are part of a body of influential scientific work that led to the pioneering Montreal Protocol to Protect the Earth’s Ozone Layer to phase out production of chlorofluorocarbons (in 1987), as well as national decisions that slowed or stopped production of supersonic planes (in the 1970s). They remain guideposts today for ongoing international negotiations regarding reducing emissions from fertilizer and limiting nuclear testing.  相似文献   

6.
Closing Remarks     
Considerable attention has been paid in recent years to photochemical smog pollution close to the earth's surface and to stratospheric ozone depletion. There is reason to suspect that the next round of scientific concern will be devoted to the perturbations in the “free troposphere.” Tropospheric ozone has been building up in many regions of the northern hemisphere. Ozone changes in the upper troposphere will exert a considerable impact on global warming. This could affect moisture levels, cloud amount and distribution, precipitation, and atmospheric dynamics on different scales.

This paper analyzes: (1) the physical and chemical processes contributing to changes in tropospheric ozone concentration; (2) the observational evidence of previous ozone change; and (3) results drawn from computer modelling of past and future radiative forcing caused by rising ozone concentrations in the upper troposphere.

The solar and longwave radiative model developed by Wang et al. (1991) was used for calculating the change in radiative forcing to the troposphere-surface system that can be ascribed to changing concentrations in ozone and other greenhouse gases. Nitric oxide emission from aircraft are a prime suspect for the observed increases in upper tropospheric ozone. The inference can be drawn that a radiative forcing of 0.2 to 0.35 Wm-2 will result from a doubling of aircraft emissions over the next two decades. This will amount to 10 to 25 percent of the radiative forcing attributable to CO2 alone for the same period. The effect of doubling aircraft emissions will increase as stratospheric ozone concentrations recover from the recent buildup of harmful chlorofluorocarbons. A large fraction of the radiative forcing that occurred during the 1970 to 1990 period can be attributed to increases in tropospheric ozone as opposed to increases in other greenhouse gases.  相似文献   

7.
An ambient air monitoring program to characterize airborne emissions from the Exxon petroleum refinery at Benicia, California was conducted during September 8–22, 1975. Ground level sampling facilities and an instrumented aircraft provided an integrated, three-dimensional monitoring network. Measurements made during the study included ozone, oxides of nitrogen, methane, carbon monoxide, individual C2-C6 hydrocarbons, halocarbons, condensation nuclei, visual distance and various meteorological parameters. The study focused on three major areas: (1) the characterization of gaseous components within the refinery effluent, especially non-methane hydrocarbons and ozone, (2) natural sunlight bag irradiation experiments to determine the ozone forming potential of refinery emissions, and (3) an investigation of changes in plume chemistry as refinery emissions were transported downwind.  相似文献   

8.
During the Mesoscale Alpine Programme (MAP) special observation period (SOP) between 7 September and 15 November 1999, ground-based and airborne measurements have been conducted in the Rhine valley south of the Lake of Constance to investigate the unstationary aspects of Foehn and related phenomena, like the impact of Foehn on the ozone concentrations in the valley. Foehn events occurred with above-average frequency and high diversity. Foehn induced ozone peaks in October and November are found to be much lower than the September Foehn case of the period. An inversion layer in the lake area with ozone concentrations below 10 ppb often shields the monitoring stations from the Foehn air aloft. Trajectory calculations for the Foehn period between 19 and 24 October 1999 reveal that the Foehn air originated from below 1 to 1.5 km above the Po Basin and the Mediterranean Sea. Tethered balloon soundings in the source area south of the Alps, ozone measurements at the mountain station Jungfraujoch (3580 m a.s.l.) and airborne measurements across the Alpine crests reveal that the ozone levels found in the Foehn air correspond to the concentrations just above the mixing height in the Po Basin and are transported across the Alpine crest within the lowest flow layer.  相似文献   

9.
We have estimated the mixing height (MH) and investigated the relationship between vertical mixing and ground-level ozone concentrations in Seoul, Korea, by using three ground-based active remote sensing instruments operating side by side: micro-pulse lidar (MPL), differential absorption lidar (DIAL), and differential optical absorption spectroscopy (DOAS). The MH is estimated from MPL measurements of aerosol extinction profiles by the gradient method under convective conditions. Comparisons of the MHs estimated from MPL and radiosonde measurements show a good agreement (r2=0.99). Continuous MPL measurements with high temporal and vertical resolution reveal the diurnal variations of the MH under convective conditions and the presence of a residual layer during the nighttime. Comprehensive measurements of ozone and aerosol by MPL, DIAL and DOAS during an high ozone episode (24–26 May 2000) in Seoul, Korea, reveal that (1) photochemical ozone production and advection from upwind regions (the western part of Seoul) contribute two peaks of ozone concentrations at the ground around 14:00 and 18:00 local time on 25 May 2000, respectively, and (2) the entrainment and the fumigation processes of ozone aloft in the nighttime residual layer into the ground is a major contributor of high concentrations of ground-level ozone observed on the following day (26 May 2000).  相似文献   

10.
Indoor air pollutant concentrations can be influenced by how rapidly species are transported to and from surfaces. Consequently, a greater understanding of indoor transport phenomena to surfaces improves estimates of human exposure to indoor air pollutants. Here, we introduce two methods of rapidly and directly measuring species fluxes at indoor surfaces, allowing us to evaluate the transport-limited deposition velocity, vt (a mass-transfer coefficient). The deposition velocity sensor (DeVS) method employs a small microbalance coated with a pure hydrocarbon, preferably octadecane. We quantify flux (or evaporation rate) of the hydrocarbon into a room by observing the rate of mass loss on the microbalance. The transport-limited deposition velocity, vt,octadecane, is then obtained by combining the flux with the vapor pressure of the hydrocarbon. Simultaneously, vt,ozone is quantified using the deposition velocity of ozone (DeVO) method, which acts as a standard to calibrate and evaluate DeVS. Specifically, DeVO evaluates ozone transport to surfaces by quantifying the conversion by ozone of nitrite to nitrate on a glass fiber filter. Simultaneous laboratory chamber experiments demonstrates that vt for octadecane and ozone are strongly correlated, with the values for ozone 1.5 times greater than that for octadecane. In an office experiments, the DeVS method responds within minutes to step changes in conditions such as occupancy, activities and ventilation. At present, the results are in order-of-magnitude agreement with predicted indoor mass-transfer coefficients.  相似文献   

11.
Ambient ozone measurements in the United States and many other countries are traceable to a National Institute of Standards and Technology Standard Reference Photometer (NIST SRP). The NIST SRP serves as the highest level ozone reference standard in the United States, with NIST SRPs located at NIST and at many U.S. Environmental Protection Agency (EPA) laboratories. The International Bureau of Weights and Measures (BIPM) maintains a NIST SRP as the reference standard for international measurement comparability through the International Committee of Weights and Measures (CIPM). In total, there are currently NIST SRPs located in 20 countries for use as an ozone reference standard. A detailed examination of the NIST SRP by the BIPM and NIST has revealed a temperature gradient and optical path-length bias inherent in all NIST SRPs. A temperature gradient along the absorption cells causes incorrect temperature measurements by as much as 2 °C. Additionally, the temperature probe used for temperature measurements was found to inaccurately measure the temperature of the sample gas due to a self-heating effect. Multiple internal reflections within the absorption cells produce an actual path length longer than the measured fixed length used in the calculations for ozone mole fractions. Reflections from optical filters located at the exit of the absorption cells add to this effect. Because all NIST SRPs are essentially identical, the temperature and path-length biases exist on all units by varying amounts dependent upon instrument settings, laboratory conditions, and absorption cell window alignment. This paper will discuss the cause of, and physical modifications for, reducing these measurement biases in NIST SRPs. Results from actual NIST SRP bias upgrades quantifying the effects of these measurement biases on ozone measurements are summarized.

Implications: NIST SRPs are maintained in laboratories around the world underpinning ozone measurement calibration and traceability within and between countries. The work described in this paper quantifies and shows the reduction of instrument biases in NIST SRPs improving their overall agreement. This improved agreement in all NIST SRPs provides a more stable baseline for ozone measurements worldwide.  相似文献   

12.
Determining the destructions of both ozone and odd oxygen, Ox, in the nocturnal boundary layer (NBL) is important to evaluate the regional ozone budget and overnight ozone accumulation. This work develops a simple method to determine the dry deposition velocity of ozone and its destruction at a polluted nocturnal boundary layer. The destruction of Ox can also be determined simultaneously. The method is based on O3 and NO2 profiles and their surface measurements. Linkages between the dry deposition velocities of O3 and NO2 and between the dry deposition loss of Ox and its chemical loss are constructed and used. Field measurements are made at an agricultural site to demonstrate the application of the model. The model estimated nocturnal O3 dry deposition velocities from 0.13 to 0.19 cm s?1, very close to those previously obtained for similar land types. Additionally, dry deposition and chemical reactions account for 60 and 40% of the overall nocturnal ozone loss, respectively; ozone dry deposition accounts for 50% of the overall nocturnal loss of Ox, dry deposition of NO2 accounts for another 20%, and chemical reactions account for the remaining 30%. The proposed method enables the use of measurements made in typical ozone field studies to evaluate various nocturnal destructions of O3 and Ox in a polluted environment.  相似文献   

13.
Data from environmental-chamber studies and photochemical box-model simulations were used to evaluate and revise a method for developing a qualitative understanding of the sensitivity of ozone formation at a particular time and place to changes in concentrations of volatile organic compounds (VOC) and oxides of nitrogen (NOx). The revised method requires measurements of ozone, NO, and either NOx or NOy. The sensitivities of the method to biases in measurements were evaluated. The method potentially can be used for qualitative assessment of VOC versus NOx limitation, comparison with the predictions of grid-based photochemical air-quality models, and evaluation of trends over time in the relative effectiveness of VOC versus NOx controls.  相似文献   

14.
Observations are presented which substantiate the hypothesis that significant vertical exchange of ozone (O3) and aerosol pollutants occurs between the mixed layer and the free troposphere during cumulus cloud convective activity. Flight experiments conducted in July 1981 utilized the airborne UV-DIAL (Ultra-Violet Differential Absorption Lidar) system developed by NASA. This system provides simultaneous range resolved O3 concentration and aerosol backscatter profiles with high spatial resolution. Data were obtained during the afternoon along east-west and south-north intersecting transects over North Carolina in the presence of active, non-precipitating cumulus clouds. Evening transects were obtained in the area indicated by trajectory calculations to be the current position of the air mass sampled earlier in the day. Space-height cross-section analyses for the evening flight show the cloud ‘debris’ as patterns of aerosol and O3 in excess of the ambient free tropospheric background. The O3 excess was approximately the value of the concentration difference between the afternoon mixed layer and free troposphere measured in the afternoon from independent in-situ vertical soundings made by another aircraft.  相似文献   

15.
The physiological and physical processes controlling ozone dry deposition to vegetated surfaces are still not fully understood. In particular, the role of the understorey and the possible action of dew on ozone deposition have not received much attention so far. This paper presents the results of an experiment aimed at quantifying ozone dry deposition to a maritime pine forest in the “Les Landes” area in France. Ozone deposition fluxes were measured using the eddy-covariance technique above and within the canopy. We investigate the factors acting on ozone deposition in both dew-wetted and dry conditions. The values obtained for the ozone deposition velocity are well in the range of previously published measurements over coniferous forests. For the present forest, ozone uptake by the understorey is a significant portion of ozone deposition to the whole pine stand. The understorey contributes more to the overall ozone flux than to the other measured scalar fluxes (sensible heat and water vapour). During dry nights the surface conductance for ozone and the friction velocity are strongly correlated, showing that ozone deposition is largely controlled by dynamical processes. During the day, in dry conditions, the canopy stomatal conductance is the major parameter controlling ozone deposition. However, in winter, when the stomatal conductance is low, the influence of dynamical processes persists during day-time. It is also found that surface wetness associated with dew significantly enhances ozone deposition, during the night as well as in the morning.  相似文献   

16.
The city of Santiago, Chile experiences frequent high pollution episodes and as a consequence very high ozone concentrations, which are associated with health problems including increasing daily mortality and hospital admissions for respiratory illnesses. The development of ozone abatement strategies requires the determination of the potential of each pollutant to produce ozone, taking into account known mechanisms and chemical kinetics in addition to ambient atmospheric conditions. In this study, the photochemical formation of ozone during a summer campaign carried out from March 8–20, 2005 has been investigated using an urban photochemical box model based on the Master Chemical Mechanism (MCMv3.1). The MCM box model has been constrained with 10 min averages of simultaneous measurements of HONO, HCHO, CO, NO, j(O1D), j(NO2), 31 volatile organic compounds (VOCs) and meteorological parameters. The O3–NOx–VOC sensitivities have been determined by simulating ozone formation at different VOC and NOx concentrations. Ozone sensitivity analyses showed that photochemical ozone formation is VOC-limited under average summertime conditions in Santiago. The results of the model simulations have been compared with a set of potential empirical indicator relationships including H2O2/HNO3, HCHO/NOy and O3/NOz. The ozone forming potential of each measured VOC has been determined using the MCM box model. The impacts of the above study on possible summertime ozone control strategies in Santiago are discussed.  相似文献   

17.
The work outlined in this paper had three objectives. The first was to explore the effects of ozone pollution on grain yield and quality of commercially-grown winter wheat cultivars. The second was to derive a stomatal ozone flux model for winter wheat and compare with those already developed for spring wheat. The third was to evaluate exposure- versus flux–response approaches from a risk assessment perspective, and explore the implications of genetic variation in modelled ozone flux.Fifteen winter wheat cultivars were grown in open-top chambers where they were exposed to four levels of ozone. During fumigation, stomatal conductance measurements were made over the lifespan of the flag leaf across a range of environmental conditions. Although significant intra-specific variation in ‘ozone sensitivity’ (in terms of impacts on yield) was identified, yield was inversely related (R2 = 0.63, P < 0.001) to the accumulated hourly averaged ozone exposure above 40 ppb during daylight hours (AOT40) across the dataset. The adverse effect of ozone on yield was principally due to a decline in seed weight. Algorithms defining the influence of environmental variables on stomatal uptake were subtly different from those currently in use, based on data for spring wheat, to map ozone impacts on pan-European cereal yield. Considerable intra-specific variation in phenological effects was identified. This meant that an ‘average behaviour’ had to be derived which reduced the predictive capability of the derived stomatal flux model (R2 = 0.49, P < 0.001, 15 cultivars included). Indeed, given the intra-specific variability encountered, the flux model that was derived from the full dataset was no better in predicting O3 impacts on wheat yield than was the AOT40 index. The study highlights the need to use ozone risk assessment tools appropriate to specific vegetation types when modelling and mapping ozone impacts at the regional level.  相似文献   

18.
Aircraft emissions affect air quality on scales from local to global. More than 20% of the jet fuel used in the U.S. is consumed by military aircraft, and emissions from this source are facing increasingly stringent environmental regulations, so improved methods for quickly and accurately determining emissions from existing and new engines are needed. This paper reports results of a study to advance the methods used for detailed characterization of military aircraft emissions, and provides emission factors for two aircraft: the F-15 fighter and the C-130 cargo plane. The measurements involved outdoor ground-level sampling downstream behind operational military aircraft. This permits rapid change-out of the aircraft so that engines can be tested quickly on operational aircraft. Measurements were made at throttle settings from idle to afterburner using a simple extractive probe in the dilute exhaust. Emission factors determined using this approach agree very well with those from the traditional method of extractive sampling at the exhaust exit. Emission factors are reported for CO2, CO, NO, NOx, and more than 60 hazardous and/or reactive organic gases. Particle size, mass and composition also were measured and are being reported separately. Comparison of the emissions of nine hazardous air pollutants from these two engines with emissions from nine other aircraft engines is discussed.  相似文献   

19.
The distribution of historical ozone levels for a region is tabulated as a function of its prevailing synoptic and mesoscale influences. Meteorological patterns are determined sequentially from extended records of hourly surface wind measurements sampling relevant low-level flows. A visualization method is presented to readily indicate the likelihoods for exceedances to occur under a variety of meteorological conditions. The study domain is San Joaquin Valley (SJV) of California, which is divided into three subregions (North, Central, and South). Each day from May–October of 1996–2004 is labeled using synoptic (single-day) and mesoscale (intra-day) patterns. Emissions levels are assumed roughly constant for this period following the introduction of reformulated gasoline to California. Synoptic motions largely control the regional SJV ozone pollution potential; the same single-day patterns are identified for all three SJV subregions. Additionally, a unique mesoscale flow feature is identified in each subregion that strongly affects its ozone levels: flows through minor Coast Range gaps for N-SJV, the Fresno Eddy for C-SJV, and flows through Mojave Pass for S-SJV. The strength of each mesoscale feature is characterized using 1-h surface u or v wind components that explain local ozone pollution potentials.  相似文献   

20.
Hourly measurements of ozone concentration in the urban atmosphere of Istanbul were carried out from February 1998 to July 1999. An assessment of the annual variations and relationships of ozone concentrations and meteorological variables was made. Annual variations were first examined without considering meteorological variables, and meteorological influences on ozone seasonal values were then examined. Furthermore, a typical ozone threshold period was analysed by considering meteorological variables for a case study. Meteorological conditions favourable for high ozone concentrations appeared when Istanbul and its surrounding region were dominated by an anticyclonic pressure system. During conducive ozone days, southerly and southwesterly winds with low speeds (daytime mean value <11m1sSUP align=right>-1) influence Istanbul.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号