首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为探究烧烤场景中人群多环芳烃(PAHs)的暴露特征与健康风险,使用美国环保署推荐的计算模型和基于生理的药代动力学模型(PBPK)模拟了我国人群的PAHs外暴露剂量和健康风险以及内暴露剂量变化情况。结果表明:1)普通居民和职业人群的日均苯并[a]芘等效摄入剂量为(50±3)ng·d~(-1)和(179±98)ng·d~(-1),其终生致癌风险为7.57×10~(-7)~1.28×10~(-5),均在可接受范围内;2)普通居民暴露后体内组织中PAHs内暴露标志物芘的最大浓度范围依次为肝(6.52~8.67 ng·L~(-1))肾(0.97~1.12 ng·L~(-1))静脉血(0.71~0.94 ng·L~(-1))皮肤(0.64~0.75 ng·L~(-1))脂肪(0.36~0.56 ng·L~(-1)),职业人群暴露后体内组织芘最大浓度为脂肪(2.97ng·L~(-1))皮肤(1.14 ng·L~(-1))≥肾(1.14 ng·L~(-1))肝(0.57 ng·L~(-1))静脉血(0.17 ng·L~(-1));3)膳食是普通人群的主导暴露途经,会导致肝组织浓度最大;呼吸和皮肤接触是职业人群的主导暴露途经,会导致脂肪组织浓度最大;4)暴露标志物芘的组织总富集量关系为职业人群(48 ng·d~(-1))大于普通人群(6~11 ng·d~(-1))。  相似文献   

2.
为探究海洋中多环芳烃(PAHs)对海洋生物的毒性作用,以皱纹盘鲍(Haliotis discus hannai)为受试生物,采用半静水式实验方式,探讨了2种多环芳烃苯并[a]芘和9,10-二甲基蒽对皱纹盘鲍早期发育的毒性效应。在不同浓度的苯并[a]芘和9,10-二甲基蒽作用下,观察皱纹盘鲍的卵子受精率、胚胎发育时间和幼体死亡率。结果表明,高浓度的多环芳烃处理组与对照组相比,卵子的受精率显著降低,胚胎发育时间和幼体死亡率显著增加,与处理浓度之间存在显著的剂量-效应关系(P<0.05)。3~12 d中,苯并[a]芘对皱纹盘鲍幼体的LC_(10)分别为11.6、8.18、7.67和7.66 mg·L~(-1),9,10-二甲基蒽对皱纹盘鲍幼体的LC10分别为14.91、14.11、12.82和9.64 mg·L~(-1)。苯并[a]芘毒性大于9,10-二甲基蒽。  相似文献   

3.
混种模式对土壤中PAHs污染的强化修复作用   总被引:1,自引:0,他引:1  
以菲、芘为多环芳烃(PAHs)的代表,选择多环芳烃初始浓度在20.05~322.06 mg·kg-1的污染土壤为研究对象,采用温室盆栽的方法,选用三叶草(Trifolium repens)单种、紫花苜蓿(Medicago sativa)单种和三叶草-紫花苜蓿混种3种模式,通过测定实验70 d后土壤中PAHs的浓度,研究不同种植模式下植物对PAHs污染的去除效果和修复机制。结果表明,(1)在实验浓度范围内,在三叶草和紫花苜蓿混种模式下,土壤中PAHs的去除率最高,明显高于单种模式。在70 d的实验期间,约有75.47%的菲和68.28%的芘被降解,而单种模式下三叶草和紫花苜蓿对菲的降解率分别为31.79%和64.03%,对芘的降解率分别为27.97%和52.18%。(2)相同污染水平下,茎叶部PAHs的含量低于根部,菲的含量低于芘,混种模式下植物体内PAHs的含量低于单种模式下的含量。(3)生物作用对土壤中菲的去除率在三叶草、紫花苜蓿组和混合组中分别为26.69%、58.98%和69.84%,对芘的去除率分别为25.29%、48.98%和65.86%,明显高于非生物作用。在生物作用中植物-微生物的联合效应是最主要的,在三叶草组、紫花苜蓿组和混合组中对菲、芘的去除率分别为6.95%、34.85%、42.95%和6.3%、26.78%、38.98%。微生物作用在各种模式下相同,混种模式下,植物作用、植物-微生物联合效应均高于单种模式。说明借助多物种混合种植模式对改善PAHs污染土壤修复效果、减少植物体内PAHs积累和缓解生态风险具有可行性。  相似文献   

4.
微杆菌3-28对萘、菲、蒽、芘的降解   总被引:3,自引:0,他引:3  
研究了以多环芳烃为唯一碳源富集培养的微杆菌3-28对不同多环芳烃化合物(Polycyclic aromatichydrocarbons,PAHs)及混合PAHs的降解能力,以及在无机基础培养基中生长时PAHs浓度与一些主要环境因子如pH值、盐度、温度对细菌降解PAHs的影响.结果表明,微杆菌3-28X对萘、菲、蒽和芘均有较高的降解能力,112 h后萘与菲完全降解,而蒽和芘28 d的降解率分别为97.54%、90.2%.初始底物浓度会影响细菌生长速率,底物浓度过高不利于细菌生长.相同培养时间下多底物培养液中的菌群浓度明显高于单底物系统.微杆菌3-28能够在pH 6.0-9.0、盐度10~30g/kg,温度40~55℃的环境下生存,并保持较高的降解能力.图8参33  相似文献   

5.
海洋中的多环芳烃(PAHs)具有较强的生物毒性,且海洋动物早期发育阶段是对环境因素变化响应的最敏感阶段。为探究海洋多环芳烃类有机污染物对仿刺参(Apostichopus japonicus)早期发育阶段原肠胚的毒性影响,采用半静态毒性实验方法,分别考察了4种多环芳烃苯并[a]芘、3-甲基菲、惹烯及2-甲基蒽对仿刺参原肠胚的24、48、72、96 h急性毒性效应。结果表明,在10、50、100、200μg·L~(-1)暴露浓度下,随着暴露时间的延长和暴露浓度的升高,4种多环芳烃对仿刺参原肠胚产生不同程度的急性毒性效应,仿刺参原肠胚存活率与4种多环芳烃浓度之间分别存在显著的剂量-效应关系(P0.05)。苯并[a]芘对仿刺参原肠胚在24、48 h的半致死浓度(LC_(50))分别为294.4、225.64 mg·L~(-1),3-甲基菲在24、48、72、96 h的LC_(50)分别为404.5、300.7、81.4、17.6mg·L~(-1),惹烯在24、48、72 h的LC_(50)分别为243.1、230、186 mg·L~(-1),2-甲基蒽在24、48、72、96 h的LC_(50)分别244、231.6、152.6、142.9 mg·L~(-1)。4种多环芳烃的安全浓度(SC)分别为39.76、49.8、61.8、62.6μg·L~(-1),其毒性大小顺序为苯并[a]芘3-甲基菲惹烯2-甲基蒽。基于定量构效关系(QSAR)的研究结果可知多环芳烃化合物的毒性差异可能与分子结构等性质有关。该实验为深入研究多环芳烃对海洋环境的毒性效应提供了理论依据。  相似文献   

6.
文献中多采用生物体内实验方法来研究污染物对植物酶的诱导作用,但体内实验操作相对繁琐,耗时长,亟需采用一种快速、简便的体外实验方法来研究多环芳烃(PAHs)等对植物酶的影响。采用植物体外实验方法,以三叶草(Trifolium repens)为供试植物,研究了三叶草茎叶中多酚氧化酶(PPO)对二环PAHs苊和四环PAHs芘的体外诱导响应。结果表明,ρ(苊)为0~39.68 mg·L~(-1)时,三叶草茎叶PPO活性随苊污染浓度增大而升高,表现为诱导效应;ρ(芘)为0~0.16 mg·L~(-1)时,PPO活性随芘污染浓度增大呈先升高后降低趋势,表现为先诱导后抑制效应。三叶草茎叶PPO对苊和芘的体外污染的敏感性响应顺序为苊芘,与其自身毒性顺序一致。采用体外实验方法可快速、有效、简单地评价PAHs对植物PPO的诱导效应。  相似文献   

7.
利用顶空固相微萃取-气相色谱/质谱联用技术,定量测定了杭州湾乍浦沿岸13个站位海水中的16种多环芳烃,探讨了多环芳烃化合物在该区域的组成及来源.结果显示,杭州湾各站位总PAHs的质量浓度为227.12—406.86 ng·L~(-1),均值298.06 ng·L~(-1).经对PAHs组分分析判定杭州湾乍浦沿岸海水中PAHs主要来源于石油及其产品的高温燃烧.各种多环芳烃的含量与国际生物学组织或国家制定的评价水生生物暴露于水体的安全食用标准相比,除了苯并[a]芘其他均未超标.  相似文献   

8.
本研究建立了检测污泥中16种多环芳烃(PAHs)的气相色谱-质谱测定方法,对该介质中16种多环芳烃(PAHs)的提取、净化和色谱质谱条件进行了优化.采用100 m L正己烷∶丙酮(V∶V,50∶50)混合溶剂索式提取样品中的待测组分,经分子印迹固相萃取柱(MIPs/SPE)净化,内标法定量.结果表明,分子印迹固相萃取柱(MIPs/SPE)对PAHs单体专一吸附效果显著,对中环、高环PAHs的吸附明显,并且基质效应减弱.16种多环芳烃的线性范围为10—5000 ng·m L~(-1),相关系数(R2)不低于0.9978,加标水平为50、250、500 ng·m L~(-1)时,基质平均加标回收率分别为60%—105%,58%—121%和63%—115%,相对标准偏差(RSDs,n=6)为3.8%—9.4%.该方法快速、准确、灵敏度高、重现性好.  相似文献   

9.
多环芳烃(PAHs)在水环境中可以通过化学或微生物作用转化成其衍生物(SPAHs),而SPAHs可能具有更强的毒性和"三致性"从而危害人体健康。为探明污水厂中PAHs和SPAHs的存在性及不同二级处理和再生水处理工艺对它们的去除效果,对北京及广东共4座污水处理厂中PAHs及SPAHs进行了检测,同时对再生水进行了健康风险评价。结果显示:从进水浓度来看,4座污水处理厂中,低环芳烃浓度(191.8~394.2 ng·L~(-1))明显高于高环芳烃(89.3~108.2 ng·L~(-1));SPAHs中氧取代物(OPAHs)总浓度(253.8~322.2 ng·L~(-1))高于甲基取代物(MPAHs,44.3~220.4 ng·L~(-1))。不同二级处理工艺对PAHs的去除率为43.7%~58.2%,对SPAHs的去除率为45.8%~52.1%。不同再生水处理工艺对PAHs和SPAHs去除率差别较大,PAHs的去除率范围为1.8%~41.1%,SPAHs的去除率范围在2.35%~25.9%。结果表明,目标物的去除以生物降解为主,此外,吸附在固体颗粒上,随颗粒沉淀去除也是主要途径之一。通过对污水厂再生水的风险评价,苯并[a]芘(BaP)和二苯并[a,h]蒽(DBA)2种强致癌物TEQ浓度均高于1,其致癌风险较大,安全性有待提高。  相似文献   

10.
李容榛  李成  赵暹  刘春敬  孟靖凯  谢建治 《环境化学》2019,38(10):2274-2282
从活性污泥中分离出1株以邻苯二甲酸二丁酯(DBP)为碳源和能源生长的高效降解菌DP-2,经形态观察、生化鉴定及16S rDNA序列分析,鉴定该菌株为不动杆菌(Acinetobacter sp.).采用单因素试验研究了不同试验条件(接种量、DBP浓度、NaCl浓度和碳源)对菌株DBP降解特性的影响,结果表明:接种量大于10%时,菌株DP-2在3 d内对初始浓度为10 mg·L~(-1)的DBP降解率可达到90%以上;DBP初始浓度为5—50 mg·L~(-1)时,菌株在6 d内对DBP降解率均能达到90%以上,但高浓度DBP会影响菌株DP-2生长,DBP浓度为1000 mg·L~(-1)时,DBP降解率仅为26.88%;菌株降解DBP的最佳NaCl浓度范围为0—20 g·L~(-1);此外,醋酸钠、蔗糖、葡萄糖添加对于菌株降解DBP均有一定的促进作用,其中葡萄糖效果最为明显.在此基础上,采用响应曲面法优化了菌株降解DBP的培养条件并进行了试验验证,在盐度为5 g·L~(-1),接种量为17.14%,底物浓度为9.81 mg·L~(-1),菌株对DBP的降解率为85.86%.  相似文献   

11.
芘对玉米根系分泌氨基酸的影响   总被引:3,自引:0,他引:3  
植物根系释放分泌物是根际修复土壤多环芳烃污染的重要机制之一,但对于多环芳烃污染下根系分泌物的研究很少.以玉米Zea mays L.为供试材料,通过土培培养试验方式研究了在多环芳烃芘处理下,玉米根系分泌氨基酸的变化.结果表明,种植玉米2 1 d后,低质量分数芘(75 mg·kg-1)处理和高质量分数芘(600 mg·kg-1)处理种植玉米土壤芘的去除率分别为36.0%和28.2%.氨基酸分泌总量随着芘胁迫的加强显著增多,低质量分数芘处理和高质量分数芘处理下氨基酸分泌总量分别是无芘胁迫处理下的1.25倍和5.12倍.不同芘质量分数处理下玉米根系分泌的氨基酸的种类和数量的变化情况不相同.  相似文献   

12.
小麦根系菲与磷吸收及转运的相互作用   总被引:1,自引:0,他引:1  
作物根系对多环芳烃(PAHs)与磷吸收及转运之间的相互作用研究对农产品的安全生产和PAHs污染环境植物修复的强化具有重要意义。为此,本文以菲为PAHs的代表,采用水培试验研究了不同磷、菲水平下小麦根系菲、磷吸收及其转运的效果,旨在揭示植物根系吸收PAHs与磷素的相互作用。结果表明,在0~1 200μmol·L~(-1)磷浓度范围内,小麦根系、茎叶菲含量在低磷浓度(10μmol·L~(-1))时最高,分别为36.87 mg·kg~(-1)和2.07 mg·kg~(-1);磷含量总体呈现随磷处理浓度的升高而增大的趋势;成对数据t-检验显示无论加菲与否,根系、茎叶磷含量无显著性差异(P0.05)。磷可促进菲从根部向地上部转运,而菲对磷转运没有显著性影响。在低磷浓度下(10μmol·L~(-1)),随着菲浓度的升高,小麦根系、茎叶菲含量呈现显著升高趋势(P0.05)。磷、菲共存处理介质pH升高幅度大于单一处理。  相似文献   

13.
发酵牛粪和造纸干粉对土壤中多环芳烃降解的影响   总被引:3,自引:0,他引:3  
运用泥浆反应法研究添加发酵牛粪和造纸干粉对土壤中多环芳烃(PAHs)降解的影响.试验按水土比2:1制成泥浆反应器,设置对照、添加2.5%发酵牛粪和添加2.5%造纸干粉等3个处理,25~28℃摇床培养,分别于10、20、30 d采样测定土壤中多环芳烃降解菌的数量和多环芳烃含量.结果发现,所有处理土壤中多环芳烃的含量均随培养时间的延长而逐渐降低,而添加发酵牛粪和造纸干粉均有利于提高土壤中多环芳烃降解菌的数量,在培养30 d后土壤中多环芳烃的降解率分别从对照处理的19%显著提高到37%和35%(P<0.05).结果还发现,多环芳烃分环降解率随苯环数增加而下降,培养30 d后土壤中2环多环芳烃的降解率达95%以上,3环多环芳烃的降解率为50%左右,对照处理4~6环多环芳烃的降解率为7%~13%,而添加发酵牛粪和造纸干粉处理土壤中4~6环多环芳烃的降解率显著提高到21%~28%(P<0.05),但对2~3环多环芳烃的降解无明显影响,表明这两种物质对土壤中多环芳烃降解的影响关键在于促进高环多环芳烃降解菌的生长繁殖及降解活性.  相似文献   

14.
本文采集并分析了新疆准东煤矿开采区域6个采样点的降尘、土壤和植物的样品,对样品中16种多环芳烃(PAHs)的含量进行了分析,结果显示,降尘中∑PAHs在1.07—8.34 mg·kg~(-1)间;土壤中(除1#点位)∑PAHs在0.134—1.06 mg·kg~(-1)间;植物中(除1#点位)∑PAHs在0.163—1.54 mg·kg~(-1)间.降尘中高含量PAHs主要为苯并[b]荧蒽、菲和萘;土壤中高含量PAHs主要为菲、荧蒽和蒽;植物中高含量PAHs主要为萘、菲和芴.降尘、土壤及植物中PAHs均显示出富三环的特征;研究区域土壤中PAHs的苯并(a)芘等效毒性当量结果显示,研究区域土壤中PAHs的污染存在一定的潜在风险.  相似文献   

15.
本文采用GC-MS结合同时溶剂浓缩(CSR)大体积不分流进样技术,建立了高效、灵敏测定环境水体中18种PAHs的检测方法.优化了提取溶剂种类、用量等参数,并确定以含多环芳烃内标的0.5 m L环己烷做溶剂作为最佳提取条件;采用GC-MS进行分析,通过在分析柱与分流不分流进样口间串接5m×0.53mm预柱的方式,使得进样体积高达50μL,以提高对多环芳烃的检测灵敏度.实验结果表明,使用大体积不分流进样技术,进样体积为50μL时,对各多环芳烃的检测相比传统不分流进样1μL,灵敏度提高了近50倍;18种多环芳烃在0.1—10μg·L-1的范围内,线性相关系数大于0.9992、精密度小于4.5%(n=8),对实际水样,加标5 ng·L~(-1)的回收率为63.5%—119.5%、加标25、50 ng·L~(-1)水平下的加标回收率为76.2%—119.5%.同时以3倍信噪比计算,各组分方法检出限(MDL)为0.010—0.068 ng·L~(-1).总体来看,采用CSR-GCMS对水体中多环芳烃的分析能够大大减少前处理过程中对样品浓缩的时间耗费,并避免低沸点多环芳烃的损失,是一种非常灵敏、高效的检测方法.  相似文献   

16.
本研究利用发光细菌急性毒性实验测定了长江口及其邻近海域表层沉积物中有机污染物的复合毒性,同时运用气相色谱-质谱联用仪测定了沉积物中16种美国环境保护局(United States Environmental Protection Agency, US EPA)规定的优先控制的多环芳烃(polycyclic aromatic hydrocarbons, PAHs)的浓度。在此基础上,分析其时空分布特征及多环芳烃毒性贡献,并评估其环境风险。结果表明,2019年长江口及邻近海域表层沉积物中16种PAHs总浓度范围为32.84~283.47 ng·g(-1);2020年浓度范围为66.93~132.64 ng·g(-1);2020年浓度范围为66.93~132.64 ng·g(-1)。在空间分布上,2019年长江口表层沉积物中PAHs在靠近渔港的区域呈现较高浓度(S3=(283.47±29.94) ng·g(-1)。在空间分布上,2019年长江口表层沉积物中PAHs在靠近渔港的区域呈现较高浓度(S3=(283.47±29.94) ng·g(-1)),而2020年在靠近舟山岛的区域呈现较高浓度(L6=(132.64±9.95) ng·g(-1)),而2020年在靠近舟山岛的区域呈现较高浓度(L6=(132.64±9.95) ng·g(-1))。与2019年相比,2020年多环芳烃的平均浓度有所降低,且其细胞毒性量化指标——生物分析当量浓度(BEQ_(bio))的平均值(66.62 mg·kg(-1))。与2019年相比,2020年多环芳烃的平均浓度有所降低,且其细胞毒性量化指标——生物分析当量浓度(BEQ_(bio))的平均值(66.62 mg·kg(-1))远低于2019年(128.20 mg·kg(-1))远低于2019年(128.20 mg·kg(-1))。在长江口沉积物毒性当量浓度中PAHs所占比例较小,2019年和2020年由PAHs引起的细胞毒性的平均占比分别为4.46%和4.25%。该结果表明,检测到的PAHs仅能解释所观察到的复合毒性效应的一小部分,因此,还需要进一步对其他未检测的化学物质进行测试分析。  相似文献   

17.
采用固相萃取-气相色谱质谱联用仪测定京津潮白河中的多环芳烃(PAHs)及其衍生物(SPAHs)的污染水平,并采用絮凝法分析水样中自由态PAHs/SPAHs和结合态PAHs/SPAHs的分布。结果表明,京津潮白河中PAHs和SPAHs总质量浓度分别为55.06~215.02 ng·L~(-1)和92.37~227.33 ng·L~(-1),上游河段PAHs和SPAHs质量浓度均低于下游河段。7种致癌PAHs占比为22%~41%,需引起重视。本研究中的SPAHs包括三类物质:氧化PAHs(OPAHs)、甲基PAHs(MPAHs)和氯代PAHs(Cl PAHs)。其中,OPAHs对SPAHs贡献最大(59%~71%),其次是Cl PAHs(22%~32%)和MPAHs(7%~14%)。京津潮白河中PAHs和SPAHs主要以自由态形式存在,总浓度可以准确估计污染物的环境风险。  相似文献   

18.
采用溶剂挥发诱导自组装结合提拉法在不锈钢丝表面制备了以有序介孔碳(Ordered mesoporous carbon,OMC)为涂层的固相微萃取(Solid phrase microextraction,SPME)纤维,考察了该纤维的萃取效果和在高温下的稳定性,建立了水中多环芳烃(Polycyclic aromatic hydrocarbons,PAHs)污染物的固相微萃取测定分析方法.扫描电镜(Scanning electron microscopy,SEM)结果表明,制备的OMC涂层连续完整且与不锈钢基体紧密结合,厚度约为11μm.氮吸附脱附结果证明,涂层材料具有规整的二维六方特征,孔径集中分布在3.8 nm,比表面积和孔容分别为522 m~2·g~(-1)和0.36 cm3·g~(-1).以水中多环芳烃类污染物作为分析对象,采用固相微萃取与气相色谱联用法探讨了OMC涂层对多环芳烃类污染物的萃取效果,对萃取方式、萃取时间、萃取温度、搅拌速度等条件进行了优化,并与商品化涂层进行了对比.结果表明,采用直接固相微萃取方式,萃取时间30 min,萃取温度50℃,搅拌速率800 r·min-1萃取效率最高;在最佳萃取条件下,OMC涂层分析5种PAHs的检测限范围是0.004—0.012μg·L~(-1),定量限范围0.010—0.025μg·L~(-1);萘和苊在0.1—250μg·L~(-1)范围内,芴、荧蒽和芘在0.25—100μg·L~(-1)范围内线性关系良好;单根纤维相对标准偏差(RSD)为3.9%—7.4%,多根纤维相对标准偏差为6.7%—9.8%.自制OMC纤维在350℃高温热解析80次后萃取效率不变,且对PAHs的萃取效率优于商用聚二甲基硅氧烷/二乙烯基苯(Polydimethylsiloxane/divinylbenzene,PDMS/DVB)涂层.将自制纤维应用于两种实际水样的固相微萃取分析中,分别添加0.25μg·L~(-1)和100μg·L~(-1)的样品回收率分别为81.3%—92.8%和89.3%—108.8%.  相似文献   

19.
0,0-二甲基-(2,2,2-三氯~(-1)-羟基乙基)磷酸酯(敌百虫)为广谱杀虫剂,用途广泛,但对藻类的毒理学效应研究还有待完善。采用4种受试藻样,设置5个敌百虫浓度组(1、5、10、50和100 mg·L~(-1))和对照组,实验周期40 d,藻细胞的初始接种密度106cells·m L~(-1),光暗比12 h/12 h,24 h曝气,24 h磁力搅拌,实验温度25℃,p H 6.8,每隔24 h取样。结果表明:5 mg·L~(-1)、10 mg·L~(-1)、50 mg·L~(-1)浓度的敌百虫对铜绿微囊藻和小球藻的生长有促进作用,其中以50 mg·L~(-1)浓度组的促进作用最为显著,促进作用主要表现在生长峰值的延后以及生长对数期的延长,而高剂量(100 mg·L~(-1))的敌百虫则有抑制藻生长的作用。取50 mg·L~(-1)敌百虫浓度组以及铜绿微囊藻和小球藻作进一步深入研究,结果表明:50 mg·L~(-1)敌百虫浓度组的叶绿素a含量峰值比对照组高30%,细胞体内的SOD、ATP含量都高于对照组。敌百虫的使用浓度通常在0.1~1.0 mg·L~(-1),低于本实验最佳浓度。本实验中1 mg·L~(-1)敌百虫对藻生长影响效果不明显。  相似文献   

20.
于2015年6月采集日照市岚山化工园区和临沂市罗庄华宇电解铝厂周围土壤样品,分析了16种多环芳烃(PAHs)的含量和组成,研究了距化工区不同距离的土壤中PAHs含量和组成的变化、来源及健康风险.结果表明,岚山化工园区周围土壤中PAHs总含量(∑_(16)PAHs)(2764.2—3435.9μg·kg~(-1))略高于华宇电解铝厂周边土壤中∑_(16)PAHs(2729.7—3047.5μg·kg~(-1)),均达到重度污染.两化工厂周边土壤中各环数PAHs所占比例大小顺序均为4环5环3环2环和6环,但各PAHs化合物的组成存在差异.距化工区越远,土壤中∑_(16)PAHs含量越低,但各环数PAHs含量变化不一致.同分异构体比值法结果表明,两化工厂PAHs主要来源是燃煤和石油燃烧.正定矩阵因子分解法表明,岚山化工园区周围土壤PAHs的来源中燃煤源占36%,汽油和柴油燃烧源占21.6%,生物质燃烧源占19.1%,石油源和焦炭燃烧混合源占19.3%.华宇电解铝厂周围土壤PAHs的来源中燃煤源占33.5%,汽油燃烧源占24.8%,柴油燃烧源占31.4%,生物质燃烧源占10.3%.岚山化工园区周围土壤PAHs来源中燃煤源所占比例高于华宇电解铝厂,汽油和柴油燃烧源所占比例低于华宇电解铝厂.岚山化工园区和华宇电解铝厂周边土壤中PAHs的总Ba P_(eq)平均值分别为326.7μg·kg~(-1)和441.1μg·kg~(-1),均低于加拿大土壤质量指导值600μg·kg~(-1).健康风险评估表明,华宇电解铝厂总ILCRs值(3.9×10~(-6)—6.0×10~(-6))高于岚山化工园区(2.9×10~(-6)—4.5×10~(-6)).两化工厂周围土壤总ILCRs值大于1×10~(-6),均存在潜在的致癌风险.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号