首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
In Part 1 of this paper [beginning on page 54], the heat flow in contour laser beam cutting was calculated by using the finite difference model, and a modified analytic model was developed based on the numerical experiments Part 2 addresses the problem of optimal torch path planning for the 2D laser cutting of a stock plate nested with irregular parts. Under the constraint of the relative positions of parts enforced by nesting, the optimization algorithm generates a feasible cutting path. The simulated annealing technique is adopted for solving the torch path optimization problem to minimize a specified cost function. The objective is to traverse the cutting contours with a minimum path length and, at the same time, to minimize the effect of heat on the cutting path sequence. To minimize the heat effect and avoid overheating, the critical temperature that should be avoided during the whole cutting sequence is considered in this way, a global solution can be obtained in a reasonable time. Several examples are presented to illustrate the effectiveness of the proposed method.  相似文献   

2.
A new approach to theoretical modeling and simulation of face milling forces is presented. The present approach is based on a predictive machining theory in which machining characteristic factors in continuous cutting with a single-point cutting tool can be predicted from the workpiece material properties, tool geometry, and cutting conditions. The action of a milling cutter is considered as the simultaneous work of a number of single-point cutting tools, and the milling forces are predicted from input data of workpiece material properties, cutter parameters and tooth geometry, cutting condition, cutter and workpiece vibration structure parameters, and types of milling. A predictive force model for face milling is developed using this approach. In the model, the workpiece material properties are considered as functions of strain, strain rate, and temperature. The ratio of cutter tooth engagement over milling is taken into account for the determination of temperature in the cutting region. Cutter runout is included in the modeling for the chip load. The relative displacement between the cutter and workpiece due to the cutter and workpiece vibration is also included in the modeling to consider the effect on the undeformed chip thickness. A milling force simulation system has been developed using the model, and face milling experimental tests have been conducted to verify the simulation system. It is shown that the simulation results agree well with experimental results.  相似文献   

3.
The mechanisms of melt ejection and striation formation in continuous wave laser cutting of mild steel are discussed. Melt ejection from the cutting front is shown to be a cyclic phenomenon. Striation formation is strongly affected by the oscillatory characteristic of the thin liquid film on the cutting front during melt ejection, together with the oxidation and heat transfer process. Cutting speed determines whether the liquid film will rupture or generate waves on the cutting front. Theoretical explanations are given according to the instability theory of a thin liquid film in a high-velocity gas jet and the diffusion-controlled oxidation theory. Striation frequency and depth are predicted according to the above theories. Experimental investigations were carried out and the results are consistent with the calculations. The better understanding has shed light on further investigations and optimal process development.  相似文献   

4.
Cost-effective machining of hardened steel components such as a large wind turbine bearing has traditionally posed a significant challenge. This paper presents an approach to machine hardened steel parts efficiently at higher material removal rates and lower tooling cost. The approach involves a two-step process consisting of laser tempering of the hardened workpiece surface followed by conventional machining at higher material removal rates with lower cost ceramic tools to efficiently remove the tempered material. The laser scanning parameters that yield the highest depth of tempered layer are obtained from a kinetic phase change model. Machining experiments are performed to demonstrate the possibility of higher material removal rates and improved tool wear behavior compared to the conventional hard turning process. Tool wear performance, cutting forces, and surface finish of Cubic Boron Nitride (CBN) tools as well as low cost ceramic tools are compared in machining of hardened AISI 52100 steel (~63 HRC). In addition, cutting forces and surface finish are compared for the laser tempering based turning and conventional hard turning processes. Experimental results show the potential benefits of the laser tempering based turning process over the conventional hard turning process.  相似文献   

5.
Laser cutting of alumina tiles is carried out, and the temperature and stress fields developed in the cutting section are predicted numerically using ABAQUS finite element code. The morphological changes along the cut edge surfaces are examined using the optical and scanning electron microscopes. The residual stress formed in the cutting section is obtained after incorporating the XRD technique. The residual stress predicted is compared with the experimental data. It is found that the residual stress predicted agrees well with the experimental results. The dross attachment at the kerf exit is observed, which is associated with the high melting temperature of the workpiece.  相似文献   

6.
运用HZAOP分析方法,对封闭式地面火炬进行风险辨识,以某地面火炬为例,系统分析了泄放气流量、液含量、烟气出口温度、火炬筒体温度、火焰高度、燃烧状态、噪声等控制参数有意义的偏差、可能的原因、可能导致的后果,并针对高风险的偏差提出建议措施。分析结果表明,HAZOP应用于封闭式地面火炬设计,能系统地辨识地面火炬中存在的安全隐患,有助于提高装置的本质安全。  相似文献   

7.
A new approach for the machining of tantalum is presented. The new approach is a combination of traditional turning and cryogenically enhanced machining (CEM). In the tests, CEM was used to reduce the temperature at the cutting tool/workpiece interface, and thus reduce the temperature-dependent tool wear to prolong cutting tool life. The new method resulted in a reduction of surface roughness of the tantalum workpiece by 200% and a decrease of cutting forces by approximately 60% in experiments. Moreover, cutting tool life was extended up to 300% over that in the conventional machining.  相似文献   

8.
介绍用Basic语言编制国内常见的数控电火花线切割 3B格式程序的计算机仿真程序。可实现在计算机上模拟显示线切割加工轨迹 ,从而可验证所编 3B程序的正确性等。  相似文献   

9.
Environmental issues in machining have led to a push to curtail the use of cutting fluids. However, cutting fluid effects on part quality, process planning, and operator exposure to aerosols need to be first studied. The effects of cutting fluid application on hole accuracy and mist generation have been studied for blind-hole drilling of A390.0 aluminum alloy. Different cutting fluid types and application modes were tested under varying conditions of cutting speed, feed, and hole depth. The cooling and chip-transporting ability of cutting fluids was found to have the maximum effect on dimensional accuracy. Dry cutting yielded holes with the least accuracy, while mist lubrication was found to give superior dimensional accuracy to dry cutting but had the worst aerosol concentration. Flooding with synthetic cutting fluid gave the best overall results.  相似文献   

10.
This study investigates the effects of four different variables (initial workpiece temperature, side rake angle, edge radius/feed rate, and nose radius/depth of cut) on ductile regime machining of a bioceramic material known as nanohydroxyapatite (nano-HAP) using 3D numerical simulation. AdvantEdge FEM Version 5.9 is used to conduct turning simulations of the nano-HAP workpiece. Tecplot 360 is used to analyze the results of the simulations. Because the workpiece is thin, the entire workpiece is set to a uniform initial temperature to simulate laser preheating of the material. Initial workpiece temperature, rake angle (side rake angle), edge radius, and nose radius are varied, and the effects of these operating conditions on critical feed are investigated. It is found that critical feed increases as initial workpiece temperature increases, and also as negativity of rake angle increases. For the edge radius, it is concluded that an initial increase causes an increase in critical feed – however, at some value of edge radius, critical feed shows no further increase; for the nose radius, critical feed appears to show no significant dependence.  相似文献   

11.
Laser forming, a novel manufacturing method for bending sheet metal first reported in 1985, has been investigated as an alternative to hot brake forming (industry standard) of titanium sheet parts for the aircraft industry. Laser forming involves scanning a focused or partially defocused laser beam over the surface of a titanium workpiece to cause localized heating along the bend line and angular deflection toward the beam. The main advantage that laser forming has over conventional brake forming is increased process flexibility. An experimental investigation of this process (primarily designed experiments) met the following objectives: identified the response variables related to change in geometry (bend angle) and material microstructure; characterized the influence of process variables (scanning speed, beam diameter, laser power) on these response variables; determined the degree of controllability over the process variables; and evaluated the suitability of laser forming for the aircraft industry (most important), all with respect to titanium sheet. It has been determined that laser forming with an Nd:YAG laser is a controllable, flexible manufacturing process for titanium sheet bending. Unfortunately, these advantages over traditional hot brake forming are overshadowed by the fact that, with regard to forming with titanium, laser forming is significantly slower and more labor and energy intensive, and results in unacceptable material properties at the bend line according to aircraft industry standards. These findings cast doubt over the assertions of some researchers that laser forming may be a viable manufacturing process for parts made in small batches. Instead, it appears that it may be best suited for rapid prototyping of sheet metal parts.  相似文献   

12.
This paper describes an analytical solution for turning and milling stability that includes process damping effects. Comparisons between the new analytical solution, time-domain simulation, and experiment are provided. The velocity-dependent process damping model applied in the analysis relies on a single coefficient similar to the specific cutting force approach to modeling cutting force. The process damping coefficient is identified experimentally using a flexure-based machining setup for a selected tool-workpiece pair (carbide insert-AISI 1018 steel). The effects of tool wear and cutting edge relief angle are also evaluated. It is shown that a smaller relief angle or higher wear results in increased process damping and improved stability at low spindle speeds.  相似文献   

13.
The paper presents a micro dimple machining on a cylinder surface with a two-flutes ball end mill. When the cutter axis is inclined and the depth of cut is less than the tool radius, non-cutting time, during which neither of the two cutting edges contacts the workpiece, appears in a rotation of the cutter. The rotation of the workpiece and the feed of the tool are controlled so that the cutting areas do not overlap each other. In order to incline the tool with respect to the tangential direction on the cylinder surface, the tool is located at a position oriented at 45° from the top of the cylinder. An analytical model is presented to control the shapes of the dimples with the cutting parameters. The presented machining is verified in cutting tests with measuring the shape and the profile of the dimples. Pre-machining operations are conducted to have a high cylindricity of the workpiece in longitudinal turning and polishing. The cutter runout of the tool is also eliminated by adjusting the orientation and the position of the tool in the collet chuck with measuring the cutting force. The micro dimples are machined accurately as they are simulated.  相似文献   

14.
摆动辗压过程中锥形摆头与坯料接触面积是一个十分重要的参数,此文从辗压过程中坯料螺旋式送进的事实出发,首次给出了环形坯料,接触区域轮廓坐标的数值求解过程,为正确计算接触面积提供了精确的计算方法。  相似文献   

15.
The generation of fine dust during dry machining is a serious problem both for the environment and for workers. During machining, the fine dust particles generated remain suspended in the air for long periods, during they can be inhaled by workers. The quantity of dust generated is influenced by factors such as material type and heat treatment condition, temperature, and the associated chip formation mode. The aim of this work is to discover how these parameters influence dust generation during dry machining, which could lead to the control of dust production in the future. The materials tested are the wrought 6061 and foundry A356 aluminum alloys and 70-30 brass. It is found that pre-cooling a workpiece material leads to changes in chip formation, in the reduction of cutting forces, and hence in a reduction in fine dust generation by at least 70%, depending on the materials and cutting conditions used. Also, pre-heating the workpiece increases chip ductility and dust production levels.  相似文献   

16.
Sensors capable of providing fast and reliable feedback signals for monitoring and control of existing and emerging machining processes are an important research topic, that has quickly gained academic and industrial interest in recent years. Generally, high-precision machining processes are very sensitive to variation in local machining conditions at the tool–workpiece interface and lack a thorough understanding of fundamental thermomechanical phenomena. Existing sensors to monitor the machining conditions are not suitable for robust in-process control as they are either destructively embedded and/or do not possess the necessary spatial and temporal resolution to monitor local tool internal temperatures during machining at the cutting tip/edge effectively. This paper presents a novel approach for assessing transient tool internal temperature fields in the close vicinity of less than 300 μm of the tool cutting edge. A revised array layout of 10 micro thin film micro thermocouples, fabricated using adapted semiconductor microfabrication methods, has been embedded into polycrystalline cubic boron nitride (PCBN) cutting inserts by means of a modified diffusion bonding technique. Scanning electron microscopy was used to examine material interactions at the bonding interface and to determine optimal bonding parameters. Sensor performance was statically and dynamically characterized. They show good linearity, sensitivity and very fast response time. Initial machining tests on aluminum alloys are described herein. The tests have been performed to demonstrate the functionality and reliability of tool embedded thin film sensors, and are part of a feasibility study with the ultimate goal of applying the instrumented insert in hard machining operations. The microsensor array was used for the acquisition of tool internal temperature profiles very close to the cutting tip. The influence of varying cutting parameters on transient tool internal temperature profiles was measured and discussed. With further study, the described instrumented cutting inserts could provide more valuable insight into the process physics and could improve various aspects of machining processes, e.g. reliability, tool life, and workpiece quality.  相似文献   

17.
目的分析利用激光烧结技术实施月壤原位成型的特点及方案,为月壤原位成型工程化设计和分析提供借鉴。方法基于国内外月壤原位成型技术路径,对比分析激光烧结成型技术方案的优势。通过激光照射条件下多层月壤颗粒升温模型,分析加热温度随激光器输出功率、月壤粒径、聚焦光斑直径及激光扫描速度的变化规律。基于“纪念碑”成型任务,提出一种基于封闭烧结腔和补给移动机构的激光烧结方案。结果激光烧结成型技术方案的优势是成型体性能及精度较高,无需添加辅料,非接触式,便于操作和控制,能耗及体积可接受。月壤颗粒能达到的温度取决于能够接受到的辐射能量,无论是提升激光器输出功率,还是缩小光斑直径,都能提升颗粒接受到的辐射能量密度。降低扫描速度,则颗粒接收辐射能量的时间增长,而月壤颗粒粒径变小,由于颗粒质量与粒径是三次方的关系,也能够提高单个颗粒接收到的辐照能量。激光烧结成型系统由控制装置、激光光源、补给装置、移动装置及电源组成,基于初步的分析计算,建议的系统耗能约为300 W,光斑直径为50μm,成型效率约为38 g/h。结论基于激光烧结技术路径的月壤原位成型技术具有一定的优势,建议采用低功率、小光斑、低扫描速度的技术策略,初步估算的技术指标具有工程可实现性。  相似文献   

18.
Prediction of machining forces involved in complex geometry can be valuable information for machine shops. This paper presents a mechanistic cutting force simulation model for ball end milling processes, using ray casting and voxel representation methods used in 3D computer graphics field. Using this method, instantaneous uncut chip cross sectional areas can be extracted, which can be used in cutting pressure coefficient extraction and machining simulation including machining forces and geometry of the workpiece. The major advantage of the proposed scheme is that it can simulate milling processes with arbitrary cutting tool geometry on a workpiece with complex geometry, using an algorithm with constant time complexity. A series of cutting experiments were carried out to validate the model.  相似文献   

19.
The crystallographic orientation or anisotropy is one of the main microstructural attributes strongly affecting the mechanical properties of materials. It is also an influential parameter to be considered during the manufacturing process especially for ultra-precision machining since it affects part quality, tool performance, and process productivity through material properties. In this study, a prediction toolset constituted of a Viscoplastic Self-Consistent model and machining process mechanics model is used to predict the texture evolution on the machined surface. The VPSC (Viscoplastic Self-Consistent) methodology which uses the mechanisms of slip and twinning that are active in single crystals of arbitrary symmetry was used. For this, an analytical model for the process mechanics is derived to understand the forces and stresses generated by the cutting tool at each workpiece point, then the strain and strain rate to capture the rate at which the material is deforming and finally the crystallographic orientations under various machining conditions. Experiments were performed on the orthogonal cutting of aluminum alloy AA-7075-T651 and the texture results were compared to model predictions.  相似文献   

20.
Milling exit burrs usually form along the edges of a workpiece when the tool leaves the part while removing stock material. One of the most efficient methods for minimizing exit burrs is to prevent the tool from exiting the workpiece during material removal. This paper describes a systematic framework to generate tool paths that always enter a part, which is not a thin structure, in a planar milling operation. Three distinct tool exit conditions are analyzed for polygonal parts. A test criterion is then proposed to examine the occurrence of tool exits. For each condition, a tool path planning scheme is developed to avoid tool exits. These schemes are proved to be effective using the test criterion. This work is integrated into a networked manufacturing environment as a burr agent. Test parts are cut to demonstrate that this framework enhances edge quality by minimizing tool exits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号