首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
柴油车排气颗粒物的后处理技术   总被引:10,自引:0,他引:10  
本文分析探讨了柴油机排气颗粒物的组成、危害及后处理技术。介绍了颗粒捕集器及其消极和积极再生方法、采用氧化催化剂或四效催化剂的催化净化器和低温等离子体—催化净化技术。  相似文献   

2.
等离子体与催化技术的结合解决了单一用等离子体时的能量利用率、产率低及应用条件高的缺陷.总结了不同等离子体-催化协同作用的催化剂催化活性;在此基础上探讨了催化剂的组成、表面性质和结构对其催化活性的影响以及催化剂使用过程中的稳定性,分析了等离子体催化协同处理挥发性有机物(VOCs)过程中的反应机制;最后,对催化剂存在的问题和今后的研究方向进行了探讨.  相似文献   

3.
选择性催化氧化法作为一种新型脱硝技术凭借其工艺简单、能同时脱硫脱硝等特点成为热点.综述了活性炭类、分子筛、贵金属和过渡性金属氧化物等不同类型催化剂催化氧化NO的研究进展.从催化机理、催化活性、抗水汽性和抗硫性等角度对比分析了各种催化剂的优缺点,并对选择性催化氧化脱硝技术的未来进行了展望.  相似文献   

4.
纳米催化剂作为新一代高效环保催化剂 ,在大气污染治理 ,尤其是在室内空气净化中有着广阔的应用前景。评述了纳米催化技术在光催化空气净化、汽车尾气净化、化石燃料脱硫和降低温室效应等空气净化领域的研究进展 ,并对应用纳米催化技术净化空气的关键科学问题进行了分析和展望  相似文献   

5.
低温脱硝技术对于氮氧化物(NOx)的脱除意义深远,而NH3选择性催化还原(NH3-SCR) NO技术不仅在燃煤工厂里有应用,也在移动源的NOx的脱除上有应用的潜能.在低温NH3-SCR技术领域,很多非钒基的催化剂材料因其优异的催化性能受到重视.简述了低温SCR技术在能源、水泥、冶金行业的技术需求,并着重介绍了各种催化剂的SCR活性、不同催化剂的催化机制和抗SO2、H2O性能.并由此得出未来工业脱硝对催化剂的高SCR催化活性、高的N2选择性以及良好的抗SO2和H2O性能的要求.  相似文献   

6.
纳米催化技术用于空气净化   总被引:1,自引:0,他引:1  
纳米催化剂作为新一代高效环保催化剂,在大气污染治理,尤其是在室内空气净化中有着广阔的应用前景。评述了纳米催化技术在光催化空气净化、汽车尾气净化、化石燃料脱硫和降低温室效应等空气净化领域的研究进展,并对应用纳米催化技术净化空气的关键科学问题进行了分析和展望。  相似文献   

7.
微波催化燃烧技术将微波辐照与吸波型催化剂相结合,可用于对挥发性有机化合物(VOCs)进行催化燃烧处置.研制了 Pt/CuMnCeOx/堇青石和Pt/CuMnCeOx/纳米陶瓷整体式蜂窝状催化剂,并开发了微波催化燃烧VOCs的装置,将其应用于印刷包装行业的VOCs治理.通过操作条件的优化,考察了微波催化燃烧技术对VOCs...  相似文献   

8.
催化臭氧化由于能产生无选择性的羟基自由基(·OH),克服了传统单独臭氧对有机污染物具有选择性的局限。典型非均相催化臭氧化体系常利用金属氧化物作为催化剂,其中铈氧化物由于具有良好的催化臭氧化效果而被广泛研究。整理了铈类催化剂在催化臭氧化中的研究进展,介绍了常规铈类催化剂的制备方法,总结了铈类催化剂的催化臭氧化机理,包括吸附理论、自由基理论和臭氧直接氧化。根据催化剂的复合物形式,可将铈类催化剂分为活性炭负载型、介孔材料负载型和金属氧化物复合型3种。对各种铈类催化剂的应用现状及催化效果进行介绍,并对其发展趋势进行展望。  相似文献   

9.
通过氧化还原共沉淀法和共沉淀法制备了锰铈复合氧化物催化剂,用于苯的催化氧化,并结合一系列表征手段研究了催化剂的构效关系。结果表明,相对于共沉淀法,通过氧化还原共沉淀法制备的锰铈复合氧化物催化剂具有较大的孔径和比表面积,较好的低温还原性,拥有更好的苯催化氧化性能。之后采用氧化还原共沉淀法制备了不同金属元素(Co、Cu和Sn)掺杂改性的锰氧化物催化剂,并对苯进行催化氧化评价,发现不同元素(Co、Cu、Ce和Sn)掺杂均能提高锰氧化物催化剂的催化氧化活性,其中Ce、Sn掺杂之后得到的催化剂的催化氧化性能最佳,而对于不同催化体系,催化剂的氧化还原性与催化活性能之间没有必然联系。  相似文献   

10.
由于还原剂甲烷价廉易得,甲烷选择性催化还原NOx(简称CH4-SCR)被认为是最有潜力替代NH3-SCR的催化还原技术.现有的CH4-SCR催化剂中,分子筛类催化剂因催化活性高而被广泛研究,但由于其水热稳定性不好,使得非分子筛负载的催化剂成为近年来的研究热点,其中主要包括固体超强酸和氧化物两大类.综述了这两类催化体系在催化活性、反应机理及掺杂改性等方面的研究现状,比较了各种催化剂的优缺点,并对CH4-SCR的发展前景进行了展望.  相似文献   

11.
Dyke PH  Sutton M  Wood D  Marshall J 《Chemosphere》2007,67(7):1275-1286
This paper reports on an intensive study into releases of polychlorinated dibenzo-p-dioxins (PCDD), polychlorinated furans (PCDF) and polychlorinated biphenyls (PCB) from a diesel engine and the analysis of PCDD/F and PCB in crankcase lubricating oil. Experimental conditions were set and carefully controlled in order to maximize the possible impact of, and our ability to measure the effect of, changes in the levels of chlorine in the lubricant. Emissions to air were measured using modified EPA methods following the principles of the European EN 1948 standards. A series of 40 experimental runs were completed using three reference lubricants formulated to have three levels of chlorine present as a residual component (at levels of 12, 131 and 259 mg kg(-1) or ppm). The engine was run with and without the diesel oxidation catalyst. All lubricants were realistic oils and the use of unrealistic additives or doping of components - particularly chlorine - in the fuel and lubricant was carefully avoided. Analysis of fuel and lubricant (before and after testing) samples required strenuous attention to achieve acceptable recoveries and showed non-detectable levels of PCB and PCDD/F at a detection limit of around 1.5 ng I-TEQ kg(-1) (ppt), indistinguishable from the laboratory blank. The testing demonstrated the need for extreme care to be taken in developing measurement methods that are sufficiently sensitive for measuring chlorine content of fluids and PCDD/F in oils, the latter being particularly challenging. Mean emissions of PCDD/F with the diesel oxidation catalyst in place were 23 pg I-TEQ l(-1) of fuel and with the diesel oxidation catalyst removed 97 pg I-TEQ l(-1) of fuel. The results of this testing showed that the emissions of PCDD/F were greatly reduced by the presence of a diesel oxidation catalyst in the exhaust, a finding that has not been explicitly tested in previous work. They also show that emissions from the engine were not controlled by the level of chlorine in the lubricant and that emissions did not change in response to a much greater step change in the total chlorine entering the combustion chamber due to a change in the level of chlorine in the fuel. Emissions when the engine was configured with a diesel oxidation catalyst showed a consistent pattern that appears to be unique in the experience of the authors.  相似文献   

12.
Particulate matter from a diesel engine, including soot and carbon nanomaterials, was collected on a sampling holder and the structure of the materials was studied by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). As a result of employing gas oil/ethanol mixing fuel with sulfur and ferrocene/molybdenum as catalyst sources, formation of carbon nanotubes (CNT)-like materials in addition to soot was observed in the exhaust gas from a diesel engine. It was revealed that CNT-like materials were included among soot in our system only when the following three conditions were satisfied simultaneously: high ethanol fraction in fuel, high sulfur loading, and presence of catalyst sources in fuel. This study confirmed that if at least one of these three conditions was not satisfied, CNT-like materials were not observed in the exhaust from a diesel engine. These experimental results shown in this work provide insights into understanding CNT-like material formation mechanism in a diesel engine.

Implications: Recent papers reported that carbon nanotube-like materials were included in the exhaust gas from engines, but conditions for carbon nanotube-like material formation have not been well studied. This work provides the required conditions for carbon nanotube-like material growth in a diesel engine, and this will be helpful for understanding the carbon nanotube-like material formation mechanism and taking countermeasures to preventing carbon nanotube-like material formation in a diesel engine.  相似文献   


13.
The body of information presented in this paper is directed towards engineers in the field of environmental sciences involved in measuring and/or evaluating the emissions from a variety of diesel engines or vehicles. This paper summarizes recent data obtained by EPA on identification and quantification of different emissions (i.e. characterization) from a variety of diesel engines.

Extensive work has been done comparing emissions from some light duty diesel and gasoline passenger cars. The work on the diesel vehicles was expanded to include tests with five different diesel fuels to determine how fuel composition affects emissions. This work showed that use of a poorer quality fuel frequently made emissions worse. The investigation of fuel composition continued with a project in which specific fuel parameters were systematically varied to determine their effect on emissions. EPA is presently testing a variety of fuels derived from coal and oil shale to determine their effects on emissions.

EPA has also tested a heavy duty Volvo diesel bus engine designed to run on methanol and diesel fuel, each injected through its own injection system. The use of the dual fuel resulted in a reduction in particulates and NO x but an increase in HC and CO compared to a baseline Volvo diesel engine running on pure diesel fuel.

Finally, some Ames bioassay tests have been performed on samples from the diesel passenger cars operated on various fuels and blends. An increase in Ames test response (mutagenicity) was seen when the higher aromatic blend was used and also when a commercial cetane improver was used. Samples from the Volvo diesel bus engine fueled with methanol and diesel fuel showed that use of a catalyst increased the Ames response.  相似文献   

14.
The U.S. Environmental Protection Agency (EPA) established strict regulations for highway diesel engine exhaust emissions of particulate matter (PM) and nitrogen oxides (NOx) to aid in meeting the National Ambient Air Quality Standards. The emission standards were phased in with stringent standards for 2007 model year (MY) heavy-duty engines (HDEs), and even more stringent NOX standards for 2010 and later model years. The Health Effects Institute, in cooperation with the Coordinating Research Council, funded by government and the private sector, designed and conducted a research program, the Advanced Collaborative Emission Study (ACES), with multiple objectives, including detailed characterization of the emissions from both 2007- and 2010-compliant engines. The results from emission testing of 2007-compliant engines have already been reported in a previous publication. This paper reports the emissions testing results for three heavy-duty 2010-compliant engines intended for on-highway use. These engines were equipped with an exhaust diesel oxidation catalyst (DOC), high-efficiency catalyzed diesel particle filter (DPF), urea-based selective catalytic reduction catalyst (SCR), and ammonia slip catalyst (AMOX), and were fueled with ultra-low-sulfur diesel fuel (~6.5 ppm sulfur). Average regulated and unregulated emissions of more than 780 chemical species were characterized in engine exhaust under transient engine operation using the Federal Test Procedure cycle and a 16-hr duty cycle representing a wide dynamic range of real-world engine operation. The 2010 engines’ regulated emissions of PM, NOX, nonmethane hydrocarbons, and carbon monoxide were all well below the EPA 2010 emission standards. Moreover, the unregulated emissions of polycyclic aromatic hydrocarbons (PAHs), nitroPAHs, hopanes and steranes, alcohols and organic acids, alkanes, carbonyls, dioxins and furans, inorganic ions, metals and elements, elemental carbon, and particle number were substantially (90 to >99%) lower than pre-2007-technology engine emissions, and also substantially (46 to >99%) lower than the 2007-technology engine emissions characterized in the previous study.

Implications:?Heavy-duty on-highway diesel engines equipped with DOC/DPF/SCR/AMOX and fueled with ultra-low-sulfur diesel fuel produced lower emissions than the stringent 2010 emission standards established by the U.S. Environmental Protection Agency. They also resulted in significant reductions in a wide range of unregulated toxic emission compounds relative to older technology engines. The increased use of newer technology (2010+) diesel engines in the on-highway sector and the adaptation of such technology by other sectors such as nonroad, displacing older, higher emissions engines, will have a positive impact on ambient levels of PM, NOx, and volatile organic compounds, in addition to many other toxic compounds.  相似文献   

15.
介绍了柴油机微粒后处理催化捕集器特点 ,评述了过滤器催化再生方法 ,综述了蜂窝陶瓷载体涂层及催化剂活性组分研究现状。重点阐述了微粒再生催化剂研究进展及其发展趋势  相似文献   

16.
During three separate studies involving characterization of diesel particulate matter, carbon nanotubes (CNTs) were found among diesel exhaust particles sampled onto transmission electron microscopy (TEM) grids. During these studies, samples were collected from three different diesel engines at normal operating conditions with or without an iron catalyst (introduced as ferrocene) in the fuel. This paper is to report the authors’ observation of CNTs among diesel exhaust particles, with the intent to stimulate awareness and further discussion regarding the formation mechanisms of CNTs during diesel combustion.

Implications: Increased attention is being given to CNTs and other nanomaterials and a recent review paper showed that CNTs are capable of inflammation in the lung when inhaled. For this reason and because diesel engines are so common, it is important to acknowledge the existence of CNTs among diesel particles and possible regulation and online measurement method development.  相似文献   

17.
为实现对柴油机碳烟和NOx的低温同步去除,采用柠檬酸络合法制备分子筛负载钙钛矿型金属复合氧化物催化剂,应用x衍射分析仪(XRD)和电镜扫描仪(SEM)对催化剂性能进行表征,并在微型固定床反应器中对催化剂低温去除碳烟和NOx进行活性评价。利用程序升温反应(TPR)技术,进行催化剂活性评价、柴油机负荷和排放等特性实验。结果表明,A位用适量Ce部分取代La,B位用适量cu部分取代Mn,可使碳颗粒燃烧温度降低,CO2选择性好,NOx转化率升高。La0.4 Ce0.6 Cu0.2 Mn0.8O3/HZSM-5催化剂的最大NOx转化率为81.0%,Ti、Tm和Tf分别为250、350和475℃,表明该催化剂具有较好的催化活性,能在低温条件下去除碳烟和NOx。  相似文献   

18.
In-service diesel engines are a significant source of particulate matter (PM) emissions, and they have been subjected to increasingly strict emissions standards. Consequently, the wide-scale use of some type of particulate filter is expected. This study evaluated the effect of an Engelhard catalyzed soot filter (CSF) and a Rypos electrically heated soot filter on the emissions from in-service diesel engines in terms of PM mass, black carbon concentration, particle-bound polycyclic aromatic hydrocarbon concentration, and size distribution. Both filters capture PM. The CSF relies on the engine's exhaust to reach the catalyst regeneration temperature and oxidize soot, whereas the electrically heated filter contains a heating element to oxidize soot. The filters were installed on several military diesel engines. Particle concentrations and compositions were measured before and after installation of the filter and again after several months of operation. Generally, the CSF removed at least 90% of total PM, and the removal efficiency improved or remained constant after several months of operation. In contrast, the electrical filters removed 44-69% of PM mass. In addition to evaluating the soot filters, the sampling team also compared the results of several real-time particle measurement instruments to traditional filter measurements of total mass.  相似文献   

19.
The study presents the measurement of carbonyl, BTEX (benzene, toluene, ethyl benzene, and xylene), ammonia, elemental/organic carbon (EC/OC), and greenhouse gas emissions from modern heavy-duty diesel and natural gas vehicles. Vehicles from different vocations that included goods movement, refuse trucks, and transit buses were tested on driving cycles representative of their duty cycle. The natural gas vehicle technologies included the stoichiometric engine platform equipped with a three-way catalyst and a diesel-like dual-fuel high-pressure direct-injection technology equipped with a diesel particulate filter (DPF) and a selective catalytic reduction (SCR). The diesel vehicles were equipped with a DPF and SCR. Results of the study show that the BTEX emissions were below detection limits for both diesel and natural gas vehicles, while carbonyl emissions were observed during cold start and low-temperature operations of the natural gas vehicles. Ammonia emissions of about 1 g/mile were observed from the stoichiometric natural gas vehicles equipped with TWC over all the driving cycles. The tailpipe GWP of the stoichiometric natural gas goods movement application was 7% lower than DPF and SCR equipped diesel. In the case of a refuse truck application the stoichiometric natural gas engine exhibited 22% lower GWP than a diesel vehicle. Tailpipe methane emissions contribute to less than 6% of the total GHG emissions.

Implications: Modern heavy-duty diesel and natural gas engines are equipped with multiple after-treatment systems and complex control strategies aimed at meeting both the performance standards for the end user and meeting stringent U.S. Environmental Protection Agency (EPA) emissions regulation. Compared to older technology diesel and natural gas engines, modern engines and after-treatment technology have reduced unregulated emissions to levels close to detection limits. However, brief periods of inefficiencies related to low exhaust thermal energy have been shown to increase both carbonyl and nitrous oxide emissions.  相似文献   


20.
Abstract

In-service diesel engines are a significant source of particulate matter (PM) emissions, and they have been subjected to increasingly strict emissions standards. Consequently, the wide-scale use of some type of particulate filter is expected. This study evaluated the effect of an Engelhard catalyzed soot filter (CSF) and a Rypos electrically heated soot filter on the emissions from in-service diesel engines in terms of PM mass, black carbon concentration, particle-bound polycyclic aromatic hydrocarbon concentration, and size distribution. Both filters capture PM. The CSF relies on the engine's exhaust to reach the catalyst regeneration temperature and oxidize soot, whereas the electrically heated filter contains a heating element to oxidize soot. The filters were installed on several military diesel engines. Particle concentrations and compositions were measured before and after installation of the filter and again after several months of operation. Generally, the CSF removed at least 90% of total PM, and the removal efficiency improved or remained constant after several months of operation. In contrast, the electrical filters removed 44-69% of PM mass. In addition to evaluating the soot filters, the sampling team also compared the results of several real-time particle measurement instruments to traditional filter measurements of total mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号