首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
昆明市地质灾害易损性模糊综合评价   总被引:2,自引:0,他引:2  
昆明市是地质灾害易发区,其灾害具有种类多、分布广、危害性大的特点。本文根据昆明市各县、区的具体情况,构建了地质灾害易损性评价指标体系,并运用改进的模糊综合评价方法对昆明市各县、区地质灾害易损性进行了定量评价,从而得出昆明市各县、区地质灾害易损性等级,该研究可为当地政府制定合理的经济发展规划和灾害防治规划提供科学依据。  相似文献   

2.
为了考察影响地质灾害易损性及其防治效率的影响因素,本文采用两次超效率DEA模型,结合地质灾害的成灾原理,在得出我国各省(市)地质灾害易损性评价值的基础上,对各省(市)地质灾害防治效率水平进行了定量分析与评价.结果表明:地质灾害易损性及其防治效率水平均与我国各地区的经济发展水平、地理位置、地形地貌和资源开发利用的合理程度有一定的关联.  相似文献   

3.
考虑苦水镇自然因素和社会经济状况,选取人口密度和财产密度作为评价因子,构建永登县苦水镇地质灾害易损性评价指标体系,将划分出的76个易损性评价单元分为高、中、低和不易损区.根据地质灾害危险性与易损性分区划分结果,将苦水镇划分为若干个评价单元,逐个对评价单元的危险性和易损性分析,通过定性和定量相结合的方法确定每个评价单元地...  相似文献   

4.
神木市是西部地区重要的能源城市,对能源的过度开发利用引发了大量地质灾害,严重阻碍着居民生产生活和城市发展建设,因此开展地质灾害风险评价研究是该地区可持续发展的必由之路。为解决多因子综合作用对评价精度的影响,根据神木市地质环境及社会经济情况选取合适的评价因子分别建立危险性和易损性评价体系,利用主成分分析(PCA)法判断、提取主成分来避免因子间相关性的干扰,计算各因子综合分值得到危险性区划图;首次将改进层次分析(AHP)-CRITIC主客观组合赋权法应用于承灾体易损性评价当中,通过该方法计算因子综合权重得到各乡镇易损指数。叠加危险区划图和易损指数图完成神木市地质灾害风险性分区,将风险区划为高、较高、中、较低和低五个等级,分别占全市面积的5.31%、7.72%、14.17%、17.08%和55.72%,表明研究区风险等级中等偏低。可为同类型地区地质灾害风险评价工作提供参考依据。  相似文献   

5.
以某山地城市为例,在充分了解当地城市规划方案的基础上,参考相关技术标准,构建规划区地质灾害易损性评价模型;利用地理信息系统,对土地功能布局图进行空间分析,获取相关评价数据;依托专家智库,参照规划目标,对规划区未来社会经济发展状况进行预测,从而实现规划区地质灾害易损性综合评价,并将评价结果进行可视化表达。结果显示,规划区内,高易损区占总面积的33.86%;中易损区占总面积的28.87%;低易损区总面积的37.00%。其中,高易损区主要分布于:(1)旅游服务组团中部、北部的住宅区,以及南部的服务区;(2)高校教育组团的住宿区和部分教学区;(3)工业园组团的职工住宿区。依照评价结果,结合当地地质条件,对规划区地质灾害防范提出建议。  相似文献   

6.
基于信息量模型的赣州市地质灾害易发性分区   总被引:1,自引:0,他引:1  
赣州市地质灾害发育广泛、成因复杂,对当地社会经济发展和人居环境影响深刻。在对赣州市地质灾害情况进行资料收集和野外调查的基础上,确定斜坡几何形态、斜坡结构类型、工程地质岩组等6类影响因素作为该地区地质灾害易发性分区的评价指标;根据专家经验,结合地形地貌等因素,以250m×250m网格尺寸为单元获取指标数据,利用信息量模型和ArcGIS软件的空间分析功能,开展了赣州市地质灾害易发性分区研究;根据分区结果提出了相应的地质灾害防治措施。结果表明:研究区地质灾害可划分为高易发区、中易发区、低易发区3个区及11个亚区,该分区结果与地质灾害实际调查结果基本相符,表明利用信息量模型进行地质灾害易发性分区具有可行性和有效性。研究结果对该地区地质灾害易发性评价及灾害防治具有重要的理论和现实意义。  相似文献   

7.
基于GIS的层次分析法在宁夏地质灾害易发性评价的应用   总被引:1,自引:0,他引:1  
宁夏地区地质环境较差,崩塌、滑坡、泥石流、地面塌陷、地裂缝等地质灾害频发,不稳定斜坡大量存在,地质灾害已经成为阻滞宁夏地区经济发展的重要因素。通过资料收集、遥感解译、野外调查等一系列工作,调查宁夏灾害点的种类、数量以及分布位置,并采用层次分析法,分析确定出地质灾害发生的影响因子,建立层次模型,计算各个影响因子的权重,在GIS平台下,对各个因子进行分析并进行归一化处理,将各个评价因子与其权重进行叠加计算,最终得出宁夏地区地质灾害易发性分区结果。结果表明:高易发区占地面积约6.89%,总面积约为4575km2,主要分布于宁夏南部;地质灾害中易发区,约占整个宁夏地区的40.86%,总面积约为27131km2;地质灾害低易发区,约占整个宁夏地区的52.25%,总面积约为34694km2。  相似文献   

8.
分析研究农村房屋易损性是防震减灾工作中必不可少的一部分.本文通过对苏北地区自然村民房的随机调查,分析其存在的问题,对其做出易损性的分析研究.苏北地区农房抗震性能总体水平较低.随着农村经济的发展和提高,应加强农村民居防震减灾工作指导,提高农村民居抗震能力.  相似文献   

9.
深圳地区地质环境特征与地质灾害防治   总被引:1,自引:0,他引:1  
通过对深圳地区的地形地貌、地质构造以及气候条件等地质环境特征的调查分析,总结研究了该地区地质灾害的主要类型及地质灾害与地质环境之间的关系,并对深圳地区地质灾害的防治提出了加强地质灾害调查与研究工作、应用先进的监测技术创建地质灾害预警预报系统和提高地质灾害防治的勘察设计和管理水平等防治对策.  相似文献   

10.
赣州市地质灾害发生率和发生强度日益增高,对赣州市经济社会的发展造成了深远的影响,并对该地区的自然环境和人类生命财产安全构成了严重的威胁。通过对赣州市地质灾害孕育环境、发育规模、时空分布等进行实地调查以及对各种类型地质灾害发生数量进行数据统计与分析,开展了赣州市地质灾害的孕育、形成与防治研究。结果表明:赣州市地质灾害发生密度较高的地区主要是西部、南部、东南部以及东北部岩性较脆弱、地面变形严重的低山丘陵区;赣州市地质灾害的发生与该地区复杂的地形地貌、特殊的地层岩性、岩土体类型以及频繁的人类工程活动呈正相关关系。该研究可为该市的防灾救灾、人类工程建设提供理论依据。  相似文献   

11.
Risks can generally be described as the combination of hazard, exposure and vulnerability. Using this framework, we evaluated the historical and future development of risk of fire and wind damage in European forestry at the national level. Fire risk is expected to increase, mainly as a consequence of an increase in fire hazard, defined as the Fire Weather Index in summer. Exposure, defined as forest area, is expected to increase slightly as a consequence of active afforestation and abandonment of marginal agricultural areas. Adaptation options to fire risk should therefore aim to decrease the vulnerability, where a change in tree species from conifers to broadleaves had most effect. Risk for wind damage in forests is expected to increase mainly as a consequence of increase in exposure (total growing stock) and vulnerability (defined by age class and tree species distribution). Projections of future wind climate indicate an increase in hazard (storminess) mainly over Western Europe. Adaptation options should aim to limit the increase in exposure and vulnerability. Only an increase in harvest level can stop the current build-up of growing stock, while at the same time it will lower vulnerability through the reduction of the share of old and vulnerable stands. Changing species from conifers to broadleaves helps to reduce vulnerability as well. Lowering vulnerability by decreasing the rotation length is only effective in combination with a high demand for wood. Due to data limitations, no forecast of future fire area or damaged timber amount by storms was possible.  相似文献   

12.
河流水环境污染风险模糊综合评价模型   总被引:11,自引:3,他引:8       下载免费PDF全文
综合考虑水环境污染的脆弱性和受污染水体对人体健康的危害性, 建立了河流水环污染风险模糊综合评价模型.运用模糊语言,将脆弱性和危害性均分为6个等级,并根据F统计法和专家咨询法确定脆弱性和危害性的模糊隶属函数.由模糊综合评价得出河流水环境污染的风险水平.将该评价模型应用到湘江14个断面的水环境风险评价中,直观地表达各个断面污染风险水平,为湘江水资源管理和优先控制断面的选取提供新思路和新方法.  相似文献   

13.
Vulnerability is a term frequently used to describe the potential threat to rural communities posed by climate variability and change. Despite growing use of the term, analytical measures of vulnerability that are useful for prioritising and evaluating policy responses are yet to evolve. Demand for research capable of prioritising adaptation responses has evolved rapidly with an increasing awareness of climate change and its potential impacts on rural communities. Research into the climate-related vulnerability of Australian rural communities is only just beginning to emerge. Current research is dominated by hazard/impact modelling, drawing on a heritage of managing the risks posed by seasonal climate variability. There is a natural tendency to use the same risk management approach to understand the emergent nature of vulnerability. In this paper, we explore the consequences for policy advice of imperfectly examining vulnerability through the lens of an impact/hazard modelling approach to risk management. In a second paper in this series, we show how hazard/impact modelling can be complemented with more holistic measures of adaptive capacity to provide quantitative insights into the vulnerability of Australian rural communities to climate variability and change.  相似文献   

14.
In the first paper in this series [Nelson, R., Kokic, P., Crimp, S., Martin, P., Meinke, H., Howden, S.M. (2010, this issue)], we concluded that hazard/impact modelling needs to be integrated with holistic measures of adaptive capacity in order to provide policy-relevant insights into the multiple and emergent dimensions of vulnerability. In this paper, we combine hazard/impact modelling with an holistic measure of adaptive capacity to analyse the vulnerability of Australian rural communities to climate variability and change. Bioeconomic modelling was used to model the exposure and sensitivity of Australian rural communities to climate variability and change. Rural livelihoods analysis was used as a conceptual framework to construct a composite index of adaptive capacity using farm survey data. We then show how this integrated measure of vulnerability provides policy-relevant insights into the constraints and options for building adaptive capacity in rural communities. In the process, we show that relying on hazard/impact modelling alone can lead to entirely erroneous conclusions about the vulnerability of rural communities, with potential to significantly misdirect policy intervention. We provide a preliminary assessment of which Australian rural communities are vulnerable to climate variability and change, and reveal a complex set of interacting environmental, economic and social factors contributing to vulnerability.  相似文献   

15.
An important goal of vulnerability assessment is to create an index of overall vulnerability from a suite of indicators. Constructing a vulnerability index raises several problems in the aggregation of these indicators, including the decision of assigning weights to them. The purpose of this paper is to demonstrate a method of aggregating vulnerability indicators that results in a composite index of vulnerability, but that avoids the problems associated with assigning weights. The investigators apply a technique based on Pareto ranking to a complex, developed socioeconomic landscape exposed to storm surges associated with hurricanes. Indicators of social vulnerability to this hazard are developed and a principal components analysis is performed on proxies for these indicators. Overall social vulnerability is calculated by applying Pareto ranking to these principal components. The paper concludes that it is possible to construct an effective index of vulnerability without weighting the individual vulnerability indicators.  相似文献   

16.
结合细河沿岸地区水文地质条件及地下水有机污染特征,通过AHP法确定权重,建立DRSIC模型,将评价结果与污染源荷载评价叠加,构建研究区有机污染风险评价模型.并通过研究区有机污染特征检验模型的合理性.结果表明:区内大部分地区有机污染风险中等或低.只有细河沿岸、杨士至于洪区一带污染风险处于高水平.评价结果较好的符合研究区有机污染现状.  相似文献   

17.
上海市环境污染事故风险受体脆弱性评价研究   总被引:3,自引:0,他引:3  
薛鹏丽  曾维华 《环境科学学报》2011,31(11):2556-2561
从环境风险受体敏感性和适应力两方面构建了脆弱性概念模型,在此基础上,考虑社会经济脆弱性和生态系统脆弱性,选取14个指标构建了上海市环境污染事故风险受体综合脆弱性评价指标体系.研究结果表明:上海市中心城区社会脆弱性较高,而崇明岛、南汇、奉贤的社会经济脆弱性最低;黄浦江上游水源保护区、崇明岛东滩湿地生态系统脆弱性较高,浦东...  相似文献   

18.
The first part of this paper discusses the links between hazard, risk and vulnerability (HRV) analysis and the development of mitigative strategies. The second part discusses the need to include public participation when completing an HRV analysis. Two current HRV models are used to illustrate the general failure of HRV analysis to include public participation. The third part of this paper provides a brief overview of the Hazard, Impact, Risk and Vulnerability (HIRV) model and its use of public participation. The paper concludes by offering a synopsis of a case study in the town and regional area surrounding Barriere, British Columbia, Canada. This case study demonstrates a positive outcome when public participation is incorporated into an HIRV analysis.  相似文献   

19.
本文介绍了DRASTIC评价体系在台州市浅层地下水的脆弱性评价中的应用。根据台州市的地质背景、水文地质条件等,对DRASTIC评价指标进行改进,选择了地下水埋深等4个参数作为研究区地下水脆弱性评价因子,建立了台州市浅层地下水脆弱性评价模型。结合G IS技术对该地区的地下水脆弱性进行了评价,编制了地下水脆弱性评价图。综合评价的结果表明改进的DScTI评价模型能合理的反映台州市浅层地下水环境脆弱性的高低。  相似文献   

20.
张德彬  刘国东  王亮  钟瑞 《环境工程》2017,35(10):141-145
为研究岩溶地区建设项目的地下水污染风险,引入灾害风险理论确定地下水污染风险是由地下水脆弱性和建设项目污染负荷危险性两方面共同决定,并构建了地下水污染风险指标体系。采用模糊层次分析法确定各指标权重,选择TOPSIS模型进行脆弱性和危险性等级的判断,最后依据风险等级分区矩阵确定地下水污染风险评价等级。以贵州西北地区某火电厂项目进行地下水污染风险评价实例应用,结果表明该项目地下水污染风险等级为"较高",主要因素为该地区地下水含水层脆弱性"较高",评价结果符合实际,具有一定应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号