首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Plants can be used for effective and economical remediation of soil provided they are tolerant or resistant to contaminants. This study was conducted to determine effects of 2,4,6-trinitrotoluene (TNT) on growth and development of smooth bromegrass and tall fescue. Seeds of both species were grown in contaminated and non-contaminated soil mixed at ratios to obtain a range of concentrations and also in non-contaminated soil underlain by contaminated and non-contaminated soil mix. Germination, shoot and root dry weight, root length and area were measured. Germination and height of both species decreased with increasing TNT concentration. Shoot dry weight from tall fescue was 50% greater than smooth bromegrass at a given TNT concentration. Root length, area and dry weight of both species decreased with increasing TNT concentration. Root area and dry weight were greater for smooth bromegrass compared to tall fescue. This research indicates tall fescue and smooth bromegrass can germinate and grow in soils with concentrations less than 31 and 24 mg TNT l(-1), respectively.  相似文献   

2.
It is estimated that explosives contaminate approximately 0.82 million cubic metres of soil at former military installations throughout the US; major contaminants often include 2,4,6-trinitrotoluene (TNT) and its degradation products. At some sites, phytoremediation may be a viable option to incineration or other costly remediation treatments. Grasses may be particularly suited for remediation because of their growth habit and adaptability to a wide range of soil and climate conditions. We characterized the effects of TNT on germination and early seedling development of switchgrass and smooth bromegrass to evaluate their potential use on contaminated sites. Switchgrass and smooth bromegrass seeds were germinated in nutrient-free agar containing 0 to 60 mg TNT litre(-1). Smooth bromegrass germination decreased as TNT concentration increased, while switchgrass germination was unaffected by TNT. Concentrations up to 15 mg TNT litre(-1) did not affect switchgrass root growth rate, but bromegrass root growth was reduced at TNT concentrations above 7.5 mg litre(-1). At 7.5 mg TNT litre(-1), however, shoot growth rate was reduced in both species. Examination at 20-fold magnification revealed switchgrass radicles were unaffected by TNT, while smooth bromegrass radicles appeared slightly swollen. Results indicate switchgrass is more tolerant of TNT than smooth bromegrass, but the establishment of both species may be limited to soil containing less than 50 mg kg(-1) of extractable TNT.  相似文献   

3.
Contaminated water and soil at active or abandoned munitions plants is a serious problem since these compounds pose risks to human health and can be toxic to aquatic and terrestrial life. Our objective was to determine if zero-valent iron (Fe(0)) could be used to promote remediation of water and soil contaminated with 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). As little as 1% Fe(0) (w/v) removed 70 mg TNT litre(-1) from aqueous solution within 8 h and removed 32 mg RDX litre(-1) within 96 h. Treating slurries (1:5 soil:water) of highly contaminated soil (5200 mg TNT and 6400 mg RDX kg(-1) soil) from the former Nebraska Ordnance Plant (NOP) with 10% Fe(0) (w/w soil) reduced CH(3)CN-extractable TNT and RDX concentrations below USEPA remediation goals (17.2 mg TNT and 5.8 mg RDX kg(-1)). Sequential treatment of a TNT-contaminated solution (70 mg TNT litre(-1) spiked with (14)C-TNT) with Fe(0) (5% w/v) followed by H(2)O(2) (1% v/v) completely destroyed TNT and removed about 94% of the (14)C from solution, 48% of which was mineralized to (14)CO(2) within 8 h. Fe(0)-treated TNT also was more susceptible to biological mineralization. Our observations indicate that Fe(0) alone, Fe(0) followed by H(2)O(2), or Fe(0) in combination with biotic treatment can be used for effective remediation of munitions-contaminated water and soil.  相似文献   

4.
The purpose of this study was to assess certain physiological responses of Lemna minor L. (duckweed) and Allium cepa L. (onion) to aquatic mercury at low concentrations. Following a 96-h exposure of plants to nutrient medium contaminated with known levels of mercuric chloride (HgCl(2)), 0.001 to 4 mg litre(-1) (0.0007 to 2.95 mg Hg litre(-1)) or methyl mercuric chloride (MeHgCl(2)), 0.0001 to 0.1 mg litre(-1) (0.0007 to 0.07 mg Hg litre(-1)), the physiological endpoints measured were the growth of fronds (Lemna minor) or roots (Allium cepa), and catalase and peroxidase activities in both plant assays. The EC(50) for HgCl(2) on the basis of the growth curve of Lemna minor was found to be 2.1 mg litre(-1). HgCl(2) and MeHgCl(2) were lethal to L. minor at concentrations of 4 and 0.01 mg litre(-1), respectively. The range of low concentrations that accelerated growth as well as enzymic activities in L. minor was 0.004 to 0.04 mg litre(-1) for HgCl(2) and 0.001 mg litre(-1) for MeHgCl(2). HgCl(2) and MeHgCl(2) induced maximum enzymic activity in Lemna fronds at concentrations of 0.008 and 0.0005 mg litre(-1), respectively. In Allium roots, catalase activity was accelerated at all the concentrations of HgCl(2) (0.001-2 mg litre(-1)) and MeHgCl(2) (0.0001-0.1 mg litre(-1)) tested. The activity of peroxidase was, however, accelerated by HgCl(2) at concentration range 0.01-1.0 mg litre(-1), or by MeHgCl(2) at 0.001 mg litre(-1). The concentrations of HgCl(2) and MeHgCl(2) that induced the highest enzymic activity in Allium roots were 0.05 mg litre(-1) and 0.001 mg litre(-1), respectively.  相似文献   

5.
Dose-response studies with ethylenediurea (EDU) and radish   总被引:1,自引:0,他引:1  
There is some concern that the antiozonant ethylenediurea (EDU), used for crop loss assessment due to ambient ozone (O3) may per se affect plant growth and yield. In view of this, and to provide knowledge for later field experiments, dose-response studies with EDU and O3 were carried out in greenhouses in winter and spring 1989, using radish (Raphanus sativus L.) cv. 'Cherry Belle' and 'Red Prince', grown in two different substrates. EDU was applied as a single or repeated soil drench in concentrations ranging from 300 to 800 mg litre(-1) in the first, and from 100 to 400 mg litre(-1) in the second trial. In the second experiment, plants were exposed to a chronic level of O3, mimicking ambient patterns, or to filtered air after the EDU-treatment. When applied in concentrations above 300 mg litre(-1), EDU reduced growth, thereby affecting the development of the thickened hypocotyl far more than the shoot growth that was partially stimulated by lower doses of EDU. Phytotoxic symptoms on the leaves, attributable to EDU, were observed at concentrations above 200 mg litre(-1), but complete protection from visible O3-injury was provided by a single application of EDU at a concentration as low as 100 mg litre(-1). Significant interactions on growth characters measured between O3-exposure and EDU application were observed only in one of the substrates. While these results demonstrate the need for careful dose-response studies prior to field assessments, they also provide evidence of a dosage that is effective in protecting radish from O3 damage without interfering with plant growth itself.  相似文献   

6.
The toxicities of 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitrobenzene (TNB), 2,4-dinitrotoluene (2,4-DNT), and 2,6-dinitrotoluene (2,6-DNT) to terrestrial plants alfalfa (Medicago sativa L.), Japanese millet (Echinochloa crusgalli L.), and perennial ryegrass (Lolium perenne L.) were determined in Sassafras sandy loam soil using seedling emergence, fresh shoot, and dry mass measurement endpoints. A 13-week weathering and aging of energetic materials in soils, which included wetting and drying cycles, and exposure to sunlight of individual soil treatments, was incorporated into the study design to better reflect the soil exposure conditions in the field than toxicity determinations in freshly amended soils. Definitive toxicity tests showed that dinitrotoluenes were more phytotoxic for all plant species in freshly amended treatments based on EC20 values for dry shoot ranging from 3 to 24mgkg(-1) compared with values for TNB or TNT ranging from 43 to 62mgkg(-1). Weathering and aging of energetic materials (EMs) in soil significantly decreased the toxicity of TNT, TNB or 2,6-DNT to Japanese millet or ryegrass based on seedling emergence, but significantly increased the toxicity of all four EMs to all three plant species based on shoot growth. Exposure of the three plant species to relatively low concentrations of the four compounds initially stimulated plant growth before the onset of inhibition at greater concentrations (hormesis).  相似文献   

7.
The toxicity of nonylphenol to the common mussel (Mytilus edulis L.) has been determined in both semistatic and continuous flow test systems. The LC50 values obtained were for 96 h, 30 mg litre(-1); 360 h, 0.5 mg litre(-1); and 850 h, 0.14 mg litre(-1). Sublethal effects, manifested as decreased byssus strength and change of scope for growth, were obtained at a concentration as low as 0.056 mg litre(-1). Fertilization and early developmental success were not affected at the highest concentration tested (0.2 mg litre(-1)).  相似文献   

8.
Clopyralid, picloram, 2,4-D and a mixture of 2,4-D plus picloram, (Tordon 202C) were added to the water of 1 m square enclosures in a prairie wetland in Saskatchewan, Canada to produce concentrations of 0.01 and 0.1 mg active ingredient litre(-1). Effects on the submersed macrophytes, Potamogeton pectinatus and Myriophyllum sibiricum, were monitored by taking repeated measurements of plant weight, flower and tuber production and inspecting for injuries at 30 and 60 days after application. Clopyralid did not inhibit weight gain (growth) in either species, but stimulated growth and flowering by M. sibiricum at 0.01 mg litre(-1) and tuber production by P. pectinatus at both rates. The low rate of 2,4-D stimulated flowering by M. sibiricum and tuber production by P. pectinatus, whereas the high rate inhibited growth of M. sibiricum and injured both species. Picloram did not affect growth of either species, but injured M. sibiricum at both concentrations and inhibited flowering at 0.1 mg litre(-1). Tordon 202C at 0.1 mg litre(-1) caused reduced growth and flowering in M. sibiricum and injured both species; 0.01 mg litre(-1) also injured M. sibiricum. Mortality resulted only from Tordon 202C and 2,4-D. Field data are lacking to assess the extent to which submerged macrophytes in prairie ponds are exposed to harmful concentrations of herbicide from aerial spraying, drift from ground application, runoff or wind erosion of soil.  相似文献   

9.
Field trials concerning the establishment of plant cover on a deposit of wastes from the Ammeberg zinc mine in central Sweden were carried out during 1976-1985. Different soil conditioners and manures were applied and plant species cultivars were evaluated with regard to plant biomass, vigour, durability and content of zinc, lead and cadmium. Sewage sludge and topsoil led to better establishment of grasses than did municipal waste, straw and hydraulic seeding. After 2 years, Festuca rubra and Poa pratensis dominated the swards. Other species (Dactylis glomerata, Bromus inermis, Lolium perenne, Phleum nodosum, Festuca pratensis and F. arundinacea) constituted only a minor part of the stand. After 10 years, F. rubra was the most dominant species, while native Agrostis tenuis had invaded 20-50% of the area within the plots. Merlin was the clearly dominant red fescue cultivar. The concentration of zinc in shoots (616 mg kg(-1) dw) was about 10% of that in the soil. Zinc concentration decreased with increasing biomass above ground. It increased with age in Scots pine needles and was very high in birch leaves. Grasses survived longer than legumes in the zinc sand waste. Among the surviving grasses was a group with high (3800 mg kg(-1) dw) and a group with low (320 mg kg(-1) dw) zinc concentrations. The low group included Merlin red fescue and Sobel creeping bent. The cultivar Merlin contained a much lower zinc concentration than the other cultivars of red fescue (375 and 624 mg kg(-1) dw, respectively). A large amount of root biomass was present in plots with dominating Merlin red fescue (1715 g m(-2)), 97% of which was concentrated in the top 10 cm of the soil. The concentration of zinc in the roots was very high (13 000-25 000 mg kg(-1) dw). Nitrate fertilizer, especially ammonium nitrate, and acidic water (pH 4.3) increased zinc leaching.  相似文献   

10.
A contaminant transport model was developed to simulate the fate and transport of organic compounds such as TNT (2,4,6-trinitrotoluene), using the single-root system. Onions were planted for this system with 50-ml plastic tubes. Mass in the soil, soil solution, root and leaf was monitored using 14C-TNT. Model parameters were acquired from the experiments in the single-root system and were used to simulate total TNT concentration in soil, providing the average concentrations in the rhizosphere and bulk soil as well as root and leaf compartments. Because the existing RCF (root concentration factor) and TSCF (transpiration stream concentration factor) equations based on logKow (octanol-water partition coefficient) were not correlated to TNT uptake, a new term, root uptake rate (Rur), and a new Tscf equation, based on the experimental data, were introduced in the proposed model. The results from both modeling and experimental studies showed higher concentrations of TNT in the rhizosphere than in the bulk soil, because mass transported from the surrounding soil into the rhizosphere was higher than that by root uptake.  相似文献   

11.
Accumulation of phenanthrene and pyrene in rhizosphere soil   总被引:14,自引:0,他引:14  
A study was conducted to determine PAH concentrations in the rhizosphere of plants grown in soil containing phenanthrene or pyrene. The rhizosphere of tall fescue and wheat grown in sterile soil contained 4-5-fold higher pyrene concentrations than unplanted soil. The rhizosphere of several plant species grown in non-sterile soil temporarily contained appreciably more phenanthrene or pyrene than unplanted soil, but those PAHs were degraded with time. The data suggest that plants accumulate such hydrophobic compounds in the rhizosphere after facilitating their transport toward the roots.  相似文献   

12.
The transportation,time-dependent distribution of heavy metals in paddy crops   总被引:13,自引:0,他引:13  
Wang CX  Mo Z  Wang H  Wang ZJ  Cao ZH 《Chemosphere》2003,50(6):717-723
Sixteen experimenmtal plots (5 m x 6 m = 30 m2) were designed with four different levels of heavy metals (HMs) concentration in soil. The concentrations of heavy metals in soils, and paddy plant during the different periods of growth were investigated. A relationship between the total HM content in plants and the HM level in soil was found for a wide range of concentrations. The exchangeable fraction of HMs extracted with 1 M MgCl2 solution according to Tessier's method increased correlation with the dosage of supplemented HMs, then decreased as time went on. The time-related variation of exchangeable HMs in soil demonstrated that the amount of effective HMs taken up by paddy differed at various growth phases. The amount of HMs accumulated in different parts of paddy followed the order of root > stem > grain, leaf. The transportation potential of the HMs in paddy in present study followed the order of Zn, Cr > Cd, Cu > Pb. The HM content in root, stem and leaf of paddy plant (dry weight) was low at time of seedling. The concentration in the root increased sharply at time of tillering, decreased thereafter. The concentrations in stem and leaf reached the highest at time of tillering, then decreased, while rose slightly at following time.  相似文献   

13.
Ten open-top chambers were used to obtain SO(2) concentration-response relationships for growth in wheat cv. Banks, and to study the associated sulphur accumulation. Two-week-old seedlings were exposed to 0.004, 0.042, 0.121, 0.256 or 0.517 microl litre(-1) SO(2) for 79 days, 4 h per day. Response variables measured included height, shoot weight, development stage, tiller number, ear weight per plant, average ear weight, total ear number and shoot sulphur concentration. All growth parameters were significantly negatively affected by SO(2) concentrations above and including 0.042 microl litre(-1). A highly significant positive correlation existed between shoot sulphur concentration and ambient SO(2) concentration.  相似文献   

14.
Plants of bean (Phaseolus vulgaris cv. Pros) were exposed to a range of O3 concentrations up to 70 nl litre(-1) for 9 h day(-1) in the presence (45 nl litre(-1)) and absence (21 nl litre(-1)) of enhanced NH3 in 12 open-top chambers. Treatment effects on visible injury, growth and yield were assessed after 49 (intermediate harvest) and 62 days of exposure (final harvest). The proportion of leaves with visible injury at final harvest increased with increasing concentrations of O3. Enhanced NH3 did not cause any symptoms and did not affect injury by O3. The estimated seasonal mean concentration corresponding with 5% injury was circa 23 nl litre(-1) O3. Biomass production and green pod yield decreased with increasing concentrations of O3 and were generally stimulated by enhanced NH3 at both harvests. Adverse effects of O3 on biomass and pod yield did not depend on the NH3 level. Relative yield response to increasing 9-h daily mean O3 concentrations was nonlinear and yield losses of 5 and 10% were calculated to occur at seasonal daytime mean concentrations of 27 and 33 nl litre(-1) O3, respectively. Linear regression showed that the Accumulated exposures Over a Threshold of 30 (AOT30) and 40 nl litre(-1) (AOT40) O3 performed equally well. The estimated accumulated O3 exposures corresponding with a yield loss of 5% were 1600 nl litre(-1) h for AOT30 and 400 nl litre(-1) h for AOT40. The results are discussed in relation to the long-term critical level that is used as a guideline to protect crops against adverse effects by O3.  相似文献   

15.
BACKGROUND, AIM AND SCOPE: Problems of long-term existence of the environmental contaminant 2,4,6-trinitrotoluene (TNT) and necessities for the use of trees ('dendroremediation') in sustainable phytoremediation strategies for TNT are described in the first part of this paper. Aims of the second part are estimation of [14C]-TNT uptake, localisation of TNT-derived radioactivity in mature tree tissues, and the determination of the degree of TNT-degradation during dendroremediation processes. METHODS: Four-year-old trees of hybrid willow (Salix spec., clone EW-20) and of Norway spruce (Picea abies) were cultivated in sand or ammunition plant soil (AP-soil) in wick supplied growth vessels. Trees were exposed to a single pulse application with water solved [U-14C]-TNT reaching a calculated initial concentration of 5.2 mg TNT per kg dry soil. Two months after application overall radioactivity and extractability of 14C were determined in sand/soil, roots, stem-wood, stem-bark, branches, leaves, needles, and Picea May sprouts. Root extracts were analysed by radio TLC. RESULTS: 60 days after [14C]-TNT application, recovered 14C is accumulated in roots (70% for sand variants, 34% for AP-soil variant). 15-28% of 14C remained in sand and 61% in AP-soil. 3.3 to 14.4% of 14C were located in aboveground tree portions. Above-ground distribution of 14C differed considerably between the angiosperm Salix and the gymnosperm Picea. In Salix, nearly half of above-ground-14C was detected in bark-free wood, whereas in Picea older needles contained most of the above-ground-14C (54-69%). TNT was readily transformed in tree tissue. Approximately 80% of 14C was non-extractably bound in roots, stems, wood, and leaves or needles. Only quantitatively less important stem-bark of Salix and Picea and May shoots of Picea showed higher extraction yields (up to 56%). DISCUSSION: Pulse application of [14C]-TNT provided evidence for the first time that after TNT-exposure, in tree root extracts, no TNT and none of the known metabolites, mono-amino-dinitrotoluenes (ADNT), diaminonitrotoluenes (DANT), trinitrobenzene (TNB) and no dinitrotoluenes (DNTs) were present. Extractable portions of 14C were small and contained at least three unknown metabolites (or groups) for Salix. In Picea, four extractable metabolites (or groups) were detected, where only one metabolite (or group) seemed to be identical for Salix and Picea. All unknown extractables were of a very polar nature. CONCLUSIONS: Results of complete TNT-transformation in trees explain some of our previous findings with 'cold analytics', where no TNT and no ADNT-metabolites could be found in tissues of TNT-exposed Salix and Populus clones. It is concluded that 'cold' tissue analysis of tree organs is not suited for quantitative success control of phytoremediation in situ. RECOMMENDATIONS AND OUTLOOK: Both short rotation Salicaceae trees and conifer forests possess a dendroremediation potential for TNT polluted soils. The degradation capacity and the large biomass of adult forest trees with their woody compartments of roots and stems may be utilized for detoxification of soil xenobiotics.  相似文献   

16.
The structure of stream benthic macroinvertebrate communities in relation to pH and humic content was studied in 20 second and third-order forest streams in southern Sweden. Streams varied in pH from 4.2 to 8.0, and in humic content from a colour of 5 to 1200 mg Pt litre(-1). There was a positive relationship between pH and species richness, with a discontinuity occurring at pH approximately 5.7. At pH > 5.7, species richness decreased with increasing colour. At pH < 5.7 there was a positive correlation between species richness and humic concentration up to a colour of about 200-300 mg Pt litre(-1). this may be explained by high concentrations, 0.4-0.9 mg litre(-1), of labile monomeric Al occurring in the low coloured acid streams. In streams with a colour > 200 mg Pt litre(-1) labile monomeric Al was less than 0.2 mg litre(-1). There was no significant change in species richness above this threshold, but a shift in species composition towards a dominance of Plecoptera and Chironomidae. This threshold model seems to explain the observed differences in stream benthic community structure better than a simple linear relationship with pH or humic content.  相似文献   

17.
Li X  Christie P 《Chemosphere》2001,42(2):201-207
Red clover plants inoculated with Glomus mosseae were grown in a sterile pasture soil containing 50 mg Zn kg(-1) in 'Plexiglas' (acrylic) containers with nylon net partitions (30 microm mesh) designed to separate the soil into a central root zone and two outer zones for hyphal growth with no root penetration. Two porous plastic soil moisture samplers were installed in each pot, one in the root compartment and the other in one of the hyphal compartments. The soil in the outer compartments was amended with one of the four application rates of Zn (as ZnSO4) ranging from 0 to 1000 mg kg(-1). Non-mycorrhizal controls were included, and there were five replicates of each treatment in a randomised block in a glasshouse. Uninoculated plants received supplementary P to avoid yield limitation due to low soil P status. Plants grew in the central compartment for nine weeks. Soil moisture samples were collected 4, 24 and 62 days after sowing to monitor changes in the Zn concentration and pH of the soil solution. At harvest, the mean mycorrhizal infection rate of inoculated plants ranged from 29% to 34% of total root length and was little affected by Zn application. Root and shoot yields were not affected by mycorrhizal infection. Plant Zn concentration and uptake were lower in mycorrhizal plants than non-mycorrhizal controls, and this effect was more pronounced with increasing Zn application rate to the soil. Soil solution Zn concentrations were lower and pH values were higher in mycorrhizal treatments than non-mycorrhizal controls and the mycorrhiza effect was more pronounced at higher Zn application rates. The protective effect of mycorrhiza against plant Zn uptake may have been associated with changes in Zn solubility mediated by changes in the soil solution pH, or by immobilisation of Zn in the extraradical mycelium.  相似文献   

18.
Fathead minnow larvae (Pimephales promelas) were exposed to triphenyltin hydroxide (TPTH) during brief (single pulse) or continuous exposure in 96-h and 30-day toxicity tests. The continuous exposure 96-h LC(50) value was 7.1 microg litre(-1). Brief exposures for 12 to 72-h gave 96-h LC(50) values that ranged from 61.8 to 6.0 microg litre(-1), respectively. The continuous exposure 30-day chronic effect concentration, based upon reduced growth, was 0.23 microg litre. Survival was significantly reduced at 2.0 microg litre(-1). Brief exposures for 24, 48, and 72-h in 30-day tests significantly reduced survival and growth at 13.0, 13.0 and 60.0 microg litre(-1) respectively. It is suggested that both toxicant concentration and exposure duration are important factors to consider in the risk assessment of potential pesticide hazards in the environment.  相似文献   

19.
The effect of ammunition-like compounds and armament waste on the mortality and reproduction of terrestrial invertebrates was assayed by using two biotests: the enchytraeid-biotest withEnchytraeus crypticus and the collembola-biotest withFolsomia Candida. Toxicity was investigated by using standard soil (Lufa 2.2) spiked with 2,4,6-trinitrotoluene (TNT), hexahydro-l,3,5-trinitro-l,3,5-triazine (hexogen, RDX), octahydro-l,3,5,7-tetranitro-l,3,5,7-tetrazocine (octogen, HMX) and 2,4,6-triaminotoluene (TAT). Ecotoxicity was investigated with ammunition-contaminated soil material from the former ammunition plant “Tanne” at Clausthal-Zellerfeld (CTNTla) and the Brandplatz (incineration site) in Torgau-Elsnig (TETNT1a), Germany. TNT increased mortality and reduced reproduction of both test organisms corresponding to the concentrations used, whereas hexogen, octogen and TAT had no effect in the tested concentrations (1000-2000 mg/kg). From the two soil materials, TETNT1a was much more toxic than CTNT1a. The LC50(7d) in the enchytraeid-biotest was 570 mg TNT/kg and the EC50(28d) 369 mg TNT/kg soil material (dw). In the collembola-biotest the LC50(7d) was 185 mg TNT/kg and the EC50(28d) 110 mg TNT/kg soil matter (dw).  相似文献   

20.
A glass house experiment was conducted to investigate the effect of soil arsenic on photosynthetic pigments, chlorophyll-a and -b, and their correlations with rice yield and growth. The experiment was designed with three replications of six arsenic treatments viz. control, 10, 20, 30, 60, 90 mg of As kg(-1) soil. Arsenic concentration in initial soil, to which the above mentioned concentrations of arsenic were added, was 6.44+/-0.24 mg kg(-1). Both chlorophyll-a and -b contents in rice leaf decreased significantly (p<0.05) with the increase of soil arsenic concentrations. No rice plant survived up to maturity stage in soil treated with 60 and 90 mg of As kg(-1). The highest chlorophyll-a and -b contents were observed in control treatment (2.62+/-0.24 and 2.07+/-0.14 mg g(-1) were the average values of chlorophyll-a and -b, respectively of the five rice varieties) while 1.50+/-0.20 and 1.04+/-0.08 mg g(-1) (average of five rice varieties) of chlorophyll-a and -b, respectively were the lowest. The content of photosynthetic pigments in these five rice varieties did not differ significantly (p>0.05) from each other in control treatment though they differed significantly (p<0.05) from each other in 30 mg of As kg(-1) soil treatment. Among the five rice varieties, chlorophyll content in BRRI dhan 35 was found to be mostly affected with the increase of soil arsenic concentration while BRRI hybrid dhan 1 was least affected. Well correlations were observed between chlorophyll content and rice growth and yield suggesting that arsenic toxicity affects the photosynthesis which ultimately results in the reduction of rice growth and yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号