首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Apatite appears a useful compound for removing lead from water, due to its ability to immobilize the metal by precipitation. In dilute solution, dissolved hydroxyapatite [HA, Ca1O(P04)6(OH)2] provided phosphates that were reactive with aqueous lead (molar ratio HA/Pb= 1/10) forming precipitates at around pH 6. These dissolved at a more acidic pH (3). Solid HA in contact with Pb2+ions, led to the formation of pyromorphite [Pblo(P04)6(OH)2], identified by X-ray diffraction and insoluble at pH tested (3-8). The amount of pyromorphite increased with the weight ratio of HA/Pb. When this one increased from 1 to 1000, lead precipitated as pyromorphite rose from 19 to 99%. In vivo experiments on rats confirmed the in vitro results. In fact, lead bioavailability assessed by intestinal perfusion was unchanged in the presence of dissolved HA, whereas it was significantly lower in the presence of solid HA, evaluated by gastric intubation, at a weight ratio equal to 10 (amount of lead absorbed decreased by 60%). Apatite could bean effective means of immobilizing lead in drinking or sewage, since accidental pyromorphite ingestion does not yield bioavailable lead.  相似文献   

2.
Recently investigations have shown that the annual flux of lead from shotgun pellets to shooting range soils is significant in some countries. This paper presents the data of chemical and mineralogical analyses of soils and Pb-pellet crusts from five shooting ranges in Sweden and, based on these results, evaluates the retention of lead in these shooting range soils. In the soils, Pb-pellets and bullets are readily decomposed and transformed to crust materials composed of Pb-bearing minerals. The transformation products in the crust materials, identified by X-ray diffraction, are predominantly hydrocerussite [Pb(3)(CO(3))(2) (OH)(2)], associated with cerussite (PbCO(3)) and anglesite (PbSO(4)). In a period of 20-25 years, an average of 4.8% metallic lead in the pellets has been transformed to lead carbonate and lead sulphate, where the former is the more stable mineral in the surface environment. However, in soils relatively rich in humus an average of 15.6% metallic lead in the pellets was transformed to secondary lead compounds in the same period. The results of the chemical analyses indicate that Pb is rather immobile in the soil profile. The surficial horizon contains higher concentrations of lead (52-3400 mg kg(-1)), while lower concentrations of lead were found in the E and B horizons where the total Pb concentrations (8-37 mg kg(-1)) are within about one standard deviation of the mean reference sample concentration. An inverse relationship is revealed between the aluminium hydroxide content of the soil fraction and EDTA-extractable Pb, which suggests that these compounds have affected the retention of lead.  相似文献   

3.
An incubation experiment was carried out to assess the rate of oxidation of Pb shot and subsequent transfer of Pb to the soil under a range of soil pH conditions. Lead shot corrosion was rapid, so that soil solution and fine earth (<1mm) Pb concentrations increased rapidly within a few months. Corrosion products, dominated by hydrocerussite (Pb(3)(CO(3))(2)(OH)(2)), developed in crusts surrounding individual Pb pellets. However, irrespective of pH, Pb(2+) activities in the soil solutions, modelled using WHAM 6, were much lower than would be the case if they were controlled by the solubility of the dominant Pb compounds present in the Pb shot crust material. In contrast, modelling of soil solid-solution phase distribution of Pb, again using WHAM 6, suggested that, at least during the 24 months of the study, soil solution Pb concentrations were more likely to be controlled by sorption of Pb by the soil solid phase.  相似文献   

4.
Dissolved silica species are naturally occurring, ubiquitous groundwater constituents with corrosion-inhibiting properties. Their influence on the performance and longevity of iron-based permeable reactive barriers for treatment of organohalides was investigated through long-term column studies using Connelly iron as the reactive medium. Addition of dissolved silica (0.5 mM) to the column feed solution led to a reduction in iron reactivity of 65% for trichloroethylene (TCE), 74% for 1,1,2-trichloroethane (1,1,2-TCA), and 93% for 1,1,1-trichloroethane (1,1,1-TCA), compared to columns operated under silica-free conditions. Even though silica adsorption was a gradual process, the inhibitory effect was evident within the first week, with subsequent decreases in reactivity over 288 days being relatively minor. Lower concentrations of dissolved silica species (0.2 mM) led to a lesser decrease (70%) in iron reactivity toward 1,1,1-TCA. The presence of dissolved silica species produced a shift in TCE product distribution toward the more highly chlorinated product cis-dichloroethylene (cis-DCE), although it did not appear to alter products originating from the trichloroethanes. The major corrosion products identified were magnetite (Fe3O4) or maghemite (gamma-Fe2O3) and carbonate green rust ([Fe4(2+)Fe(2)3+(OH)12][CO(3).2H2O]). Iron carbonate hydroxide (Fe(II)1.8Fe(III)0.2(OH)2.2CO3) was only found in the silica-free column, indicating that silica may hinder its formation. A comparison with columns operated under the same conditions, but using Master Builder iron as the reactive matrix, showed that Connelly iron is initially less reactive, but performs better than Master Builder iron over 288 days.  相似文献   

5.
Analysis of Calabash chalk has been done using energy dispersive X-ray fluorescence spectroscopy (EDXRF), X-ray diffraction (XRD) and pressurised fluid extraction (PFE) followed by gas chromatography (GC) with mass selective detection (MSD). It was found by XRD that the composition of Calabash chalk was an aluminium silicate hydroxide from the kaolin clay group with the possible formula Al(2)Si(2)O(5)(OH)(4). Multi-elemental analysis by EDXRF was able to quantify 22 elements in Calabash chalk including lead at a mean concentration of approximately 40 mg/kg. A range of persistent organic pollutants were identified and quantified in Calabash chalk including alpha lindane, endrin, endosulphan II and p,p'-DDD using PFE-GC-MSD.  相似文献   

6.
Lee TM  Lai HY  Chen ZS 《Chemosphere》2004,57(10):1459-1471
The availability of metal in contaminated soil can be reduced by the addition of soil amendments. The objectives of this study are to study the effects of applying different soil amendments on the concentration of Cd and Pb in soil solution, DTPA or EDTA extractable Cd and Pb, and the uptake of Cd and Pb by wheat (Triticum vulgare) when growing in long-term Cd and Pb-contaminated soils, more than 20 years. The soil amendments, including check, compost, zinc oxide, calcium carbonate, calcium carbonate mixed with zinc oxide, and calcium carbonate mixed with compost, were conducted in a four replicates pot cultural study. The amended soils were incubated for six months under 60% of water holding capacity. Following incubation, wheat was grown for four months in greenhouse. Analyses of Cd concentration demonstrated a significant decrease in soil solution concentration and DTPA or EDTA extractable in soils amended with calcium carbonate or calcium carbonate mixed with ZnO (or compost) (p<0.01). These amendments can significantly reduce the Cd concentration in the grain, leaf and stem, or reduce the total Cd uptake in all parts of wheat species grown in highly contaminated soil amended with calcium carbonate or calcium carbonate mixed with ZnO (or compost) (p<0.01). The concentration of Cd in soil solution and extracted with DTPA or EDTA can predict the Cd concentration in wheat, especially for soil solution.  相似文献   

7.
Characterization of fugitive material within a primary lead smelter.   总被引:1,自引:0,他引:1  
The primary production of Pb via the sinter plant-blast furnace method resulted in a large number of Pb and other phases, reflecting the complex reactions occurring within each of the processes. Optical microscopy and X-ray diffraction (XRD) techniques have been used to characterize fugitive emissions and dusts generated during sintering, smelting, Cu drossing, refining, and slag fuming at a primary Pb-Zn smelter. The results displayed a complex array of phases, with the mineralogy of the dusts and fume reflecting conditions of the particular metallurgical operation. The principal Pb species followed a transformation from PbS through PbSO4 and PbO to Pb(o) (metal) from raw materials to the refinery. The fugitive emissions generated by the blast furnace were of a finer size with more complex chemistry than fugitive material from other source areas. XRD identified a mixture of PbS, ZnO, and ZnS, associated with one or more of the Cl-bearing phases Pb(OH)Cl, PbCl2, Pb4O3Cl2, Na3Pb2(SO4)3Cl, Pb10(SO4)Cl2O8, Pb4SCl6, and Pb7S2Cl10. The presence of Cl-bearing phases in the fume has possible health implications.  相似文献   

8.
BACKGROUND, AIMS AND SCOPE: Hexavalent chromium [Cr(VI)] cannot react with either carbonate or hydroxide to form chromium precipitates. However, by using a precipitation technology to treat plating wastewater containing Cr(VI), Cu(II), Ni(II) and Zn(II), approximately 78% of Cr(VI) (initial 60 mg/L) was co-removed with the precipitation of Cu(II), Ni(II) and Zn(II) (each 150 mg/L) by dosing with Na2CO3 (Sun 2003). Direct precipitation by forming Cu(II)-Cr(VI) precipitates followed by adsorption of Cr(VI) onto freshly formed Cu-precipitates was subsequently found to be the main mechanism(s) involved in Cr(VI) co-removal with Cu(II) precipitation by dosing Na2CO3 stepwise to various pH values (Sun et al. 2003). This study was. carried out to further characterize the formation of primary precipitates during the early stages of copper precipitation and simultaneous removal of Cr(VI) with Cu(II). METHODS: Test metal-solutions were prepared with industrial grade chemicals: CuCl2 x 2H2O, Na2SO4 and K2Cr2207. NaCO3 was added drop-wise to synthetic metal-solution to progressively increase pH. For each pH increment, removal of soluble metals was detected by atomic absorption spectrophotometer (AAS) and surface morphology of precipitates was analyzed by scanning electron microscope (SEM). To further characterize the formation of primary precipitates, a series of MINEQL+ thermodynamic calculations/analyses and equilibrium calculations/ analyses were conducted. RESULTS AND DISCUSSION: MINEQL+ thermodynamic calculation indicated that, for a system containing 150 mg/L Cu(II) and 60 mg/L Cr(VI) with gradual Na2CO3 dosing, if any precipitates can be formed at pH 5.0 or lower, it should be in the form of CuCrO4. Comparison tests using systems containing the same equivalent of Cu(II) plus Cr(VI) and Cu(II) plus SO4(2-) showed that the precipitation occurred at a pH of around 5.0 in the Cu(II)-Cr(VI) system and around 6.0 in the Cu(II)-SO4(2-) system. The discrepancy of the precipitation was indeed caused by the formation of Cu-Cr precipitates. The initiation of copper removal at pH around 5.0 for the Cu-Cr co-removal test was not attributable to the formation of Cu-CO3 precipitates, instead, it was most likely through the formation of insoluble Cu-Cr precipitates, such as CuCrO4 and CuCrO4 x 2Cu(OH)2. Experimental tests, equilibrium calculations, MINEQL+ thermodynamic calculations and surface morphologies for systems using higher concentrations of Cu(II) and Cr(VI) further verified the most probable composition of primary precipitates is copper-chromate. CONCLUSION: In the Cu-Cr co-removal test with Na2O3 dosing to increase pH and induce metal precipitation, copper-chromate precipitates are the primary precipitates produced and contribute to the initial simultaneous removal of copper and chromium.  相似文献   

9.
Chen ZS  Lee GJ  Liu JC 《Chemosphere》2000,41(1-2):235-242
Two rural soils contaminated by cadmium (Cd) and lead (Pb) were used to evaluate the effect of different chemical treatments on changes in speciation and extractability of Cd and Pb, and in phytoavailability to wheat. Triplicates of seven chemical treatments were tested to compare and evaluate the remediation techniques for contaminated soils using pot experiments. Treatments applied were calcium carbonate, a high quantity of phosphate salt, hog composts, iron oxide, manganese oxide, zeolite, and unamended control. Wheat (Triticum aestivum) was planted in the different amended soils for a further one month to evaluate the effectiveness of treatments on uptake of Cd and Pb by the wheat shoots. Results indicated that addition of calcium carbonate, manganese oxide, or zeolite reduces the extractability of Cd or Pb in both soils, and significantly reduce the uptake of Cd and Pb by wheat shoots. Changes in the extractability and metal sequential fractionations indicate that the exchangeable (or available) form of Cd and Pb in two soils can be transformed into unavailable forms after these amendments.  相似文献   

10.
This study investigated phosphate-induced lead immobilization from different Pb minerals in soils under varying pHs. Four soils were used, including one Pb-contaminated soil (NC-Soil) and three soils spiked with litharge (PbO), cerrusite (PbCO3), or anglesite (PbSO4), referred to as PbO-soil, PbCO3-soil, and PbSO4-soil, respectively. The soils were equilibrated with KCl and Ca(H2PO4)(2).H2O under pH of 3-7. At low pH (3 and 5), Pb solubility followed PbO-soil>PbCO3-soil>PbSO4-soil; while at pH=7, it was PbSO4-soil>PbO-soil>PbCO3-soil. Phosphate decreased Pb dissolution time from >180 to <60 min and reduced soluble Pb by 67-100%. This was mostly via transformation of Pb minerals into chloropyromorphite [Pb(5)(PO(4))(3)Cl]. Our results indicated that P addition can effectively transform various Pb minerals into insoluble chloropyromorphite in soils. This transformation was more significant at acidic condition (e.g., pH相似文献   

11.
采用氢氧化钙、碳酸钠和硫化钠处理含锌废水,在溶液pH、锌离子浓度、颗粒粒径、颗粒Zeta电位、上清液浊度和污泥体积等指标测定的基础上,结合沉淀产物表征,探讨了沉淀剂用量对锌离子去除率的影响及沉淀机理。研究结果表明,n(Ca(OH)2∶n(Zn)=1.5,去除率达到最大值99.65%,n(Na2CO3)∶n(Zn)=1.5,去除率达到最大值99.89%,n(Na2S)∶n(Zn)=2.5,去除率达到最大值99.95%。X-射线衍射和热重分析表明,氢氧化钙与废水生成的沉淀物为碳酸钙和氧化锌,碳酸钠与废水生成的沉淀物为氧化锌和碱式碳酸锌,硫化钠与废水生成的沉淀物为硫化锌,这对污泥处理处置以及回收利用有指导意义。  相似文献   

12.
The reactivity of cement pastes made by blending Portland cement with slag from municipal solid waste incinerator (MSWI) fly ash was investigated to assess the potential of recycling MSWI fly ash slag. The slag, prepared by melting MSWI fly ash at 1400 degrees C for 30 min, was pulverized and ground, then blended with ordinary Portland cement (OPC), using various substitution levels to make slag-blended cement (SBC). The pozzolanic reactivity of the ecocement was then characterized by determining variations in the compressive strength, degree of hydration, microstructure, speciation, and mineralogical crystalline phases. The results suggest that the strength of the pastes at an early age decreased with increasing substitution levels, whereas the strength at a later age of the tested pastes (with substitution levels less than 10%) outperformed OPC paste because of typical SBC properties. The development of strength at a later age was also confirmed by X-ray diffraction and scanning electron microscopy techniques. This implies that active silica (Si) and alumina (Al) react with the hydration product, calcium hydroxide (Ca(OH)2), to form calcium silicate hydrate (C-S-H), which contributed to strength development at a later age by the filling up of pores in the SBC pastes. The pozzolanic activity of the SBC pastes indicates that it is suitable for use as a substitute for OPC in blended cement.  相似文献   

13.
Arienzo M 《Chemosphere》2000,40(4):331-337
The degradation of 2,4,6-trinitrotoluene was examined in pure water and contaminated soil slurry using calcium peroxide as a source of solid hydrogen peroxide and oxygen. The extent of TNT oxidation was compared with that obtained by using hydrated lime, which is normally generated by slurrying CaO2 in water and contained in CaO2 technical formulation (approximately 50%, w/w). Complete TNT degradation occurred between 280 min, 0.1% CaO2/Ca(OH)2 and 20 min, 1% CaO2/Ca(OH)2. A large part of the generated oxidation products, 80-90%, were absorbed on the solid calcium hydroxide, whereas the remaining 10-20% was detected in solution until 48 h. Removal of nitro groups was extremely effective in CaO2 slurry, where all the nitrogen (3 mol per mol of TNT) was removed from TNT within 240 min. Respect to calcium hydroxide, the peroxy compound liberated H2O2 in solution, 370 mg l-1 at 0.2% CaO2, w/v, which then decomposed within 480 min. Most of the 14C-TNT was retained more strongly on the calcium hydroxide generated by slurrying CaO2. This pool remained adsorbed on the solid until pH dropped below 5.8. The treatment of a contaminated soil slurry, 700 mg TNT kg-1, reduced CH3CN extractable TNT below 20 mg kg-1 at very low concentration of CaO2/Ca(OH)2, approximately 0.2%, w/w. Both oxidants do not lead to soil sterilization as the phosphorus added to neutralize the pH serves as a source of nutrient for the soil biomass.  相似文献   

14.
BACKGROUND, AIM, AND SCOPE: Lead (Pb) contamination at shooting range sites is increasingly under environmental concern. Controlling Pb leachability from shooting range soil media is an important step to minimize Pb exposure to the surrounding environment. This study investigated stabilization of Pb in shooting range soils treated with cement, quicklime, and phosphate. MATERIALS AND METHODS: Two soils were used and collected from two shooting ranges, referred to as SR1 and SR2. The treatment additives were applied to the soils at rates from 2.5% to 10% (w/w). The effectiveness of each treatment was evaluated by Pb (w/w). The effectiveness of each treatment was evaluated by Pb leachability, measured by the Toxicity Characteristic Leaching Procedure (TCLP). The possible mechanisms for Pb immobilization were elucidated using X-ray powder diffraction (XRPD). RESULTS: Cement and quicklime treatments were effective in immobilizing Pb in SR1 soil, with reduction of Pb concentration in TCLP leachate (TCLP-Pb) to be below the U.S. EPA non-hazardous regulatory limit of 5 mg L(-1) at application rates of > or =5% and 28-d incubation. By contrast, cement and quicklime amendments were less effective for Pb stabilization in SR2 soil because the TCLP-Pb levels in the treated soil were still higher than the limit of 5 mg L(-1) at all application rates, although they were significantly reduced in comparison with the untreated soil. Phosphate application was most effective in reducing Pb leach ing in both soils. Even at an application rate as low as 5% and 1-d incubation, phosphate could reduce TCLP-Pb to be below the limit of 5 mg L(-1) in both soils. DISCUSSION: Immobilization of Pb in the SR1 soil amended with cement and quicklime was attributed to the formation of pozzolanic minerals (e.g., calcium silicate hydrate C-S-H and ettringite) that could encapsulate soil Pb. The pozzolanic reaction was limited in the SR2 soil upon the application of cement and quicklime. Reduction of the TCLP-Pb might result from complexation of Pb on the surface of the formed calcite. Phosphate-induced Pb immobilization was mainly attributed to formation of less soluble PbHPO4. CONCLUSIONS: The results indicate that effectiveness of cementitious treatments (cement and quicklime) in immobilizing Pb varies in two soils, being effective in SR1 soil but less in SR2 soil. For one given soil, no difference was observed of the effeciveness between cement and quicklime treatments, whereas phosphate amendment emerges as a most effective treatment means for stabilizing Pb in both two soils, and it also shows a faster immobilization process and little effect on the soil acid buffering capacity. Recommendations and Perspectives. Overall, our study reveals that immobilizing Pb can be one of the best management practices for Pb contamination at shooting range sites. Phosphate amendment is most effective in immobilizing Pb in any kind of the soil ranges to minimize negative Pb impacts on the shooting range sites.  相似文献   

15.
Abstract

The reactivity of cement pastes made by blending Portland cement with slag from municipal solid waste incinerator (MSWI) fly ash was investigated to assess the potential of recycling MSWI fly ash slag. The slag, prepared by melting MSWI fly ash at 1400 °C for 30 min, was pulverized and ground, then blended with ordinary Portland cement (OPC), using various substitution levels to make slag-blended cement (SBC). The pozzolanic reactivity of the ecocement was then characterized by determining variations in the compressive strength, degree of hydration, microstructure, speciation, and mineralogical crystalline phases. The results suggest that the strength of the pastes at an early age decreased with increasing substitution levels, whereas the strength at a later age of the tested pastes (with substitution levels less than 10%) outperformed OPC paste because of typical SBC properties. The development of strength at a later age was also confirmed by X-ray diffraction and scanning electron microscopy techniques. This implies that active silica (Si) and alumina (Al) react with the hydration product, calcium hydroxide (Ca(OH)2), to form calcium silicate hydrate (C-S-H), which contributed to strength development at a later age by the filling up of pores in the SBC pastes. The pozzolanic activity of the SBC pastes indicates that it is suitable for use as a substitute for OPC in blended cement.  相似文献   

16.
Suzuki K  Ono Y 《Chemosphere》2008,71(5):922-932
This study was designed to elucidate the leaching characteristics of stabilized/solidified (S/S) fly ash generated by ash-melting. For this study, pH-dependent leaching tests, sequential extraction procedures, and column leaching tests were carried out. The pH-dependent leaching test results for Pb, Cu, and Zn showed that the heavy metal concentrations in the high-pH range were lower than the predicted values for hydroxide and carbonate. During sequential extraction, Cu and Pb were principally distributed in the S/S ashes' organic matter fraction in the chelating agent, suggesting that metals bind to the chelating agent. The percentage of the water-soluble fraction for Pb and Cu was low (<0.2 %). The fly ashes treated with a chelating agent and cement had low leachability potential for metals in the high-pH range. Column tests for S/S fly ashes showed that two leaching stages were distinguishable: one for short time, corresponding to faster metal leaching, and another for the leaching rate. Kinetic speciation was then applied to data obtained from column leaching tests. The first-order reaction/diffusion model showed a better fit for Ca, Pb, and Cu, suggesting that the initial dissolution of soluble compounds, such as metal chloride, was controlled by the first-order reaction (surface wash off). Subsequently, insoluble compounds such as hydroxide or carbonate might penetrate into the porous matrix by diffusion.  相似文献   

17.
The relationship between the concentrations or elemental carbon (EC) and lead (Pb) in urban aerosols from the two countries was investigated. The cities in the United States (U.S.) and France (FR), selected for study based on similarities in their populations and general industry, were: Senonches, FR and Clemson, SC; Clermont-Ferrand, FR and Akron, OH; Strasbourg, FR and Norfolk, VA; Paris, FR and Chicago, IL; and Orleans, FR. The data show that both species in each country are semi-logarithmically related to population. However, in the largest cities, the French aerosol contained significantly higher levels of both EC and Pb. The mean EC concentrations in rural towns, small cities and large urban areas were approximately 1.2−1.7; 2.4−3.0; and 4.6−7.9 μg m−3. Mean Pb concentrations were 0.005−0.006; 0.03−0.07; and 0.06−0.44 μg m−3 for the same cities.  相似文献   

18.
Long-term column experiments were conducted under different geochemical conditions to estimate the longevity of Fe 0 permeable reactive barriers (PRBs) treating hexavalent chromium (Cr(VI)). Secondary carbonate minerals were precipitated, and their effects on the performance, such as differences in the mechanism for Cr removal and the changes in system hydraulics, were assessed. Sequestration of Cr(VI) occurred primarily by precipitation of Fe(III)-Cr(III) (oxy)hydroxides. Trace amounts of Cr were observed in iron hydroxy carbonate presumably due to substitution of Cr3+ for Fe3+. The formation of Fe(III)-Cr(III) (oxy)hydroxide greatly decreased the reactivity of the Fe 0 and thus resulted in migration of the Cr removal front. Carbonate minerals did not appear to contribute to further passivation with regard to reactivity toward Cr removal; rather, the column receiving high contents of dissolved calcium carbonate showed slightly enhanced Cr removal by means of a higher corrosion rate of Fe 0 and because of sequestration by an iron hydroxy carbonate. Precipitation of carbonates, however, governed other geochemical parameters. The porosity and hydraulic conductivity in the column receiving high contents of dissolved calcium carbonate did not indicate a great loss in system permeability because the accumulation of carbonates declined as the Fe 0 was passivated over time. However, the accumulated carbonates and associated Fe(III)-Cr(III) (oxy)hydroxide could cause problems because the presence of these solids resulted in a decline in flow rate after about 1400 pore volumes of operation.  相似文献   

19.
This study investigated crystallization mechanisms for the formation of lead aluminosilicate by sintering lead stabilization with kaolin-based precursors. PbAl2Si2O8 was found to be the only stable lead aluminosilicate in low-PbO system and demonstrates its highly intrinsic resistance to acid attack in leaching test. A three-stage PbAl2Si2O8 formation mechanism was supported by the results of the changing temperature in the system. Amorphization of sintered products was observed in both PbO/kaolinite and PbO/mullite systems at 600–700°C. When the temperature was increased to 750–900°C, the crystallochemical formation of lead aluminosilicates (i.e., Pb4Al4Si3O16, Pb6Al6Si2O21, and PbAl2Si2O8) was observed. Pb4Al4Si3O16 and Pb6Al6Si2O21 were found to be the intermediate phases at 700–900°C. Finally, PbAl2Si2O8 was found to be the only crystallite phase to host Pb at above 950°C. A maximum of 80% and 96.7% Pb can be incorporated into PbAl2Si2O8 in PbO/kaolinite and PbO/mullite systems, respectively, but the final products exhibited different microstructures. To reduce environmental hazard of lead, this strategy demonstrated a preferred mechanism of immobilizing lead into PbAl2Si2O8 structure via kaolin-based precursors.  相似文献   

20.
A study was conducted to investigate the suitability of phosphate recovery from greenhouse wastewaters by using precipitation/crystallization process. More than 90% of the phosphate could be removed from the greenhouse wastewater. Various calcium phosphate salts were obtained in the process; hydroxyapatite [Ca5(PO4)3OH] could be the main product from the precipitates. Phosphate removal was affected by the presence of magnesium ion in wastewaters. An increase of magnesium concentrations in wastewaters decreased phosphate removal rates. The chemical contents of precipitates in terms of calcium, magnesium and phosphate were affected by calcium to magnesium molar ratio. Higher calcium contents were obtained at wastewaters with high calcium to magnesium molar ratio. An addition of magnesium did not affect the potassium contents in the precipitates. K-struvite, MgKPO4 x 6H2O, was not the major product in the precipitate, even with addition of a large quantity of magnesium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号