首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
An impact assessment of current upland cropping systems in Haiti was carried out using a combined experimental and agronomic survey approach on fields that were chosen as being representative of the diversity of land use practices and intensities. These cropping systems were mostly developed on ferralsols with differing degrees of weathering owing to the varying depths to the limestone bedrock. Three soil types for which the CEC of the mineral fraction was less than 3, 4–7, or 11–18 cmol(+) kg−1 were distinguished. The study shows that apart from phosphorus, soil cation availability (K, Mg) is the most limiting factor for a successful bean crop. With the insertion of a fertilized cabbage crop into the rotation, the soil bioavailable P at the sowing of the bean–maize intercrop (BMI) did not significantly increase, whereas the exchangeable K content of the soils increased from 0.22 to 0.38 and led to a significant increase in the bean yield from 654 to 1079 kg ha−1. It is clear that the trend of the cropping systems towards a shorter fallow period, increasing frequency of the BMI and introduction of N–P–K fertilizers, may all increase crop production in the short term. However, these changes are unlikely to lead to sustained benefits. One of the potential risks is the soil Mg depletion due to K fertilization as revealed by a microlysimeter experiment. Another risk is the increased proportion of plants with bean root diseases, due to the shortening of the BMI rotation interval. The proportion of plants with bean root diseases increased from 7 to 22% in 1989 and from 10 to 39% in 1990, when the bean rotation interval was reduced from 3 to 1 years. Another risk is the spatial spread of fall armyworm (Spodoptera frugiperda) from the plots covered with residues of a preceding maize crop, to the neighboring plots recently sown with maize. Future research should therefore focus on optimizing the K:Mg ratio of fertilizer, breeding bean varieties resistant to Fusarium disease, diversifying the range of crops cultivated, and management of the maize residues. The evolution of the cropping systems in the last 10 years is somewhat consistent with the diagnosis made about 15 years earlier.  相似文献   

2.
Productivity of maize–pigeonpea cropping systems is dependent on facilitative and competitive interactive effects on resource availability. Controlling these interactions may benefit farmers through increased productivity associated with optimized crop yields. Previous research on maize–pigeonpea culture in Sub-Saharan Africa has focused on yield and soil fertility, but provided inadequate information on the mechanisms of possible interspecific competition. We employed a factorial field experiment to examine yield and nutritional responses of maize and pigeonpea to cropping systems (sole maize, intercropping, and improved fallow), N and P fertilizer additions, and cattle manure additions in Dodoma, Tanzania. The study objectives were to assess competition between crops and to determine how manure or fertilizer inputs may mitigate such interactions to improve yields. Intercropping enhanced maize yield over sole maize only when fertilized, reflecting probable nutrient competition. Improved fallows alone or with fertilizers (1.2–1.6 Mg ha−1) increased maize yields over sole maize (0.6 Mg ha−1). These increases were attributed to pigeonpea facilitation through soil nutrient replenishment, reduced competition associated with sequential cropping arrangements, and added nutrients from fertilization. Combined fertilizer and manure applications also improved maize and pigeonpea yields. Plant nutrient diagnosis indicated primary and secondary P and Ca deficiencies, respectively associated with P-fixation and leaching of cations due to high soil acidity and exchangeable Al. Maize competed strongly in mixture suppressing biomass and grain yields of the unfertilized pigeonpea by 60% and 33%, respectively due to limited soil nutrients and/or moisture. These yield reductions suggest that the intercropped pigeonpea did not recover from competition after maize harvesting that reduced competition. Optimizing yields of both maize and pigeonpea would require the addition of prescribed fertilizer when intercropped, but applications can be reduced by half under the improved fallow system due to alleviating interspecific competition.  相似文献   

3.
Urea is an important source of ammonia (NH3) emissions to the atmosphere from agricultural soils. Abatement strategies are necessary in order to achieve NH3 emission targets by reducing those emissions. In this context, a field experiment was carried out on a sunflower crop in spring 2006 with the aim of evaluating the effect of the N-(n-butyl) thiophosphoric triamide (NBPT) in the mitigation of volatilized NH3 from a urea-fertilised soil. Ammonia emission was quantified, using the integrated horizontal flux (IHF) method, following application of urea with and without the urease inhibitor NBPT. Urea and a mixture of urea and NBPT (0.14%, w/w) were surface-applied at a rate of 170 kg N ha−1 to circular plots (diameter 40 m). The soil was irrigated with 10 mm of water just after the application of urea to dissolve and incorporate it into the upper layer of soil. Over the duration of the measurement period (36 days) three peaks of NH3 were observed. The first peak was associated with hydrolysis of urea after irrigation and the others with the increase of ammonia in soil solution after changes in atmospheric variables such as wind speed and rainfall. The total NH3 emission during the whole experiment was 17.3 ± 0.5 kg NH3–N ha−1 in the case of urea treated soils and 10.0 ± 2.2 kg NH3–N ha−1 where NBPT was included with the urea (10.1 and 5.9%, respectively, of the applied urea–N). The lower NH3 emissions from plots fertilised with urea + NBPT, compared with urea alone, were associated with a reduction in urease activity during the first 9 days after inhibitor application. This reduction in enzymatic activity promoted a decrease in the exchangeable NH4+ pool.  相似文献   

4.
Soybean (Glycine max (L.) Merr.) is becoming increasingly important in the cereal-based cropping system of the Nigerian Guinea savanna zone and this justifies research on its effects on soil N. Although soybean can obtain 50% or more of its N requirement from the atmosphere, the N contribution of the crop to the system depends on the amount of N contained in roots, haulms, and fallen leaves after grain harvest. At four sites in the northern Guinea savanna, the effects on N balance of P fertilizer and soybean varieties of different duration were tested. The varieties received P fertilizer at the rates of 0, 30, and 60 kg P ha−1. The total N accumulated aboveground at harvest averaged 104 kg N ha−1 in the early and medium varieties, and 135 kg N ha−1 in the late varieties. Across all varieties and sites, total N content was increased by 40–47% when P was applied. Apparent N harvest index averaged 85% but was not significantly affected by variety or P rate. When only grain was exported, the calculated N balance of the early and the medium varieties was −2.6 to −12.2 kg N ha−1 while the longer duration varieties had positive N balances ranging from 2 to 10.9 kg N ha−1. The N accrual was negative when P was not applied and ranged from 2.4 to 5.2 kg N ha−1 with P application. The interaction of variety and site on the N balance was significant at P<0.05. N balance at the southernmost site was −14.2 kg N ha−1 compared with 2.6–10 kg N ha−1 at the northern sites where N2 fixation was higher. The estimate of N balance is reduced when soybean haulms are exported. A positive N contribution by soybean is, therefore, possible in a soybean–cereal rotation when: (i) P is applied, (ii) the soybean variety is late maturing, and (iii) only grain is exported.  相似文献   

5.
Four on-farm experiments examined whether modest applications of fertilizers in combination with prunings from native agroforestry trees would be an alternative to maintain the fertility of ferralitic soils in Benin. An application of about 1.9 t ha−1 dry matter of mulch of Senna siamea combined with 30 kg N ha−1, 22 kg P ha−1 and 25 kg K ha−1 as compound fertilizer was compared with (1) 60 kg N ha−1, 43 kg P ha−1 and 50 kg K ha−1 as compound fertilizer alone, (2) mulch of S. siamea alone (about 3.2 t ha−1 dry matter), and (3) a control treatment. Criteria were soil properties, yields, nutrient uptakes, and nutrient budgets. Application of sole mulch had no significant effects (P>0.05) on maize yields, while combined application of prunings and NPK fertilizers or sole NPK increased yields significantly (P<0.05). The most limiting nutrient was P. The local maize cultivar was efficient in P uptake, but not in internal nutrient utilization efficiency; mulch increased significantly the internal P utilization efficiency (P<0.05). Soil properties were interpreted with the QUEFTS (quantitative evaluation of the fertility of tropical soils) computer program. The predicted and measured yields were almost the same for maize without NPK. The measured responses to NPK were much lower than the responses calculated by QUEFTS. The calculated nutrient budgets were split into balances for available nutrients and for those not immediately available (NIA). Nutrient budgets were negative for the control and sole mulch treatments, and positive for the NPK treatments. Mulch improved the balances of NIA nutrients. The present experiment could not prove that combining NPK with mulch is the best option for sustainable agriculture. It may be more economical to apply lower rates of fertilizer to local maize than those applied in the two NPK treatments in the present study.  相似文献   

6.
Phosphorus (P) is one of the main limiting plant nutrients in most tropical soils. Acquiring quantitative information on soil P status is essential for evaluating its sustainable management in agroecosystems. The objective of this study was to evaluate how land-use shifts from semi-permanent food crop systems (CF) to plantations of tea (Camellia sinensis) (TP) and Eucalyptus grandis (EP) impact on both organic and inorganic P species. Determination of phosphorus status combined a P sequential fractionation procedure and 31P nuclear magnetic resonance (NMR) spectroscopy. Sequentially extracted pools included available P by 0.5 M NaHCO3, Al/Fe-P by 0.1 M NaOH, Ca-P by 0.5 M HCl and residual P by 0.5 M H2SO4 after ignition at 550 °C. Soil total P (STP) varied significantly across land uses (P<0.05) with the lowest mean value (1025.6±23.1 mg kg−1) occurring under CF and the highest (1698.0±86.1 mg kg−1) under TP. The largest P-pools were NaOH-P (47–51% of total soil P) and H2SO4-P (25–32%). NaHCO3-Pi under fertilized land uses (CF and TP) was greater than 12 mg kg−1 indicating that these systems were sustainable. Unfertilized EP was P-deficient, probably as the result of organic-matter accretion and subsequent P immobilization in organic forms. 31P NMR revealed that 88–89% of P compounds in NaOH extract were organic with monoester-P accounting for 59.1–60.8%. This was followed by diester-P (9.8–12.4%), teochoic acid (8.4–10.1%), orthophosphate (8.8–9.7%), unknown compounds (7.4–8.4%), pyrophosphate (1.1–4.6%) and phosphonate (0–1.3%). EP had higher diester-P and no phosphonate compound whereas CF had substantial amount of pyrophosphate (4.6%) and less orthophosphate and teochoic acid. These results indicate that these last P compounds are easily mineralizable P forms participating actively in plant P nutrition.  相似文献   

7.
Biological nitrogen fixation (BNF) by promiscuous cultivars of soybeans (Glycine max (L.) Merr.) in cereal-based cropping systems of Nigeria’s moist savanna zone offers a potential for minimizing the investment made by resource-poor farmers on nitrogen fertilizers. A 3-year trial was conducted on five farmers’ fields in the southern Guinea savanna zone of Nigeria to assess the residual effects of two successive crops of promiscuous soybean cultivars on the yield of a following maize (Zea mays L.) crop. The soybean cultivars, TGX1456-2E (medium maturity) and TGX1660-19F (late maturity), were grown in 1996 and 1997. Treatments, imposed only in the first year of the trial, were: (i) uninoculated, (ii) inoculated with a mixture of two Bradyrhizobium strains, and (iii) fertilized with 60 kg N ha−1. A fourth treatment was a plot left to fallow. In 1998, all the previous soybean and fallow plots were sown to maize without any fertilizer application. Results in 1996 and 1997 showed a soybean response to inoculation in the first year, but differences due to the residual effect of inoculation in the second year were not significant. Both cultivars showed a similar response to inoculation but responses at the five sites were varied. Soybean cultivar 1456-2E fixed 43–52% of its N amounting to 56–70 kg N ha−1 and cultivar 1660-19F derived 39–54% of its N from N2-fixation which amounted to 51–78 kg N ha−1. Both cultivars had a high N harvest index resulting in a net removal of 52–95 kg N ha−1 when both grain and stover were exported. Even when the stover was returned, there was a depletion of 23–65 kg N ha−1, with 1456-2E removing more N than 1660-19F. Arbuscular-mycorrhizal infection on maize roots was 11–27% and dependent on previous soybean treatments and farmers’ fields. Plant height, shoot biomass, grain yield, and N uptake of maize were significantly greater in plots previously sown to soybean than in the fallow plots. In general, plots sown to the late maturing cultivar 1660-19F exhibited better residual effect, producing larger yield parameters than the plots planted with medium maturing 1456-2E.  相似文献   

8.
本文分别于2012年4月(春季)、8月(夏季)、10月(秋季)和2013年1月(冬季)在鄱阳湖进行了4次野外调查和样品采集,采用超高效液相色谱-串联质谱仪(UPLC-MS/MS)对鄱阳湖水柱中常见的3种微囊藻毒素(MC-RR、MC-YR和MCLR)的质量浓度进行定量分析,探寻了微囊藻毒素(microcystins,MCs)质量浓度的时空变化规律及其与湖泊环境理化因子和生物因子之间的关系.结果表明,MC-RR是鄱阳湖MCs的主要毒素种类.胞内微囊藻毒素(intracellular MCs,IMCs)与微囊藻生物量(r=0.47,P0.01)、颤藻生物量(r=0.68,P0.01)、蓝藻生物量(r=0.56,P0.01)、Chl-a(r=0.28,P0.01)之间均具有显著的正相关关系,但与鱼腥藻生物量之间没有明显的相关关系(P0.05),这说明微囊藻和颤藻是鄱阳湖微囊藻毒素的主要产毒藻类.IMCs与水温(r=0.51,P0.01)、透明度(r=0.69,P0.01)、Fe(r=0.43,P0.01)和Zn(r=0.43,P0.01)之间均呈现显著的正相关关系,与TN(r=-0.44,P0.01)、TP(r=-0.29,P0.01)、NO-2-N(r=-0.28,P0.05)、NH+4-N(r=-0.33,P0.05)、Ca(r=-0.34,P0.01)和Mg(r=-0.35,P0.05)均呈现显著的负相关关系,但与pH、PO3-4-P、NO-3-N、电导率、高锰酸盐指数、Cu离子之间的相关关系不显著(P0.05),这说明光照强度(透明度反映)、氮、磷、水温是控制鄱阳湖微囊藻毒素产生的重要因子,金属离子Ca、Mg、Fe、Zn在一定程度上能影响微囊藻毒素的产生.鄱阳湖IMCs和胞外微囊藻毒素(extracellular MCs,EMCs)呈现相似的季节变化趋势,即夏季最高,其次为秋季,冬季和春季较低.鄱阳湖IMCs的空间分布整体上呈现东部湖汊群、松门山周围以及蚌湖和蚌湖进入鄱阳湖的入湖口较高,其它区域较低的趋势,而EMCs的高值区位于松门山周围和蚌湖及其入湖口.  相似文献   

9.
为评估季节性冻融作用对不同干扰强度湿地温室气体产生机制的影响,采用静态箱/气相色谱法,原位观测三江平原洪河国家自然保护区内未受干扰的常年积水的小叶章湿地(undisturbed Deyeuxia angustifolia wetland,UDAW)、保护区外受人类活动干扰导致湿地含水量减少的季节性积水的小叶章湿地(disturbed Deyeuxia angustifolia wetland,DDAW)以及由小叶章湿地开垦10年以上的水稻田(rice paddy,RP)的温室气体排放通量,分析季节性冻融作用对3种湿地温室气体排放的影响特征.结果表明:3种湿地在冻融期均有CO2和CH4排放,且在春季冻融初期CO2和CH4均出现短期的高排放现象,随着冻融温度升高,温室气体排放通量均逐渐增加.其中,CO2排放通量表现为UDAW > DDAW > RP,CH4排放通量却表现为DDAW > RP > UDAW;DDAW的CH4排放速率与冻融温度的相关性最高(P < 0.01,R2=0.647 5),UDAW中二者的相关性最低(P < 0.01,R2=0.424 7).相关性分析显示,DDAW和RP土壤中CO2与CH4的排放通量均呈正相关(P均小于0.01,R2分别为0.749 1、0.574 4),而UDAW土壤中CO2与CH4的排放通量表现为弱相关(P < 0.05,R2=0.303 8),可见冻融温度会影响CO2和CH4的排放通量.季节性冻融作用影响了3种湿地土壤N2O的排放通量,秋季冻融期UDAW和DDAW表现为N2O的汇,而在春季冻融期3种湿地均表现为N2O的源,表明不同干扰湿地N2O的排放通量对冻融作用的响应不同,但均随土壤温度的升高其排放通量不断增加.研究显示,三江平原的冻融作用降低了湿地温室气体排放,干扰强度越大,冻融作用影响越小,且秋季冻融作用大于春季.   相似文献   

10.
We investigated nitric oxide (NO) fluxes at a summer and a winter sheepfold in the Baiyinxile livestock farm, near Xilinhot, Inner Mongolia, which are a typical feature of the regional husbandry. Using a manual static opaque chamber/chemiluminescence measuring system, we intermittently observed fluxes in the summer sheepfold between May 28th and September 26th 2005 and in both winter and summer sheepfolds between March 8th and October 18th 2006. During these periods, mean NO emissions (±S.E., in terms of mass of nitrogen) were 124.0 ± 28.7, 134.6 ± 23.3 (summer sheepfold) and 214.4 ± 79.6 μg NO–N m−2 h−1 (winter sheepfold), respectively, and thus, three magnitudes higher than observed steppe NO emissions in the same region. The NO fluxes were not significantly different between the 2 years, but in summer they were much higher than in spring (p < 0.05). Temperature and moisture of the faeces layer significantly regulated the NO fluxes (p < 0.01). The direct NO emission factor (EF) for faeces and urine excreted in the sheepfolds was 0.7 g NO–Nemitted kg−1 Nexcreted, which was almost 37 times lower than a recently reported N2O EF. We estimated the total NO emission from the sheepfolds of the Baiyinxile livestock farm to be 1.82 ± 0.43 tons NO–N year−1, which accounts to approximately 12.3% of the total NO emission from this steppe region. With the rapid increase of livestock numbers, sheepfold NO emissions may further increase and contribute to high N deposition in confined areas around sheepfolds.  相似文献   

11.
Lowland rice fields constitute a semi aquatic environment, which is potentially suitable for fish production. Little is known about the effect of fish on greenhouse gas emissions from integrated rice–fish systems. An experiment was carried out at the Bangladesh Agricultural University to assess the effect of the stocking of fish on methane emissions from rice fields. Common carp, Cyprinus carpio L., and Nile Tilapia, Oreochromis niloticus (L.) were stocked in a mixed culture and subjected to three different input regimes: (1) urea fertilization according to the recommendation of the Bangladesh Rice Research Institute (BRRI), (2) supplementary feeding at 2 × maintenance level and (3) an elevated feeding schedule where 4 × maintenance level was fed initially and 2 × maintenance level towards the end of the growth period. Rice only with urea fertilization according to BRRI-recommendation was included as the control. The presence of fish increased methane emissions in all three rice–fish treatments. Average emission over the cropping season was 34, 37, and 32 mg m−2 h−1 in the rice–fish treatments, respectively, and 20 mg m−2 h−1 in rice only. Apart from an increase in methane emission, a significant drop (p < 0.05) in floodwater pH and dissolved oxygen concentration was observed in the rice–fish plots. Both parameters were the lowest in the treatment where a higher feeding rate was provided. Due to the fish activity, floodwater in the rice–fish treatments was more turbid, as reflected in higher particulate inorganic matter (PIOM). An elevated level of dissolved methane was observed in the floodwater of the feed supplemented rice–fish plots. Methane emissions showed negative correlation with morning and afternoon pH of the floodwater (r = −0.46; r = −0.56, p < 0.001) and morning and afternoon dissolved oxygen level (r = −0.53; r = −0.46, p < 0.001). Positive correlations were recorded between morning and afternoon floodwater temperature (r = 0.49; r = 0.44, p < 0.001) and with air temperature (r = 0.54, p < 0.001). The results suggest that the stocking of fish has an increasing effect on methane emissions from rice fields.  相似文献   

12.
以南方稻区不同轮作模式为研究对象,采用静态箱-气相色谱法研究水稻-油菜轮作处理的甲烷(CH4)和氧化亚氮(N2O)排放特征,并估算稻田增温潜势(GWP)和温室气体排放强度(GHGI).结果表明,双季稻田、一季中(晚)稻田、油菜地和休闲地CH4平均排放量分别为135.25, 55.64、 5.05和1.89 kg·hm-2,稻季CH4排放占不同轮作周年CH4排放的91.8%~98.5%,稻田土壤水溶性有机碳与CH4排放呈显著正相关,常规晚稻稻田CH4排放比杂交晚稻高18.7%(P<0.05);双季稻田、一季中(晚)稻田、油菜地和休闲地N2O平均排放量分别为0.94、 0.64、 1.38和0.24 kg·hm-2,油菜地的N2O排放占周年排放的57.2%~70.2%,双季稻和一季稻处理的冬闲农田N2O排放占周年排放的17....  相似文献   

13.
Labile soil C and N play vital roles in soil–plant nutrient dynamics, especially in the low input cropping system and are vulnerable to perturbation. Surface (0–0.15 m) soils from three land clearing methods (slash and burn, bulldozed non-windrowed and bulldozed windrowed) and each with two cropping systems (5-and 4-year cropping/2-year cassava fallow) were collected in the humid forest ecosystem of Nigeria.The soils were analysed for total C and N, microbial biomass C and N (SMB C and N), particulate organic matter C and N (POM C and N), water-soluble C, potentially mineralizable N (PMN) and mineral N. The size of the labile C and N and their relative contributions to the organic C and total N differed significantly among land clearing methods, irrespective of the cropping system. Soils under slash and burn had a significantly (p > 0.05) higher particulate organic matter C, N (10.80 and 0.16 g kg−1, respectively) and microbial biomass C and N (1.07 and 0.12 g kg−1) compared to the bulldozed windrow, regardless of the cropping system. Four years cropping/2-year cassava fallow resulted in a significant higher labile C and N, relative to 5-year cropped plots across the land clearing methods. Effect of the treatments on the concentration of PMN and mineral N mirrored the SMB N and POM N. However, the quantity of most of the labile C and N pool and crop yield obtained from the slash and burn and bulldozed non-windrowed treatment did not differ significantly. Hence, bulldozed non-windrowed clearing could be a viable alternative to slash and burn in the case of large-scale farming in ensuring reduced losses of soil organic matter and nutrient during land clearing in the humid tropics.  相似文献   

14.
An understanding of the long-term changes in the nitrate contamination pattern of unconfined groundwater is critical to conservation of drinking water in rural areas supporting mixed land-use activities such as cropping, livestock farming, and residence. To examine the effect of different land-use activities on nitrate contamination, groundwater samples were collected monthly for 3 years (1997–1999) from 12 wells in rural areas with different land-use activities and analyzed for the concentrations and N isotopic ratios (δ15N) of nitrate. The characteristics of nitrate contamination clearly differed with land-use activities. The percentages of samples that had a nitrate concentration exceeding the national standard for drinking water (10 mg N L−1) were 0, 23, 43, and 67% for the uncontaminated natural area, cropping area, cropping-livestock farming complex area, and residential area, respectively. The range of δ15N values was between +1.4 and +4.5‰ for groundwater nitrate from the uncontaminated natural area. In the cropping area, the δ15N values were slightly different with the type of fertilizer applied to fields in the vicinity of the well, and the values ranged between +8.7 and +14.4‰ for the compost-applied area and between +4.5 and +8.5‰ for the area where urea was applied with compost. The δ15N values of the cropping-livestock farming complex area ranged from +1.0 to +17.7‰, probably resulting from mixed contamination sources (inorganic fertilizer and livestock manure). The well located closest to the livestock feedlot had relatively higher δ15N values, with a range between +8.7 and +17.6‰. In the residential area, a higher δ15N (most frequently above +10‰) of nitrate suggested that the major source of contamination was effluent from leaky septic tanks. Our data showed that unconfined groundwater is susceptible to land-use activities above the aquifers, and the impacts of the activities could be more precisely inferred from long-term data on the concentration and δ15N of nitrate. By determining the impacts, more effective (specific to contamination sources) measures for preventing groundwater quality could be implemented.  相似文献   

15.
Legume–cereal rotation may reduce the fertilizer requirement of the cereal crop and we hypothesize that the benefit depends on the maturity class of the soybean. Field trials were therefore conducted in 1995 in four Guinea savanna sites to monitor the effect of soybean (Glycine max (L.) Merrill) cultivation on the N balance of the soil. In trial 1, an early (TGx1485-1D) and a late (TGx1670-1F) soybean were grown to maturity along with a maize (Zea mays L.) reference plot. In trial 2, six varieties of soybean (early: TGx1485-1D, TGx1805-2E and TGx1681-3F; medium: TGx1809-12E and TGx923-2E; late: TGx1670-1F) were grown to maturity along with a reference maize plot. The total nitrogen (N) content, aboveground N2 fixed, and N remaining in the stover were higher in the medium and the late varieties than in early varieties. Also, the early varieties had higher nitrogen harvest indices (81–84%) than medium and late varieties (74–79%). From the N balance calculation, it was found that medium and late maturing soybean resulted in an addition of 4.2 kg N ha−1 to the soil, whereas the early maturing varieties resulted in depletion of the soil N reserve by 5.6 kg N ha−1 (P<0.05). On average, among the medium and late varieties, late maturing TGx923-2E resulted in an addition of 9.5 kg N ha−1 to the soil. When the stover was not returned to the field, early soybean resulted in more negative N balance than the medium and late soybean (P<0.05). Therefore, planting an early variety of soybean for one season resulted in net depletion of soil N, even when the soybean residues were returned to the soil and N2 fixed in the roots and N in the fallen leaf litter were included in the N balance calculations. Contrary to this, planting medium and late soybean for one season resulted in an addition of N to the soil. Therefore, medium and late soybean should be used as a preceding crop in legume–cereal rotation, if possible, to minimize or avoid depletion of soil N by early varieties of soybean.  相似文献   

16.
Carbon (C) input from tree prunings and crop residues help to maintain the soil organic C pool in tropical agroforestry systems. This study quantified the C stock of tree roots and C input from tree prunings and crop residues in 19-, 10- and 4-year-old Erythrina poeppigiana and Gliricidia sepium alley cropping systems in Costa Rica. The 19-year-old alley cropping system was studied at two fertilizer levels (tree prunings only [−N], and tree prunings plus chicken manure [+N]), and was compared to a sole crop. The 10- and 4-year-old systems were also studied at two fertilizer levels (tree prunings only [−A], and tree prunings plus Arachis pintoi as a groundcover [+A]), and compared to a sole crop. In the 19-year-old system C input from G. sepium was significantly greater (P < 0.05) compared to E. peoppigiana, but for both tree species there was no significant difference between +N and −N treatments. For the 10- and 4-year-old systems, E. poeppigiana had a significantly higher (P < 0.05) C input from prunings compared to G. sepium, and the presence of A. pintoi increased pruning biomass productivity significantly in these systems. Tree roots of 10- (4527 kg C ha−1) and 4-year-old (3667 kg C ha−1) E. poeppigiana represented 16 and 28% of the total C allocation. Carbon input from maize (Zea mays L.) and bean (Phaseolus vulgaris L.) residues were not significantly different (P < 0.05) between alley crops and sole crops in the 19-year-old system per unit of cropped land. In this system, +N treatments had a significantly greater (P < 0.05) C input from bean residue than in −N treatments, but no such trend was observed for maize residues. Carbon input from maize and bean residues were significantly greater (P < 0.05) in alley crops than the sole crops, but not significantly different (P < 0.05) between +A and −A treatments in the younger system. The greatest input of organic material occurred in the 19-year-old alley crop followed by the 10- and 4-year-old alley crops. This additional input of organic material in alley crops, mostly derived from tree prunings, will help to maintain or increase the level of the soil organic carbon pool.  相似文献   

17.
农田是大气污染物一氧化氮(NO)的主要排放源之一.与水稻田相比,旱作农田NO排放量和排放系数高,但其异质性及影响因素尚不明确.目前,我国农田NO排放和减排的研究以原位观测为主,缺乏系统的整合(Meta)分析.通过收集文献数据,定量分析玉米-冬小麦、水稻-冬小麦旱地阶段、蔬菜、茶园和果园等旱作体系NO排放量和排放系数的异质性及主要影响因素;定量评价减量施氮、有机肥替代化肥、配施新型增效氮肥和施用生物质炭等管理措施对NO排放量和排放系数的影响.收集相关文献共计49篇(发表于2006~2021年).结果表明,玉麦轮作、茶园和果园体系年排放量平均值分别为1.44、7.45和0.92 kg ·hm-2,在这3个体系间有显著性差异(P<0.05),稻麦轮作旱地阶段和蔬菜季节排放量平均值分别为2.13 kg ·hm-2和2.09 kg ·hm-2.在玉麦轮作、稻麦轮作旱地阶段和茶园体系中,NO排放量均与施氮量呈正相关关系(P<0.01),但在蔬菜和果园体系中二者无显著相关性.玉麦轮作、稻麦轮作旱地阶段、蔬菜、茶园和果园体系排放系数平均值分别为0.31%、0.71%、0.96%、1.74%和0.13%,除玉麦轮作分别与稻麦轮作旱地阶段和蔬菜体系间的差异不显著外(P>0.05),在其余体系间均有显著性差异(P<0.01).由于各体系间排放系数差异大,在编制区域或全国农田NO排放清单时,有必要对各作物体系采用不同的排放系数.减量施氮仅在减氮比例高于25%时可显著降低NO排放量(36%),但对排放系数的影响不显著.由于减氮比例过高可能会造成作物减产,尚需进一步确定既不影响作物产量又降低NO排放的减氮比例.有机肥替代化肥在土壤有机碳含量低[ω(SOC)<15 g ·kg-1]或酸性(pH<7)条件下以及配施新型增效氮肥在玉麦轮作农田中可显著降低NO排放量(-46%~-38%)和排放系数(-62%~-45%),施用生物质炭的影响不显著.可为不同田间条件下分别采取有效的NO减排措施提供依据.  相似文献   

18.
Cadmium (Cd) entering the human body via the food chain is of increasing concern. This study investigates the effects of soil type and genotype on variations in the Cd concentrations of different organs of nine rice plants grown on two types of soils with two Cd levels. Cd concentrations in nine rice cultivars varied significantly with genotype and soil type (P < 0.01). The Cd concentration was higher in red paddy soil (RP) than in yellow clayey paddy soil (YP). The average Cd concentrations of different organs in three rice types were indica > hybrid > japonica for the Cd treatments and controls. The polished grain concentration in YP and RP soils had a range of 0.055-0.23 mg/kg and 0.13-0.36 mg/kg in the Cd treatment, respectively. Two rice cultivars in YP soil and five rice cultivars in RP soil exceeded the concentration limits in the Chinese Food Hygiene Standard (0.2 mg/kg). The Cd concentrations in roots, stems, and leaves were all significantly and positively correlated to that in polished grain in a single test. The Cd concentrations in polished grain were positively and significantly (P < 0.01) correlated with the calculated transfer factors of stem to grain and leaf to grain Cd transfer. The results indicated that the variations of Cd concentration in grain were related to Cd uptake and the remobilization of Cd from stem and leaf to grain. Also, the cultivars with a strong tendency for Cd-accumulation should be avoided in paddy soil with low soil pH and low organic matter content to reduce the risks to human health from high Cd levels in rice.  相似文献   

19.
This paper reports on the influence that residue and fertilizer management have on nutrient balances, soil organic matter (SOM) dynamics, and crop yields of a flooded rice system in northeast Thailand (1992–1997) and a wheat–forage legume rotation in eastern Australia (1992–1998). Both soils had been subject to at least 18 years of cultivation and had lost up to 90% of the original labile (CL) and 85% of the total carbon (CT).For the rainfed rice cropping systems of northeast Thailand, a system is described in which small applications of leaf litter from locally grown trees are applied annually to rice paddy soils prior to transplanting. Annual applications of 1500 kg ha−1 of leaf litter from different locally grown shrubs for five seasons resulted in increases in rice grain yield in 1997 of between 20 and 26% above the no-leaf litter control. Nutrient balances, determined by the difference between the inputs (fertilizer and added leaf litters) and outputs (grain and straw), indicated net positive balances of up to 457 kg N ha−1, and 60 kg P ha−1, after five seasons of leaf litter applications. Sulfur and potassium balances resulted in net deficits of up to −13 kg S ha−1 and −52 kg P ha−1, where no leaf litter was applied and rice straw was removed following harvest. Soil carbon (C) concentrations increased significantly only where higher fertilizer rate and rice stubble retention were combined.The poor management of fertilizers and crop residues, and excessive cultivation has also resulted in large soil fertility losses in the grain growing areas of Eastern Australia. After five wheat and two legume/fallow crops, negative N balances of up to −303 kg ha−1 were calculated for the treatments where wheat stubble was not retained and bare fallow leys were used. The balance of nutrients such as K, which are contained in larger proportions in stubble, were found to be up to −362 kg ha−1 on the straw-removed treatments and up to +29 kg ha−1 on the straw-retained treatments. Forage legume leys resulted in short term increases in CL and the carbon management index (CMI).Sustainable farming systems require that crop yields are stable through the maintenance of soil fertility and the balance of nutrients in the system. Increases in soil C levels require sustained periods of balanced fertilization and residue retention.  相似文献   

20.
陈凯鹏  韦菊娴  陈丹  王聪  沈健林  李勇  吴金水 《环境科学》2022,43(10):4725-4734
基于3 a田间定位试验,研究了双季稻田化肥减量配施秸秆后第3 a对水稻产量、土壤肥力属性和固氮微生物群落结构特征的影响.设置了3种施肥模式:常规施化肥(CF)、化肥减量配施3 t ·hm-2干重秸秆(CFLS)和化肥减量配施6 t ·hm-2干重秸秆(CFHS).结果表明,在化肥减量配施秸秆后第3 a,CFLS和CFHS在没有显著减少水稻籽粒产量(P>0.05)的情况下显著中和土壤酸化并提高土壤微生物量碳和氮、可溶性有机碳和有机碳含量(P<0.05),同时显著减少了土壤氧化还原电位、铵态氮和硝态氮含量(P<0.05),更有利于提高土壤氮素利用率.与CF处理相比,CFLS和CFHS的天然固氮功能群由于土壤碳储量增加和酸化程度降低等条件的改善而增加了Shannon、PD和Evenness指数(P<0.05).化肥减量配施秸秆使Ferrigenium、硫氧化菌属(Sulfurivermis)、甲基单胞菌属(Methylomonas)、Methylovulum、外硫红螺菌属(Ectothiorhodospira)和念珠藻属(Nostoc)等固氮、固碳和植物促生功能微生物类群相对丰度显著提高(P<0.05).综上所述,化肥减量配施3 t ·hm-2和6 t ·hm-2秸秆是改善土壤固氮微生物群落结构和提高土壤固氮潜力的有效措施.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号