首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cui H  Hwang HM  Zeng K  Glover H  Yu H  Liu Y 《Chemosphere》2002,47(9):991-999
The effect of the photosensitizer riboflavin (0, 10, 50, 100 microM) on the fate of atrazine (10 mg/l) in a freshwater environment was studied. It was found that at 100 microM riboflavin significantly enhanced the degradation of atrazine and more than 80% of atrazine in a natural water environment was depleted in 72 h. The relative contribution of microbial assemblages and the freshwater matrix to the degradation of atrazine and the degradation kinetics of atrazine were compared under different experimental conditions. The products and pathways of atrazine transformation were studied with GC-MS and HPLC with a photodiode array detector. The results show that dealkylation and alkyl chain oxidation are involved in the degradation of atrazine.  相似文献   

2.
A new strain isolated from activated sludge and identified as Burkholderia vietnamiensis C09V was used to biodegrade crystal violet (CV) from aqueous solution. To understand the degradation pathways of CV, batch experiments showed that the degradation using B. vietnamiensis C09V significantly depended on conditions such as pH, initial dye concentration and media components, carbon and nitrogen sources. Acceleration in the biodegradation of CV was observed in presence of metal ions such as Cd and Mn. More than 98.86C of CV (30 mg l?1) was degraded within 42 h at pH 5 and 30 °C. The biodegradation kinetics of CV corresponded to the pseudo first-order rate model with a rate constant of 0.046 h?1. UV–visible and Fourier transform infrared spectroscopy (FTIR) were used to identify degradation metabolites. Which further confirmed by LC-MS analysis, indicating that CV was biodegraded to N,N-dimethylaminophenol and Michler’s ketone prior to these intermediates being further degraded. Finally, the ability of B. vietnamiensis C09V to remove CV in wastewater was demonstrated.  相似文献   

3.
The photodegradation fate of widely used fluoroquinolone (FQ) drugs has been studied both at the water–soil interface and in soil at actual concentrations (500 ng g?1) under natural solar light. Both human and veterinary drugs have been examined, namely ciprofloxacin, danofloxacin, enrofloxacin, levofloxacin, marbofloxacin and moxifloxacin. After spiking and irradiation, samples were submitted to microwave-assisted extraction and analyzed by high-performance liquid chromatography coupled to fluorescence detection (HPLC–FD). FQs degradation was faster in aqueous soil suspension than in neat soil (but lower than in “clean” water). A number of byproducts were identified by HPLC electrospray ionization tandem mass spectrometry after a post-extraction cleanup based on a molecularly imprinted polymer phase, for a more accurate detection. The distribution in the suspension was intermediate between those observed in soils and in aqueous solutions.  相似文献   

4.
Polycyclic aromatic hydrocarbons (PAHs) have long been recognized as important environmental toxicants. Despite a plethora of information on the fate and effects of parent PAHs, relatively little is known about the environmental fate and toxicity of ketone- and quinone-substituted PAH oxidation products (termed oxy-PAHs), particularly in the aquatic environment. This study begins to fill that gap using embryos of the Japanese medaka (Oryzias latipes) as a model species. The genotoxic potential of two environmentally relevant oxy-PAHs, acenaphthenequinone and 7,12-benz[a]anthracenquinone, was assessed using the comet assay. We found that both oxy-PAHs could cause significant increases in DNA damage after only 48 h of exposure at the lowest concentrations tested (5 μg/L). Comparisons of the genotoxic potential between these oxy-PAHs and their corresponding parent PAHs (acenaphthene and benz[a]anthracene) and a well-known mutagenic PAH, benzo[a]pyrene, indicated similar potencies among all five of these compounds, particularly after longer (7 day) exposures. This study demonstrates the mutagenic potential of oxy-PAHs to an in vivo fish embryo model and points out the need for further study of their environmental occurrence and biologic effects.  相似文献   

5.
The primary aim of this study was to evaluate the “clearance concept” as a tool for describing the behavior of xenobiotic movement into and through soils. As an example, degradation of 2-chloro-4-ethylamino-6-isopropylamino-s-triazine (atrazine) with the formation of metabolites 2-chloro-6-isopropylamino-s-triazine (desethylatrazine) and 2-chloro-4-ethylamino-s-triazine (desisopropylatrazine) was investigated. Atrazine was sprayed post-emergently in doses of 0.125 or 0.5 g active ingredient/m2 each on four test plots. Soil type was a sandy-loam, on which corn (Zea mays L.) was cultivated. Soil samples were taken as cores of 0.2 m depth 0, 1, 2, 4, 8, 12, 16 and 20 weeks after application of atrazine, and analyzed by HPLC. Soil concentrations of atrazine were highly correlated (r=0.993, p< 0.001) between the two applications of 0.125 g/m2 and 0.5 g/m2. Up to 50% of the atrazine was measured as metabolites during the whole vegetation period. Clearance of atrazine from soil was calculated as the total load of atrazine divided by the area under the soil atrazine concentration time curve. Soil atrazine clearance was calculated as 5.13 +/? SD 1.10 and 5.17 +/? SD 1.02 liter of soil per day for doses of 0.125 g/m2 and 0.5 g/m2, respectively (from a “soil unit” of 1 × 1 × 0.2 meter). The clearance concept might be a tool for risk assessment of xenobiotics.  相似文献   

6.
This study systematically investigated the interactive effects of dissolved organic matter (DOM) and biosurfactant (rhamnolipid) on the biodegradation of phenanthrene (PHE) and pyrene (PYR) in soil–water systems. The degradations of two polycyclic aromatic hydrocarbons (PAHs) were fitted well with first order kinetic model and the degradation rates were in proportion to the concentration of biosurfactant. In addition, the degradation enhancement of PHE was higher than that of PYR. The addition of soil DOM itself at an environmental level would inhibit the biodegradation of PAHs. However, in the system with co-existence of DOM and biosurfactant, the degradation of PAHs was higher than that in only biosurfactant addition system, which may be attributed to the formation of DOM–biosurfactant complex micelles. Furthermore, under the combined conditions, the degradation of PAH increased with the biosurfactant concentration, and the soil DOM added system showed slightly higher degradation than the compost DOM added system, indicating that the chemical structure and composition of DOM would also affect the bioavailability of PAHs. The study result may broaden knowledge of biosurfactant enhanced bioremediation of PAHs contaminated soil and groundwater.  相似文献   

7.
Benzo[a]pyrene (BaP), a five-ring polycyclic aromatic hydrocarbon (PAH), which has carcinogenic potency, is highly recalcitrant and resistant to microbial degradation. A novel fungus, Lasiodiplodia theobromae (L. theobromae), which can degrade BaP as a sole carbon source in liquid, was isolated in our laboratory. To prompt the further application of L. theobromae in remediation of sites polluted by BaP and other PAHs, the present study was targeted toward the removal of BaP and PAHs from soil by L. theobromae. The degradation of BaP by L. theobromae was studied using a soil spiked with 50 mg/kg BaP. L. theobromae could remove 32.1 % of the BaP after 35 days of cultivation. Phenanthrene (PHE) inhibited BaP degradation as a competitive substrate. The tested surfactants enhanced BaP degradation in soil by different extents, and a removal rate of 92.1 % was achieved at a Tween-80 (TW-80) concentration of 5 g/kg. It was revealed that TW-80 could not only enhance BaP bioavailability by increasing its aqueous solubility and decreasing the size of its colloid particles but also increase enzyme secretion from L. theobromae and the population of L. theobromae. Moreover, ergosterol content together with the biomass C indicated the increase in L. theobromae biomass during the BaP biodegradation process in soils. Finally, a soil from a historically PAH-contaminated field at Beijing Coking Plant in China was tested to assess the feasibility of applying L. theobromae in the remediation of polluted sites. The total removal rate of PAHs by L. theobromae was 53.3 %, which is 13.1 % higher than that by Phanerochaete chrysosporium (P. chrysosporium), an effective PAH degrader. The addition of TW-80 to the field soil further enhanced PAH degradation to 73.2 %. Hence, L. theobromae is a promising novel strain to be implemented in the remediation of soil polluted by PAHs.  相似文献   

8.
Partially degraded high-density polyethylene (HDPE) was collected from plastic waste dump yard for biodegradation using fungi. Of various fungi screened, strain MF12 was found efficient in degrading HDPE by weight loss and Fourier transform infrared (FT-IR) spectrophotometric analysis. Strain MF12 was selected as efficient HDPE degraders for further studies, and their growth medium composition was optimized. Among those different media used, basal minimal medium (BMM) was suitable for the HDPE degradation by strain MF12. Strain MF12 was subjected to 28S rRNA sequence analysis and identified as Aspergillus terreus MF12. HDPE degradation was carried out using combinatorial physical and chemical treatments in conjunction to biological treatment. The high level of HDPE degradation was observed in ultraviolet (UV) and KMnO4/HCl with A. terreus MF12 treatment, i.e., FT10. The abiotic physical and chemical factors enhance the biodegradation of HDPE using A. terreus MF12.  相似文献   

9.
In this study, the degradation of molinate through heterogeneous photocatalysis, using two different types of the semiconductor TiO2 as photocatalyst, as well as through homogeneous treatment, applying the photo-Fenton reaction, has been investigated. As far as heterogeneous photocatalysis is concerned, the degradation of the pesticide follows apparent first-order kinetics, while the type of the catalyst and the pH value of the solution affect the degradation rate. The effect of the addition of electron scavengers (H2O2 and K2S2O8) was also studied. In the case of photo-Fenton-assisted system, the degradation also follows pseudo-first-order kinetics. Parameters such as iron’s and electron scavenger’s concentration and inorganic ions strongly affect the degradation rate. The extent of pesticide mineralization was investigated using dissolved organic carbon (DOC) measurements. The toxicity of the treated solution was evaluated using the Microtox test based on the luminescent bacteria Vibrio fischeri. The detoxification and mineralization efficiency was found to be dependent on the system studied, and although it did not follow the rate of pesticide disappearance, it took place in considerable extent. The study of the photodegradation treatment was completed by the determination of the intermediate by-products formed during the process, which was carried out using LC-MS/MS technique and led to similar compounds with both processes.  相似文献   

10.
The gas/particle partitioning coefficient K p , of a semivolatile compound is a key parameter for its atmospheric fate. The most complete method of predicting K p for polycyclic aromatic hydrocarbons (PAHs) is offered by the dual model, as it describes both the adsorption on soot and absorption into organic matter processes. However, experimental and model data exist almost exclusively for PAHs. In order to bridge this gap, experimental data on the phase partitioning of both PAHs and n-alkanes were collected at an urban and a remote site. Moreover, all the necessary parameters (e.g., octanol–air and soot–air partitioning coefficients) for the dual model have been collected and updated or (if missing) estimated for the first time. The results point out that both absorption and adsorption seem to contribute to the partitioning of PAHs and n-alkanes. However, it seems that the dual model always underestimates the particle sorption not only for PAHs but also for n-alkanes.  相似文献   

11.
Lysinibacillus sp. RGS degrades sulfonated azo dye Reactive Orange 16 (RO16) efficiently. Superoxide dismutase and catalase activity were tested to study the response of Lysinibacillus sp. RGS to the oxidative stress generated by RO16. The results demonstrated that oxidative stress enzymes not only protect the cell from oxidative stress but also has a probable role in decolorization along with an involvement of oxidoreductive enzymes. Formation of three different metabolites after degradation of RO16 has been confirmed by GC-MS analysis. FTIR analysis verified the degradation of functional groups of RO16, and HPTLC confirmed the removal of auxochrome group from the RO16 after degradation. Toxicity studies confirmed the genotoxic, cytotoxic, and phytotoxic nature of RO16 and the formation of less toxic products after the treatment of Lysinibacillus sp. RGS. Therefore, Lysinibacillus sp. RGS has a better perspective of bioremediation for textile wastewater treatment.  相似文献   

12.
Biodegradability of a polyacrylate superabsorbent in agricultural soil   总被引:1,自引:0,他引:1  
Superabsorbent polymers (SAP) are used, inter alia, as soil amendment to increase the water holding capacity of soils. Biodegradability of soil conditioners has become a desired key characteristic to protect soil and groundwater resources. The present study characterized the biodegradability of one acrylate based SAP in four agricultural soils and at three temperatures. Mineralisation was measured as the 13CO2 efflux from 13C-labelled SAP in soil incubations. The SAP was either single-labelled in the carboxyl C-atom or triple-labelled including additionally the two C-atoms interlinked in the SAP backbone. The dual labelling allowed estimating the degradation of the polyacrylate main chain. The 13CO2 efflux from samples was measured using an automated system including wavelength-scanned cavity ring-down spectroscopy. Based on single-labelled SAP, the mean degradation after 24 weeks varied between 0.45 % in loamy sand and 0.82 % in loam. However, the differences between degradation rates in different soils were not significant due to a large intra-replicate variability. Similarly, mean degradation did not differ significantly between effective temperature regimes of 20° and 30 °C after 12 weeks. Results from the triple-labelled SAP were lower as compared to their single-labelled variant. Detailed results suggest that the polyacrylate main chain degraded in the soils, if at all, at rates of 0.12–0.24 % per 6 months.  相似文献   

13.
Atmospheric polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants that represent a risk not only to humans, but to all living organisms. High-molecular weight PAHs are more toxic than lighter relatives, and also have a higher tendency to bind onto air particles (i.e., particle matter, PM). PM is a major constituent of air pollution. Adequate assessment of the biological impact of PM requires the analysis, not only of the effects on human health, but also on the environment. Since the aquatic systems work as a natural sink to these air pollutants, assessing the effects of particle-bound PAHs on aquatic organisms may further characterize its potential aquatic toxicity, also providing simple and low-cost alternative assays to investigate PM biological effects in vivo. We review the current scientific literature, addressing the atmospheric PAHs fate, transformation and deposition, pertinent particle-bound PAHs toxicity data, and the potential aquatic toxic burden. Conceptual and experimental procedures that could improve future investigations and risk assessments are also considered.  相似文献   

14.
Coking wastewater treatment plant (CWWTP) represents a typical point source of polycyclic aromatic hydrocarbons (PAHs) to the water environment and threatens the safety of drinking water in downstream regions. To enhance the removal of residual PAHs from bio-treated coking wastewater, a pilot-scale O3/ultraviolet (UV) fluidized bed reactor (O3/UV FBR) was designed and different operating factors including UV irradiation intensity, pH, initial concentration, contact time, and hydraulic retention time (HRT) were investigated at an ozone level of 240 g h?1 and 25?±?3 °C. A health risk evaluation and cost analysis were also carried out under the continuous-flow mode. As far as we know, this is the first time an O3/UV FBR has been explored for PAHs treatment. The results indicated that between 41 and 75 % of 18 target PAHs were removed in O3/UV FBR due to synergistic effects of UV irradiation. Both increased reaction time and increased pH were beneficial for the removal of PAHs. The degradation of the target PAHs within 8 h can be well fitted by the pseudo-first-order kinetics (R 2?>?0.920). The reaction rate was also positively correlated with the initial concentrations of PAHs. The health risk assessment showed that the total amount of carcinogenic substance exposure to surface water was reduced by 0.432 g day?1. The economic analysis showed that the O3/UV FBR was able to remove 18 target PAHs at a cost of US$0.34 m?3. These results suggest that O3/UV FBR is efficient in removing residuals from CWWTP, thus reducing the accumulation of persistent pollutant released to surface water.  相似文献   

15.
Lin T  Wen Y  Jiang L  Li J  Yang S  Zhou Q 《Chemosphere》2008,72(1):122-128
To evaluate the treatment capability of subsurface flow constructed wetland (SFCW) and the effect of salinity on the degradation of atrazine, the degradation of atrazine in SFCW was studied. Under the static condition, the degradation of atrazine in SFCW followed first-order kinetics: c=0.09679 exp(-0.0396t) (c, residue concentration, mg l(-1); t, retention time, d), with a half-life of approximately 17.5 days. The atrazine degradation kinetic functions were established for salinities of 1.5, 3.0, 5.0, 10.0 and 15.0 g l(-1), respectively, which appeared to approach first-order kinetics. The effect of salinity on the atrazine treatment efficiency showed an exponential inhibition: lnk=3.204+0.04991 C (k, degradation constant; C, NaCl concentration, mg l(-1)). The attenuation of atrazine in SFCW cannot be a result of hydrolysis or sorption process. It was considered that some bacteria in the wetland system degraded atrazine into deethylatrazine (DEA) and deisopropylatrazine (DIA) and sequentially into CO(2) and H(2)O. Salinity impacted on the growth of bacteria resulting in a switch of the microbial community. With the increase of salinity, Shannon-Wiener Diversity Index in the SFCW system declined. The relationship between atrazine degradation constant (k) and Shannon Index was established as shown in linear phase, y=-0.07286+0.0363x. The positive correlation between them indicated that microbial community played an important role in the atrazine degradation process.  相似文献   

16.
Poly(lactic acid) nanocomposites containing Cloisite 15A, Cloisite 30B, and Dellite 43B were prepared by melt-mixing in a batch mixer and were exposed to UV radiation, temperature, and microorganism in solution and in a compost. Exposed samples, collected along the time, were characterized by several techniques. While the addition of organoclays had a positive effect on thermal stability, the degradation rate of nanocomposites increased when exposed to UV radiation and microorganism. Moreover, the degradation rate depends on the organoclay type. Even though the degradation rate is higher for nanocomposites, Fourier transform infrared spectrometry and gel permeation chromatography results demonstrated that the degradation mechanism is the same.  相似文献   

17.
Numerous chemical products are dispersed into the environment, and the consequences can be sometimes harmful to humans and ecosystems. Pharmaceutical compounds and hormone steroids are among these substances that concern the scientific community. Currently, little data are available on the presence and fate of these compounds in the environment and, in particular, for solid matrices. Therefore, the aim of this work was to perform soil column experiments to evaluate the accumulation, transfer and degradation of these substances in soil. The analyses were based on efficient sample preparation followed by sensitive and selective liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). For this purpose, 23 compounds were chosen including both pharmaceutical compounds as well as steroid hormones. In addition, this experiment was performed on two soils with different properties (% clay, pH, etc.). To the best of our knowledge, no soil column experiments have been performed previously on a large number of pharmaceutical compounds and steroid hormones. Significant transfer was observed only for sulphonamides that can be justified by their polarity (log K ow ?相似文献   

18.

Introduction

A plasmid named pDNS10 was detected from an atrazine-degrading strain Arthrobacter sp. DNS10 which has been isolated previously in our laboratory.

Materials and methods

In this paper, a special plasmid-detecting method and drop assays experiments were mainly used to achieve research goals.

Results and discussion

pDNS10 exhibited an excellent stability because it also could be detected even when the strain DNS10 has been subcultured under nonselective conditions for eight times. Over a 48-h incubation period, the OD600 of samples inoculated with strain DNS10 and strain DNS10-ST (both of them contained pDNS10) were 0.31 ± 0.042 and 0.305 ± 0.034, respectively ,whereas the OD600 of samples inoculated strain without pDNS10 (strain DNS10-PE) was only 0.138 ± 0.018. No atrazine was detected in the inoculated strain DNS10 and strain DNS10-ST samples at this period. Contrarily, the atrazine-degrading rate of strain DNS10-PE was only 5.23 ± 0.71%. Furthermore, both the two types of strains containing pDNS10 confirmed the presence of known degrading genes such as trzN, atzB, and atzC. It suggests that pDNS10 is an atrazine catabolic plasmid. In drop assays experiments, the wild-type strain DNS10 cells were chemotactically attracted to atrazine, whereas strain DNS10-PE showed no chemotaxis to atrazine and hydroxyatrazine. There was some relationship between atrazine degradation and the chemotactic response towards atrazine in strain DNS10.

Conclusions

The biochemical characteristics of pDNS10 and the chemotaxis characteristics of strain DNS10 could help us in better understanding of the mechanism of atrazine degradation by strain DNS10.  相似文献   

19.
In this study, the target compound is dimethyl sulfoxide (DMSO), which is used as a photoresist stripping solvent in the semiconductor and thin-film transistor liquid crystal display (TFT-LCD) manufacturing processes. The effects of the operating parameters (pH, Fe2+ and H2O2 concentrations) on the degradation of DMSO in the fluidized-bed Fenton process were examined. This study used the Box-Behnken design (BBD) to investigate the optimum conditions of DMSO degradation. The highest DMSO removal was 98 % for pH 3, when the H2O2 to Fe2+ molar ratio was 12. At pH 2 and 4, the highest DMSO removal was 82 %, when the H2O2 to Fe2+ molar ratio was 6.5. The correlation of DMSO removal showed that the effect of the parameters on DMSO removal followed the order Fe2+?>?H2O2?>?pH. From the BBD prediction, the optimum conditions were pH 3, 5 mM of Fe2+, and 60 mM of H2O2. The difference between the experimental value (98 %) and the predicted value (96 %) was not significant. The removal efficiencies of DMSO, chemical oxygen demand (COD), total organic carbon (TOC), and iron in the fluidized-bed Fenton process were higher than those in the traditional Fenton process.  相似文献   

20.
The degradation of aqueous Rhodamine B (RhB) was examined using a dual-channel spark switch module designed to regulate the steepness of pulsed high voltage with microsecond rise time. Depending on the energy per pulse, a spark along the water surface (SPWS) or streamer along the water surface (STWS) was formed. STWS was found to have a better degradation effect and energy efficiency toward RhB than SPWS at the same power; however, addition of H2O2 amounts resulted in increased degradation, the effect being more pronounced using SPWS. The initial concentration of RhB also appeared to influence the rate constant of the degradation reaction. Furthermore, TiO2 films doped with Fe, Mn, and Ce were found to enhance the degradation performance of plasma. A possible reaction mechanism of plasma formation along the water surface was concluded by determination of the main inorganic products in the liquid and gas phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号