首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objectives of this study were to evaluate the effects of sublethal cadmium concentrations on the levels of cadmium, metallothionein (MT) and histological changes in gills of East Java strain tilapia (Oreochromis niloticus) at different salinity levels. The levels of cadmium in control gills were not significantly different at 0, 5 and 10 practical salinity unit (PSU). The cadmium concentrations in gills of cadmium-exposed fish were significantly higher at 0 PSU than at 5, 10 and 15 PSU. The MT concentrations in control gills were not significantly different at 0, 5, and 10 PSU. The MT concentrations of cadmium-exposed fish were significantly higher than those in respective control groups at 0, 5 and 10 PSU. Significant gill damage occurred in fish exposed to cadmium at lower salinity. The epithelial lifting was noted at gills of fish exposed to 2.5 mg/L of cadmium at 0 PSU, and telangiectasis was observed at gills exposed to 5 mg/L of cadmium at 0 PSU. The level of gill damage decreased with increasing salinity of media. The increased MT and histological changes in gills of our findings could be a protective response of animals to toxic effect of cadmium.  相似文献   

2.
As a result of 210Po's previously identified association with sulphur-rich proteins, metallothioneins could have a significant effect on the behaviour and fate of 210Po in molluscs. Starved control and cadmium-exposed mussels, Mytilus edulis, were fed 210Po-labelled algae (Isochrysis galbana) for 5 d and then allowed to depurate in clean sea water. Cadmium-exposed M. edulis accumulated less 210Po in the digestive gland and the remainder of the tissue than control mussels, although this was due to a decrease in tissue weight. More than 40% of 210Po was identified as being associated with high molecular weight and heat-treated cytosol proteins in M. edulis. Mussels in a starved state are known to recycle as much as 90% of their amino acids. It is proposed that 210Po associated with these and other proteins is recycled, explaining why no significant loss of 210Po was observed from the remainder of the tissue in either control or Cd-exposed mussels. Cadmium-induced metallothioneins had no effect on the distribution of 210Po in M. edulis; <5% associated with the cytosolic fraction was considered to principally contain metallothioneins. It is suggested that 210Po's apparent relationship with metallothioneins is coincidental rather than connected with its role in the regulation of metals. Received: 30 March 1998 / Accepted: 3 August 1998  相似文献   

3.
Interactions between mercury and selenium accumulation and subcellular binding inAsterias rubens (L.), collected in 1987 from Lille Bælt at Middelfart, Funen, Denmark, were investigated in laboratory experiments. Sea stars exposed to 10µg Hg l–1 for 30 d accumulated mercury in body wall, tube feet and stomach linearly with time at 1.2, 1.2 and 0.5µg Hg g–1 dry wt d–1, respectively. Mercury was accumulated in pyloric caeca and coelomic fluid initially at 1.4µg Hg g–1 dry wt d–1 and 9.4 ng Hg ml–1 d–1, respectively; after 10 d uptake rates decreased. Sea stars exposed to 75µg Se-SeO 3 - - l–1 accumulated selenium linearly with time over 30 d in the stomach, pyloric caeca, tube feet and body wall at 2.0, 1.2, 1.2 and 0.6µg Se g–1 dry wt d–1. Sea stars exposed to 75µg Se-SeO 4 - - l–1 maintained selenium levels in the coelomic fluid at 75µg Se l–1 over 30 d. Exposure to selenate did not alter the selenium concentrations in the tissues. Sea stars exposed concurrently to 75µg Se-SeO 3 - - and 10µg Hg l–1 accumulated more mercury and selenium in tube feet and body wall than did sea stars exposed to the two elements alone. In pyloric caeca and stomach concurrent exposure reduced accumulation of both elements. Mercury was bound predominantly in the insoluble fraction of the tissues, and soluble mercury was bound in proteins of high (> 70 kilodaltons) or very low (< 6000 daltons) molecular weight. Ca. half of the selenium recovered was bound in the insoluble fraction, and soluble selenium was bound in proteins of high (> 70 kilodaltons) or very low (< 6000 daltons) molecular weight. Interaction between the two elements was exerted predominantly in the insoluble fraction of the tissues.  相似文献   

4.
Accumulation rates of cadmium, the amount of food ingested and assimilated, the amount of oxygen consumed and changes in dry flesh weight have been measured in Mytilus edulis L. exposed to 0, 10 and 100 ppb cadmium for 17 d in aquaria with seawater flowing continously and at constant algal concentration. The accumulation rates were linear at 10 and 100 ppb, amounting to 0.58 and 8.89 ppm d-1, respectively. Body loads up to 150 ppm caused no effects on either clearance, ingestion, assimilation, respiration, or growth. High net growth efficiencies between 55–59% were obtained, indicating near optimal experimental conditions. It is suggested that the setup and experimental procedure provide an excellent tool in the study of accumulation and sublethal effects of environmental pollutants in suspension feeding bivalves.  相似文献   

5.
A. Molinero  R. Flos 《Marine Biology》1991,109(3):493-501
The lethal concentration of cadmium was determined for the mysidLeptomysis lingvura G.O. Sars, a Mediterranean species from surface coastal waters, and the effect of sublethal doses on respiration, ammonia excretion, and feeding efficiency at different temperatures, and on activities of 19 hydrolases was tested. Experiments were carried out on individuals collected in spring 1987 near Marseille. At 18°C, respiration rate was significantly affected only by concentrations >0.05 mg Cd l–1. At 0.1 mg Cd l–1, respiration rate was more significantly depressed at 20°C than at 10°C. There was a concomitant decrease in the Q10 rate (by 23 to 59%, according to the particular experiment), indicating a strong synergistic effect of temperature. Ammonia excretion was likewise affected by cadmium, also with a concomitant decrease in the Q10 rate (by 34%). Daily faecal pellet production was maximum at 18°C; it was inhibited by cadmium at temperatures between 14 and 20°C, and enhanced at extreme temperatures (10 and 22°C). The assimilation efficiency of contaminated individuals was reduced by 9%. These decreases in faecal pellet production and assimilation efficiency reflect a significant decrease in energy (by about 43%) which could rapidly lead to an unbalanced energy budget with a consecutive lowering of the reproductive potential. Generally, hydrolase activities usually increased initially in the presence of 0.2 mg Cd l–1, but after 48 h they declined, reaching very low values at 72 h. Most physiological processes are therefore affected by exposure to cadmium and the unbalanced energy budget arises from the inability to utilize environmental food. These results are consistent with the literature data on cadmium contamination in marine organisms. Physiological and biochemical changes appear to be very informative in studies of in vitro sublethal effects of micropollutants and in situ environmental modifications.  相似文献   

6.
Various forms of regression analysis are presented which show that there is a significant equilibrium relationship between total recoverable cadmium in seawater and its concentration in the mussel Mytilus edulis (P<0.001). The calculations show that the concentration of cadmium in seawater should not exceed 0.20 g l-1 if the mussel is not to reach a cadmium concentration of 2 mg kg-1 wet weight: a value frequently used as a food standard for human consumption. Further, when a cadmium value of 2 mg kg-1 wet weight is reached, the concentration factor by mussels for cadmium from seawater is 9 950.  相似文献   

7.
R. Beiras  J. Widdows 《Marine Biology》1995,122(4):597-603
The acute and long-term effects of neurotransmitters dopamine (DA), serotonin (SE) and norepinephrine (NE) on the feeding rates of Mytilus edulis veliger larvae were investigated through concentration-response curves. Increasing DA concentrations increasingly inhibited food uptake. Acute exposure to high levels of DA caused long-term inhibitory effects on feeding rates (10–5 MDA) and growth rates (3x10–4 MDA). Feeding activity was also inversely related to NE concentration. SE concentrations between 10–8–3x10–7 M supported enhanced feeding rates. Neither NE nor SE showed long-term inhibitory effects on feeding at concentrations <10–4 M. These results were consistent with the observed effects of the different neurotransmitters on the swimming pattern of the larvae. The experimental evidence supports the model of ciliary control in adult mussels, involving dual innervation of the ciliated cells of the velum, with excitatory serotonergic and inhibitory dopaminergic fibers.  相似文献   

8.
Mussels (Mytilus edulis) were exposed to the algaeAlexandrium ostenfeldii, Chrysochromulina polylepis, Gyrodinium aureolum, Gymnodinium galatheanum andHeterosigma akashiwo for 24 h; significant reductions in growth rate, as compared to the control, were observed after exposure toA. ostenfeldii, C. polylepis, G. aureolum andG. galatheanum at initial concentrations of 4.5 × 106, 110 × 106, 9 × 106 and 120 × 106 cells l–1, respectively. Exposure to high initial concentrations of the non-toxic algaeTetraselmis suecica (174 × 106 cells l–1) andIsochrysis galbana (610 × 106 cells l–1) showed no adverse effect on growth rate. When mussels with reduced growth were transferred to clean seawater, they recovered to > 90% of control growth within 2 to 4 d. Exposure to algal filtrates of the toxic algal cultures produced no reduction in growth rate.  相似文献   

9.
Metal-binding proteins were isolated from ovaries of the spotted seatroutCynoscion nebulosus and the Atlantic croakerMicropogonias undulatus collected in 1988 near Port Aransas, Texas, USA. Gel-filtration analysis of spotted seatrout trout ovarian cytosolic fraction on Sephadex G-75 revealed the presence of three zincbinding protein fractions. A major zinc/calcium-binding protein fraction had a low molecular weight (M r)(6 000 to 10 000), similar to mammalian hepatic metallothionein (MT). All the metals were displaced from this fraction following saturation with exogenous cadmium. After exposure of Atlantic croaker to 2 mg cadmium l–1 seawater for 2 mo, the majority of the cadmium in the ovarian cytosolic fraction was associated with a similar low molecular weight protein fraction. These proteins were further purified by heat treatment and sequential acetone precipitation. Three isoforms were isolated by reversephase high-performance liquid chromatography. All the isoforms were found to be distinct from mammalian MT, based on amino acid composition. The major isoform contained low amounts of cysteine (approximately 5 residues per molecule) and aromatic amino acids, compared to high amounts of cysteine (typically 17 to 20 residues/molecule) and a lack of aromatic amino acids for mammalian MT. All the ovarian protein isoforms contained more glutamate than mammalian MT. The spotted seatrout and Atlantic croaker ovarian isoforms showed a high degree of homology with metal-binding proteins isolated from mammalian gonadal tissues. The results suggest a physiological role for these metal-binding proteins in developing vertebrate ovaries as well as an involvement in the sequestration of cadmium following environmental exposure.  相似文献   

10.
In order to assess the intake of lead and cadmium by consumers of home grown vegetables in urban areas, replicated experimental plots of uniform size, comprising summer and winter crops, were established in 94 gardens and allotments in nine towns and cities in England.The geometric mean lead and cadmium concentrations for the soils (n = 94) were 217 g g–1 (ranging from 27 to 1,676 g g–1) and 0.53 g g–1 (<0.2–5.9 g g–1), respectively. Compared with agricultural soils, the garden and allotment soils contained elevated levels of lead but not cadmium.Lead concentrations in the vegetables ranged from <0.25 g g–1 to 16.7 g g–1 dry weight and cadmium concentrations ranged from <0.025 g g–1 to 10.4 g g–1 dry weight. Lead concentrations were higher than reported background levels, although <1% exceeded the statutory limit for saleable food in the UK (1 g g–1 fresh weight). Cadmium concentrations were generally similar to background levels.  相似文献   

11.
Growth and size structure in a baltic Mytilus edulis population   总被引:10,自引:0,他引:10  
N. Kautsky 《Marine Biology》1982,68(2):117-133
Since Mytilus edulis L. has very few predators and competitors for space, it has become a biomass dominant in the Baltic proper covering hard substrates from the water surface to more than 30 m depth. In order to investigate the factors controlling size and production in a Baltic M. edulis population, growth was studied by the analysis of annual growth rings, measurements of caged individuals and the analysis of size classes in the population, and on settlement ropes. The total number of mussels in a representative mussel bed at 4 m depth varied between 36 000 and 158 000 ind · m-2 during the year, mainly due to variations in very small mussels (<2 mm), whereas the abundance of mussels 2mm was rather constant between about 17 000 and 28 000 ind · m-2. Maximum numbes of mussels < 2 mm, amounting to 132 000 ind · m-2, were found after settlement in summer, but still half a year later in spring, 65 000 ind · m-2 < 2 mm were registered, due to very strong intraspecific competition for food and space leading to the competitive suppression of small individuals and large variations in growth rates. Due to the special size-structure of the population only the analysis of annual growth rings could be used to estimate natural shell growth. From being very low in the smallest mussels, growth was linear between about 2–10 yr of age, corresponding to about 3–20 mm length, after which it decreased with a L=32 mm. Over the linear interval, growth in the populations from 3–6 m and 10–15m depth was 3.1 and 2.2 mm · yr-1, respectively. Meat growth showed strong annual variations mainly due to gonad production. Starving mussels could, however, while utilizing energy reserves, survive losses of up to 78% of their meat biomass. This ability of M. edulis to respire away its own biomass and its apparent tolerance of weight loss has important implication. It will drastically reduce the energy flow to destruents from mussels dying naturally, which is of special significance in the Baltic, where predators and scavengers are scarce. It enables the mussels to endure bad food conditions and buffer strong seasonal variations in food abundance, maintaining the strongly food-and space-limited Baltic M. edulis population at the carrying capacity of the area.  相似文献   

12.
In July 1988 a survey was made in the Dogger Bank area of the North Sea. As a result of wind stress the area was found to be frequently well mixed. At the northerly slope a transition zone was observed between the stratified central North Sea and the well-mixed Dogger Bank area. Low nutrient concentrations were observed in surface waters; especially for nitrate (<0,1µM). High concentrations of phosphate (>0,5µM), nitrate (>1µM), ammonium (>2µM) and silicate (>2µM) only prevailed below the thermocline. Chlorophylla values were below 1µg l–1 near the surface. Enhanced values (up to 4µg l–1) were observed in the deeper layer at the transition zone and just below the thermocline at well-stratified locations. At the transition zone high specific C-fixation rates (up to 100 mg C mg–1 chla d–1) at the surface indicated the presence of enhanced productivity. The compensation depth for primary production was found to coincide with a specific C-fixation rate of 5 mg C mg–1 chla d–1. At greater depths, phytoplankton was only found where tidally induced vertical mixing allowed a regular exposure to higher light intensities. Storms resulted in a rapid redistribution of chlorophylla and enhancement of the C-fixation rate in the upper layer of the water column.Publication No. 10 of the project Applied Scientific Research Netherlands Institute for Sea Research (BEWON)  相似文献   

13.
Accumulation rates of Cd have been studied in the common mussel Mytilus edulis L. under different laboratory conditions. Semi-static and through-flow experiments were carried out at Cd concentrations of 200 ppb and 50/100 ppb in the water, respectively. A linear uptake of Cd throughout the experimental periods of 36 or 124 d was found in all experiments. The accumulation rate was 3.10 ppm d-1 at 50 ppb in the through-flow water experiment, 4.1 ppm d-1 in starved and 6.6 ppm d-1 in fed mussels in the semi-static experiments with 200 ppb Cd in the water. The Cd-accumulation rate in various fractions of soft parts decreased in the order: body>mantle>muscles. Elution patterns obtained from gel-filtrations showed an increasing amount of Cd-binding proteins (metallothioneins) when the body burden of Cd increased. The Cd content in the body fraction of mussels transferred to clean water for 42 d after first being exposed to Cd during 124 d decreased from 564 ppm on a dry weight basis to 417 ppm while the fraction of Cd bound to metallothioneins rose from 22 to 78% during the same period.  相似文献   

14.
The accumulation of cadmium was investigated in two species of oysters [Crassostrea gigas (L.) and Ostrea edulis (L.)] from the same environment and in oysters of the same species (O. edulis) from two different environments (contaminated and uncontaminated), under controlled laboratory conditions (33‰ salinity, 10°C, 100 μg Cd l-1) for up to 111 d in 1982. C. gigas accumulated cadmium twice as fast as O. edulis (1.07 vs 0.52 μg Cd g-1 wet wt d-1). Furthermore, O. edulis from an uncontaminated environment accumulated cadmium faster than O. edulis from a metal-contaminated environment (0.52 vs 0.34 μg Cd g-1 wet wt d-1). There was no effect of cadmium exposure on total soft-tissue copper and zinc concentrations. Investigation of cytosolic metal-binding using Sephadex G-75 gel-permeation chromatography indicated that binding to very low molecular weight ligands (MW<1000) accounted for>70% of the cytosolic zinc in all oysters and>40% of the cytosolic cadmium in all oysters except O. edulis from Conwy at 83 d. In copper-contaminated oysters, excess copper was also associated with very low molecular weight ligands. Intermediate molecular weight cadmium/copper-binding proteins (similar to metallothionein in molecular weight) were observed in the cytosol and were shown to differ between species in terms of their behavior on Sephadex G-75. Finally, the distribution of accumulated cytosolic cadmium in O. edulis from the contaminated environment was shown to have a unique distribution, i.e., there was no cadmium associated with high molecular weight cytosolic macromolecules. The data indicate that both genetic and environmental factors influence cadmium accumulation in oysters.  相似文献   

15.
An automatic recording apparatus for measuring the filtration rate in suspension-feeding bivalves is described. The concentration of algae in the experimental medium is kept constant throughout each experiment by addition of Phaeodactylum tricornutum from a chemostat. Within the range of body size 5.7 to 283 mg (W=dry weight of tissues), the filtration rate (F=ml min-1) at 15°C in Mytilus edulis L. follows the allometric equation F=0.85 W 0.72. Within the concentrations 0.18 to 0.70 mg algal dry weight l-1, the filtration rate in mussels of 132 mg dry flesh weight ranges from 33.1 to 41.0 ml min-1. At 0.18 mg algal dry weight l-1 the mussels filter continuously for 20 h, with a high constant rate that presumably represents the water transport capacity under optimal laboratory conditions.  相似文献   

16.
We report findings from the first laboratory experiments to assess toxicities of metals found in drilling muds to embryos and prezoeae of a brachyuran crab. Embryos of Cancer anthonyi are brooded externally on the abdomen of female crabs; thus, embryos may be continuously exposed to pollutants contained in sediments of contaminated benthic habitats. Lethal concentrations of metals to embryos after 7 d exposures were: iron and barium (sulfate), 1 000 mg l–1; barium (chloride), 100 mg l–1; aluminum and nickel, 10 mg l–1; copper and lead, l mg l–1; cadmium, chromium VI and manganese, 0.01 mg l–1; mercury, 0.001 mg l–1. All metals effectively retarded embryos from hatching at concentrations equal or lower to those causing mortality, except for cadmium. Particularly impressive was iron, which suppressed hatching at l to 10 mg l–1, concentrations previously found non-deleterious to marine organisms and 100 times more dilute than concentrations causing significant embryo mortality. The effects of metals on embryos increased as a function of exposure duration. Embryo mortality was delayed for at least 120 h at concentrations 1.0 mg l–1, with the exception of mercury. Lethal concentrations established at 96 h were meaningless for crab embryos, because acute toxic thresholds were not attained by that time. Larval survivorship to chromium VI, copper, and zinc increased following exposure of embryos to these metals at low concentrations (1.0 mg l–1), suggesting induction of biochemical pathways for products which bind or metabolize metals. Identical exposures of embryos to lead failed to enhance subsequent larval survivorship, showing that inductions may be metal-specific. We suggest that exposures of brachyuran embryos at field sites and the success of their subsequent hatching in the laboratory may be a means of assessing environmental contamination otherwise difficult to monitor.  相似文献   

17.
Constructing realistic energy budgets for Antarctic krill, Euphausia superba, is hampered by the lack of data on the metabolic costs associated with swimming. In this study respiration rates and pleopod beating rates were measured at six current speeds. Pleopod beating rates increased linearly with current speed, reaching a maximum of 6 beats s–1 at 17 cm s–1. There was a concomitant linear increase in respiration rate, from 1.8 mg O2 gD–1 h–1 at 3 cm s–1 to 8.0 mg O2 gD–1 h–1 at 17 cm s–1. The size of the group tested (50, 100 and 300 krill) did not have a significant effect on pleopod beating rates or oxygen consumption (ANCOVA, F=0.264; P>0.05). The cost of transport reached a maximum of 75 J g–1 km–1 at 5 cm s–1, and then decreased with increasing current speed to 29 J g–1 km–1. When considered in light of energy budgets for E. superba, these data indicate that the cost of swimming could account for up to 73% of total daily metabolic expenditure during early summer.Communicated by G.F. Humphrey, Sydney  相似文献   

18.
It has been confirmed that metallothioneins play an important role in the accumulation of cadmium (Cd) in the digestive gland cells of mussels (Mytilus galloprovincialis Lam.). The content of Cd in the tissue of mussels exposed for 9 d to the metal (estimated dosage of 180 g Cd mussel-1 d-1) was 66.2 ppm. This value is about the same as the metal content found in the digestive gland of Cd-exposed mussels kept in clean water for a recovery period of 28 d. At the end of the recovery period, however, the Cd bound to thionein had increased by approximately 250%. Our data demonstrate that the stability of lysosomes, a biological parameter adopted as a cellular stress index, is extremely low in mussels exposed to Cd for 9 d, but returns to control values in the digestive gland cells of mussels allowed to recover for 28 d in uncontaminated sea water. At this point most of the Cd present in the cytosol is bound to thionein. These data demonstrate the importance of metallothionein induction in the reduction of the cytotoxic effects exerted by high levels of Cd accumulation. The results of tests designed to clarify the reasons for the long biological half-life of Cd demonstrated that, in the digestive gland of mussels, the lysosomes are not able to eliminate Cd either bound to insoluble thionein polymers or to lipid peroxidation products such as lysosomal lipofuscin, both of which are apparently involved in the elimination of copper. The absence of these two mechanisms of metal sequestration and elimination via excretion of residual bodies (tertiary lysosomes) is in agreement with the persistence of cadmium in the digestive gland of mussels. Finally, the results also demonstrate that simultaneous exposure of mussels to Cd and phenanthrene, an established lysosomal membrane destabilizer, did not significantly alter the accumulation of Cd or the kinetics of the metal in mussels.  相似文献   

19.
Keshan disease (KD) occurs in a wide geographic belt stretching from the Heilongjiang Province in northeastern China to Yunnan Province in southwestern China, including Huangling County, Shaanxi Province. In order to research relationships between eco-environmental geochemistry and KD pertaining to Se, Mo, B, Zn, Mn, and Cu, this investigation was conducted in the Jiantou KD area in Huangling County, one of the areas in China where the incidence of KD is highest. Environmental samples (rock, soil, plant and childrens hair) were collected from the area. Se in plants is low, ranging from 0.03 to 0.06 µg Se g–1 in corn, potato and soybean. Se contents in childrens hair are normal or reach the limitation of dangerous level. This study reports 0.18 µg Se g–1, B <40 µg g–1, and Mo <1.0 µg g–1 in aeolian soil, 0.14–0.38 µg Mo g–1 and 3–8 µg B g–1 in corn and potato (daily staple food for local human beings in the area). The Jiantou KD area is one where the elements Se, Mo and B are deficient. It is proposed that the deficiency of elements Se, Mo and B may be involved in the pathogenicity of KD with respect to the eco-environmental system because Se, Mo and B are essential micronutrients for plants and human beings. It seems that there is no significant relationship between the Zn–Mn–K–Pb–Ba associations and KD.  相似文献   

20.
The marine amphipodAllorchestes compressa Dana, fed on the seagrassHeterozostera tasmanica, was exposed to sublethal concentrations of Cd, Cr, Cu and Zn for 4 wk in flowing sea water, and the concentrations producing the minimum detectable decreases (the minimum effect concentrations, MECs) in average weight, survival and biomass (average weight × survival proportion) were estimated by interpolation from regression models. Survival and biomass were more sensitive than average weight as indicators of sublethal effects. The lowest values of MEC for Cd, Cr, Cu and Zn were 11, >250, 3.7 and 99µg 1–1, respectively. For Cu, this value fell below the minimum risk concentration (MRC) calculated from acute toxicity tests (LC50) and application factors (AF); for Cd, the MEC was similar to the MRC; for Cr and Zn, the MECs were well above the MRCs. The metal concentrations in the amphipods at the MECs were 46, >46, 364 and 139µg g–1 dry wt for Cd, Cr, Cu and Zn, respectively. Accumulation of the nutrient metals (Cr, Cu and Zn) showed some evidence of metabolic regulation, but the non-nutrient Cd was accumulated without regulation until the amphipods died. In general, those metals that were more highly accumulated by the amphipods were the more toxic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号