首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chemical characteristics of precipitation were analyzed based on the chemical composition of principal ionic within acid rain(from February 2007 to January 2008)of Liaozhong Meteorological Station located in Malong Village in Liaozhong County of Northeast China,meteorological conditions on the corresponding period ground,and variation of several air pollutants concentration.The results indicated that:(1)The precipitation average pH value of all samples was4.76;the frequency of acid rain during the observation period was 70.7%;the frequency was 82.8%in summer and autumn.(2)In the chemical composition of precipitation,the primary anions were SO42-and NO3-;the primary cations were NH4+and Ca2+.(3)All concentration of anions was higher in summer and winter,but relatively low in spring and autumn.This showed that the relationship between regional rainfall acidification and pollution was not significant.(4)Rainwater acidity and nearly floor gaseous pollution concentration were different from each other,and pH and NOx,CO,NO2 and O3concentrations showed significant negative correlation,but was not obvious with SO2 concentration.However,the pH and alkaline pollutants,such as particulate,was positively correlative.  相似文献   

2.
Estimating risks of air pollution damage to agricultural crops requires identifying crop location and size, likely doses, models for translating dose to response, and measures of response appropriate for economic analysis. Assessment of risk requires compatible data sets for each of these variables. Analysis of air pollution mixtures suggests that oxidant crop damage is caused by three compounds: ozone, nitrogen oxides, and peroxyacetylnitrates. The phytotoxicity of ozone, the most prevalent photochemical oxidant, has been studied more extensively than the other two oxidants, and its effects on vegetation are best understood. Response of vegetation to air pollutants was first characterized by foliar or visible injury. Subsequent research indicated that foliar injury did not translate directly into reduced plant growth or yield, which can be measured. Response to air pollutants may be influenced by physical, biological, and environmental factors. Inherent genetic resistance is probably the most important single factor affecting plant response, although environmental factors influencing stomatal aperture may also be important. For several crops open-top chamber studies and cross sectional analyses of field data provide adequate information to develop dose-response functions. All of these studies have both strengths and weaknesses. Although a number of different models exist for selected crops, there is no single biological or statistical criterion which identifies the best or most accurate model.  相似文献   

3.
Multi-pollutant air pollution (i.e., several pollutants reaching very high concentrations simultaneously) frequently occurs in many regions across China. Air quality index (AQI) is used worldwide to inform the public about levels of air pollution and associated health risks. The current AQI approach used in China is based on the maximum value of individual pollutants, and does not consider the combined health effects of exposure to multiple pollutants. In this study, two novel alternative indices – aggregate air quality index (AAQI) and health-risk based air quality index (HAQI) – were calculated based on data collected in six megacities of China (Beijing, Shanghai, Guangzhou, Shjiazhuang, Xi'an, and Wuhan) during 2013 to 2014. Both AAQI and HAQI take into account the combined health effects of various pollutants, and the HAQI considers the exposure (or concentration)-response relationships of pollutants. AAQI and HAQI were compared to AQI to examine the effectiveness of the current AQI in characterizing multi-pollutant air pollution in China. The AAQI and HAQI values are higher than the AQI on days when two or more pollutants simultaneously exceed the Chinese Ambient Air Quality Standards (CAAQS) 24-hour Grade II standards. The results of the comparison of the classification of risk categories based on the three indices indicate that the current AQI approach underestimates the severity of health risk associated with exposure to multi-pollutant air pollution. For the AQI-based risk category of ‘unhealthy’, 96% and 80% of the days would be ‘very unhealthy’ or ‘hazardous’ if based on AAQI and HAQI, respectively; and for the AQI-based risk category of ‘very unhealthy’, 67% and 75% of the days would be ‘hazardous’ if based on AAQI and HAQI, respectively. The results suggest that the general public, especially sensitive population groups such as children and the elderly, should take more stringent actions than those currently suggested based on the AQI approach during high air pollution events. Sensitivity studies were conducted to examine the assumptions used in the AAQI and HAQI approaches. Results show that AAQI is sensitive to the choice of pollutant irrelevant constant. HAQI is sensitive to the choice of both threshold values and pollutants included in total risk calculation.  相似文献   

4.
无锡市酸雨变化特征及气象条件影响研究   总被引:2,自引:0,他引:2  
基于无锡市2008~2011年酸雨观测资料,利用功率谱分析、后向轨迹和聚类分析方法,研究了无锡市酸雨的变化特征,分析了气象因素对酸雨的影响,探讨了1 500 m高度的气团移动路径特征。结果表明:2008~2011年,无锡市酸雨pH值呈现逐年递增趋势,而且酸雨逐月pH值、逐月弱酸雨和强酸雨频率分别存在不同的周期性变化;酸雨酸性随降水量增加表现为先增强后减弱,但夏季降水与酸雨pH值的相关性并不显著;春季相对湿度与酸雨pH值呈现显著负相关,夏季气温则与酸雨pH值呈显著正相关;各季节1 500 m高度的轨迹存在一定差异,春冬季无锡市受内陆气团影响为主,夏秋季西太平洋水汽输送作用明显。总体而言,江浙赣和西太平洋是无锡酸雨前体物的主要来源地  相似文献   

5.
区域气象条件及空气质量或与全球气候变化关系密切。研究通过分析不同气候条件下成都地区1951~2017年主要气象要素及其2013~2017年大气污染物浓度变化趋势,并结合大数据挖掘技术探究厄尔尼诺/拉尼娜事件与成都地区气象及空气质量的关系。结果表明,全球气候变化对区域气象及空气质量影响明显。异常气候造成成都地区气温、降水、风速、日照时长等气象条件发生明显变化。这些变化通常利于大气扩散条件的改善而使污染物浓度下降,但相应时期的臭氧浓度却有所升高。研究同时利用KNN大数据挖掘算法评估不同气候条件下气象和减排对空气质量改善的贡献。结果显示,在全球厄尔尼诺发生频繁的2015年,成都地区重污染天数明显减少,气象和减排的贡献率分别为27%和73%;而在全球拉尼娜现象频发的2016年,成都地区空气质量也有明显改善,重污染天数的减少有42%归功于气象条件的变化,几乎与大气污染物的减排贡献相当。因此,为实现空气质量的有效改善,空气质量改善管理政策的制定,既要从源头上控制污染物的排放,同时也应考虑全球气候变化的影响。  相似文献   

6.
富氧生物膜法修复微污染水源的机理研究   总被引:11,自引:0,他引:11  
采用弹性立体填料、微孔曝气富氧生物接触氧化法修复上海市受污染的川杨河水,生物填料在进水氨氮浓度2.6~3.1 mg/L和水温20℃~22℃下,7 d自然挂膜培养成功, 氨氮去除率达90%以上。 生化池运行一段时间后,必须根据生物膜厚度和其除污染效率,适时适度冲洗填料和排除池底积泥,以防止好氧生物膜出现厌氧运行状况和影响除污染效果。在川杨河水源水质浊度90~300 NTU、 NH+4-N 0.5~10.0 mg/L、CODMn4.0~10.8 mg/L、污染指数为2~8及生物修复工艺HRT为1.3 h、DO为7.5~10.2 mg/L、g/w为0.5/1的正常运行条件下,观察到膜上的生物相丰富, 微生物种类繁多, 主要是好氧的异养菌和自养菌。生物膜较薄,一般厚度为0.09~0.13 mm,在原水污染物氨氮浓度较低,曝气充足,水中溶解氧浓度高,好氧生物膜传质阻力小、速度快,污染物氨氮的生物降解速率很快,只需较短的水力停留时间,就能达到很高的氨氮去除率。微孔曝气气液传质充分,水中溶解氧充足,膜内无厌氧层存在。好氧生物膜内处于完全的好氧状态,硝化反应比较完全。污染的去除主要是填料上的好氧生物膜在起作用。  相似文献   

7.
Wheat (Triticum aestivum L.) is grown as a rainfed crop in the sub-mountainous region of the Punjab state of India, with low crop and water productivity. The present study aims to assess the effect of climate change scenario (A1B) derived from PRECIS—a regional climate model—on wheat yield and water productivity. After minimizing bias in the model climate data for mid-century (2021–2050), evapotranspiration (ET) and yield of wheat crop were simulated using Decision Support System for Agrotechnology Transfer, version 4.5, model. In the changed climate, increased temperature would cause reduction in wheat yield to the extent of 4, 32 and 61 % in the mid-century periods between 2021–2030, 2031–2040 and 2041–2050, respectively, by increasing water stress and decreasing utilization efficiency of photosynthetically active radiation. The decreases in crop water productivity would be 40, 56 and 76 %, respectively, which are caused by decreased yield and increased ET. Planting of wheat up to November 25 till the years 2030–2031 seems to be helpful to mitigate the climate change effect, but not beyond that.  相似文献   

8.
2003~2009年鄱阳湖流域土壤水分时空变化特征及影响因素   总被引:1,自引:0,他引:1  
鄱阳湖流域水文过程是区域研究的热点问题,但相对于其它水文要素而言,土壤水分的时空分布特征及其影响因素尚缺乏系统研究,成为流域水文过程研究不确定性的主要来源之一。采用AMSR E土壤水分数据,从流域、子流域及地表覆被等不同的空间尺度,阐明了鄱阳湖流域2003~2009年土壤水分的年际与年内变化特征,并分析其影响因素。研究表明:在流域尺度上,土壤水分总体呈现中心低、周边高的“漏斗式”空间分布形态,但夏、秋季节空间差异性减弱,年际土壤水分呈现较强的下降趋势,其中以湖区下降速度最大;在地表覆被尺度上,林地土壤水分最高、年际下降速度最低,表明其在年际尺度上对干旱具有较强的调节作用,不同地表覆被类型的土壤水分年内差异较明显,但在6、7及10月差异较小,地表覆被对土壤水分的调节作用减弱;在影响因素方面,降水是土壤水分的主要影响因素,气温、灌溉等则一定程度上影响了土壤水分的变化特征。研究结果不仅有利于加强对流域水文过程的理解与认识,同时可为水资源管理及防旱抗旱等提供科学的辅助依据  相似文献   

9.
The impact of mid-century climatic changes on crop productivity of winter wheat, maize, potato and sugar beet was assessed for a temperate maritime climate in the Flemish Region, Belgium. Climatic projections of multiple regional and global climate models (RCMs from the EU-ENSEMBLES project and GCMs from the Coupled Model Intercomparison Project phase 3) were stochastically downscaled by the LARS-WG weather generator for use in the crop models AquaCrop and Sirius. Primarily positive effects on mean yield were simulated. Crops benefitted from elevated CO2, and from more radiation interception if the cropping period was adapted in response to higher temperatures. However, increased productivity was linked with increased susceptibility to water stress and greater inter-annual yield variability, particularly with adapted management. Impacts differed among and within ensembles of climate models, and among crops and environments. Although RCMs may be more suitable for local impact assessments than GCMs, inter-ensemble differences and contingent wider ranges of impacts with GCM projections found in this study indicate that applying RCMs driven by a limited number of GCMs alone would not give the full range of possible impacts. Further, this study suggests that the simulated intermodel variation can be larger than spatial variation within the region. These findings advocate the use of both GCM and RCM ensembles in assessments where temperature and precipitation are central, such as for crop production.  相似文献   

10.
Exchange of trace gases between the oceans and the atmosphere affects the atmospheric content and cycling of a range of chemical species which are related to climate change, ozone layer depletion, acid deposition, eutrophication, atmospheric particle formation, photo-oxidants, trace metals and persistent organic pollutants (POPs). The effects and impacts of air–sea exchange of these gases can be local, regional and global. Until now, most of the research has concentrated on the sea–air exchange of trace gases in the open ocean. The flux rates of the trace gases from the coastal waters to the air are much higher than the rates for the open ocean and the contribution of the coastal areas to the total oceanic emissions of these trace gases can be significant on a global scale. This contribution can be as high as 50% and more for nitrous oxide and COS. Concerning the contribution of the trace gas production in the coastal areas to the total global production of these gases, it can be concluded that this contribution seems to be below 2% except for nitrous oxide. However, it should be pointed out that on the local and even regional scale the emissions in the coastal areas can be very important, contributing substantially to the total emission of these gases in a studied area. Thus, there is a need to carry out studies in the future with the aim to provide more accurate understanding of the production and sea–air exchange processes for these gases around the world. Electronic Publication  相似文献   

11.
坡面冲刷过程中红壤分离速率定量研究   总被引:5,自引:0,他引:5  
土壤分离是土壤坡面侵蚀产沙的必要途径和重要过程,准确预测土壤分离过程对完善土壤侵蚀物理模型具有重要意义。利用钢制变坡冲刷水槽,在不同坡度(8.8%~46.6%)和流量(0.2~1.0 L/s)组合下,研究了第四纪粘土发育红壤分离速率与流量、坡度以及水流剪切力、水流功率、单位水流功率3种水动力参数的关系。研究结果表明红壤分离速率是流量、坡度的幂函数,且坡度和单宽流量的多元回归方程能准确预测土壤分离速率(R2=0.966);水流剪切力、水流功率和单位水流功率3个水动力参数指标与土壤分离率均呈线性关系,相关系数R2分别为0.950、0.965和0.849,水流功率是描述土壤分离速率最为确切的水动力参数;描述红壤分离速率的相关水蚀因子方程类型和前人研究结果相同,但表征土壤可蚀性的系数值相差较大。〖  相似文献   

12.
In the north west Indo-Gangetic Plain (N.W.IGP), large scale post-harvest paddy residue fires occur every year during the months of October–November. This anthropogenic perturbation causes contamination of the atmospheric environment with adverse impacts on regional air quality posing health risks for the population exposed to high concentrations of carcinogens such as benzene and toxic VOCs such as isocyanic acid. These gases and carbon monoxide are known to be emitted from biomass fires along with acetonitrile. Yet no long-term in-situ measurements quantifying the impact of this activity have been carried out in the N.W. IGP. Using high quality continuous online in-situ measurements of these gases at a strategic downwind site over a three year period from 2012 to 2014, we demonstrate the strong impact of this anthropogenic emission activity on ambient concentrations of these gases. In contrast to the pre-paddy harvest period, excellent correlation of benzenoids, isocyanic acid and CO with acetonitrile (a biomass burning chemical tracer); (r  0.82) and distinct VOC/acetonitrile emission ratios were observed for the post-paddy harvest period which was also characterized by high ambient concentrations of these species. The average concentrations of acetonitrile (1.62 ± 0.18 ppb), benzene (2.51 ± 0.28 ppb), toluene (3.72 ± 0.41 ppb), C8-aromatics (2.88 ± 0.30 ppb), C9-aromatics (1.55 ± 0.19 ppb) and CO (552 ± 113 ppb) in the post-paddy harvest periods were about 1.5 times higher than the annual average concentrations. For isocyanic acid, a compound with both primary and secondary sources, the concentration in the post-paddy harvest period was 0.97 ± 0.17 ppb. The annual average concentrations of benzene, a class A carcinogen, exceeded the annual exposure limit of 1.6 ppb at NTP mandated by the National Ambient Air Quality Standard of India (NAAQS). We show that mitigating the post-harvest paddy residue fires can lower the annual average concentration of benzene and ensure compliance with the NAAQS. Calculations of excessive lifetime cancer risk due to benzene amount to 25 and 10 per million inhabitants for children and adults, respectively, exceeding the USEPA threshold of 1 per million inhabitants. Annual exposure to isocyanic acid was close to 1 ppb, the concentration considered to be sufficient to enhance risks for cardiovascular diseases and cataracts. This study makes a case for urgent mitigation of post-harvest paddy residue fires as the unknown synergistic effect of multi-pollutant exposure due to emissions from this anthropogenic source may be posing grave health risks to the population of the N.W. IGP.  相似文献   

13.
Studies in a number of countries have reported associations between exposure to ambient air pollutants and adverse birth outcomes, including low birth weight, preterm birth (PTB) and, less commonly, small for gestational age (SGA). Despite their growing number, the available studies have significant limitations, e.g., incomplete control of temporal trends in exposure, modest sample sizes, and a lack of information regarding individual risk factors such as smoking. No study has yet examined large numbers of susceptible individuals.We investigated the association between ambient air pollutant concentrations and term SGA and PTB outcomes among 164,905 singleton births in Detroit, Michigan occurring between 1990 and 2001. SO2, CO, NO2, O3 and PM10 exposures were used in single and multiple pollutant logistic regression models to estimate odds ratios (OR) for these outcomes, adjusted for the infant's sex and gestational age, the mother's race, age group, education level, smoking status and prenatal care, birth season, site of residence, and long-term exposure trends.Term SGA was associated with CO levels exceeding 0.75 ppm (OR = 1.14, 95% confidence interval = 1.02–1.27) and NO2 exceeding 6.8 ppb (1.11, 1.03–1.21) exposures in the first month, and with PM10 exceeding 35 μg/m3 (1.22, 1.03–1.46) and O3 (1.11, 1.02–1.20) exposure in the third trimester. PTB was associated with SO2 (1.07, 1.01–1.14) exposure in the last month, and with (hourly) O3 exceeding 92 ppb (1.08, 1.02–1.14) exposure in the first month.Exposure to several air pollutants at modest concentrations was associated with adverse birth outcomes. This study, which included a large Black population, suggests the importance of the early period of pregnancy for associations between term SGA with CO and NO2, and between O3 with PTB; and the late pregnancy period for associations between term SGA and O3 and PM10, and between SO2 with PTB. It also highlights the importance of accounting for individual risk factors such as maternal smoking, maternal race, and long-term trends in air pollutant levels and adverse birth outcomes in evaluating relationships between pollutant exposures and adverse birth outcomes.  相似文献   

14.
The regional environmental radiological effects were assessed for the past 25-year operation of the Tokai Reprocessing Plant (TRP). The assessment was basically performed with the environmental radiological monitoring data around the TRP. For the environmental monitoring, various kinds of terrestrial and marine samples including air dust, surface soil, polished rice grain, leafy vegetable, milk, seawater, seabed sediments, fish, shellfish and seaweed were collected in the surrounding environment of the TRP. Radionuclides such as (3)H, (14)C, (90)Sr, (137)Cs and (239,240)Pu in the environmental samples were determined by radiochemical methods. However, they showed no significant short-term increase or long-term accumulation of radionuclides discharged from the TRP. Therefore, the public dose was evaluated using the mathematical models and the discharge data of radionuclides. The estimated annual effective dose for the public was about 0.1% of the annual effective dose limit recommended by the ICRP. The assessment showed that there were no significant radiological effects on the environment and the public due to the 25-year operation of the TRP.  相似文献   

15.
Robust methods to estimate historic population air pollution exposures are important tools for epidemiological studies evaluating long-term health effects. We developed land use regression (LUR) models for NO2 exposure in Great Britain for 1991 and explored whether the choice of year-specific or back-extrapolated LUR yields 1) similar LUR variables and model performance, and 2) similar national and regional address-level and small-area concentrations. We constructed two LUR models for 1991using NO2 concentrations from the diffusion tube monitoring network, one using 75% of all available measurement sites (that over-represent industrial areas), and the other using 75% of a subset of sites proportionate to population by region to study the effects of monitoring site selection bias. We compared, using the remaining (hold-out) 25% of monitoring sites, the performance of the two 1991 models with back-extrapolation of a previously published 2009 model, developed using NO2 concentrations from automatic chemiluminescence monitoring sites and predictor variables from 2006/2007. The 2009 model was back-extrapolated to 1991 using the same predictors (1990 & 1995) used to develop 1991 models. The 1991 models included industrial land use variables, not present for 2009. The hold-out performance of 1991 models (mean-squared-error-based-R2: 0.62–0.64) was up to 8% higher and ~ 1 μg/m3 lower in root mean squared error than the back-extrapolated 2009 model, with best performance from the subset of sites representing population exposures. Year-specific and back-extrapolated exposures for residential addresses (n = 1.338,399) and small areas (n = 10.518) were very highly linearly correlated for Great Britain (r > 0.83). This study suggests that year-specific model for 1991 and back-extrapolation of the 2009 LUR yield similar exposure assessment.  相似文献   

16.
Dyes and pigments are one of the major water pollutants and if not discharged properly cause ecological disturbance. Considering this, the current study investigates the application of thermal power plant by-product, i.e., fly ash for the elimination of a hazardous methylene blue dye from its synthetic aqueous solution. Experiments were conducted in batch mode to study the effect of pH, temperature, adsorbent dose and contact time. Highest dye removal (94.3%) was achieved at pH 10 using adsorbent dose of 10 g/L in 90 min of contact time at 40 °C. However, for cost-effective operation at neutral pH and room temperature (30 °C), it yields 89.3% dye removal having similar dose and contact time. Equilibrium isotherms for adsorption were analyzed by Langmuir and Freundlich, Temkin and Dubinin–Radushkevich isotherm equations. The results revealed that the best fit model of adsorption closely followed Langmuir adsorption. Based on adsorption isotherm models, thermodynamics parameters ΔG, ΔH and ΔS were calculated. The negative value of ΔG and ΔH revealed that adsorption process was exothermic, spontaneous and physical. The present work suggests that through simple process hydrothermally modified fly ash has the potential to be used as cost-effective and efficient adsorbent for the treatment of wastewater from textile industries.  相似文献   

17.
Insurance programmes have been indicated as a tool to reduce the economic risk associated with climate change, and crop growth simulation models can be used effectively to assess future trends in crop insurance payouts. This paper assesses the economic role of increasing weather extremes under future climate change on the expected insurance payouts for durum wheat (Triticum turgidum L. spp. durum) over the Mediterranean basin, focusing attention on the effects of heat stresses (HSs). A crop growth simulation, Sirius Quality version 2 (SQ2), calibrated for three varieties (long, medium and short growth cycle) was applied on seven sites under present (1975–1990) and future climate conditions (2030–2050) obtained from five regional circulation models under SRES scenario A1b. The intensity of HSs at anthesis was included as reducing factor of yield originally simulated by SQ2 calculated according to a specific empirical model. Simulated yields were then fitted to the most appropriate distribution, which was used to calculate the expected payouts according to the probability of yields being below a guaranteed level. We found that the simulated crop yields were, in general, negatively skewed and that Weibull probability density function (PDF), admitting negative skewing, provided the best performances in their fitting. The simulation of HSs modified the original shape of the Weibull PDF by increasing the skewness of the distribution. The results of the insurance model indicated that the modification of crop PDFs induced by HSs led to a general increase in payouts with respect to unstressed conditions, with a marked difference between present (+11 %, on average for the selected sites) and future periods (+25 %). When compared to the present, a general decrease in payouts (?1.1 %) was observed when HSs were not included in the simulations. Conversely, HSs impact resulted in a general increase in payouts (+10.3 %) where the highest increase was detected for the long growth cycle variety (+16.6 %) and the lowest for that with short growth cycle (?1.6 %). These results emphasize the importance of the appropriate characterization of crop yield distribution, the economic implications of HSs in a risk management context and a possible strategy to cope with climate change and variability.  相似文献   

18.
To collect regional information on internal levels of pollutants in humans in Flanders, 1196 mother–child pairs were systematically recruited in 2002–2003 via 25 maternities across Flanders. Cd, Pb, PCB congeners 118, 170, 138, 153 and 180, p,p′-DDE — a key metabolite of DDT- and hexachlorobenzene (HCB) were measured in cord blood or plasma. Cd was detected in 64% of the samples (geometric mean 0.21 µg/L cord blood). p,p′-DDE (110 ng/g plasma lipids) and Pb (14.7 µg/L blood), were measurable in nearly all samples. The individual PCB congeners could be detected in 40 to 81% of the newborns (138 + 153 + 180 = 64.4 ng/g plasma lipids). HCB (18.9 ng/g plasma lipids) and dioxin-like compounds measured by DR-CALUX® (23 pg CALUX-TEQ/g lipids) were above detection limit in more than 75% of the samples. Age and smoking habits of the mothers, did not influence the cord blood Pb and Cd levels. The organochlorines increased 4 to 9% per year of the mother's age (partial R= 0.05 to 0.22). Mothers had 2.6% less PCBs in cord blood (partial R= 0.02) for each unit increase in pre-pregnancy BMI. Season of delivery, breastfeeding previous children or consumption of local dairy products, were minor determinants. Up to 20% of the variability in organochlorine concentrations was explained by residence area. It was concluded that the place of birth in Flanders is an important determinant of the load of pollutants measured at the start of life. This underlines the validity of human biomonitoring on (relatively) small geographical scale.  相似文献   

19.
This case study was conducted to evaluate the use of reclaimed lake sediment as a growth media for vegetable production and to estimate whether accumulation of micronutrients and heavy metals in the vegetables would impact human nutrition or health, respectively. Five plant species, bean (Phaseolus vulgaris L.), broccoli (Brassica oleracea L.), carrot (Daucus carota L.), pepper (Capsicum annum L.), and tomato (Lycopersicon esculentum L.), were grown in pots containing either reclaimed sediment from the Illinois River or a reference soil. Edible and vegetative tissues from the plants were analyzed for 19 elements, including As, Cd, Cr, Cu, Hg, Mo, Ni, Pb, Se, and Zn. Tomato and pepper grown in sediment showed significantly greater biomass and yield as compared to plants from the reference soil. Elemental analysis of the tissues revealed that Zn and Mo were the only elements that were significantly greater in sediment-grown plants on a consistent basis. While significant, Zn concentrations were no more than 3-fold higher than those in plants from the reference soil. The same trend was observed for Mo, except for bean tissues, which showed a 10-fold greater concentration in sediment-grown plants. The projected dietary intake of Cu, Mo, and Zn from consumption of sediment-grown vegetable tissues was significantly higher than for soil-grown plants, although the contribution to the recommended dietary allowances (RDAs) for these elements was substantial only for Mo. Intake of sediment-grown beans would have provided 500% of the dietary Mo RDA. While this is below the lowest observable adverse effect level (LOAEL) value for this element, there is no evidence to indicate that there would be a nutritional or therapeutic benefit from the consumption of bean containing this level of Mo. The dietary exposures to Cd and Pb would have been below the pertinent limits for all age and gender groups with the exception of the cumulative dietary Cd exposure to the 1-3 year age group. The results from this study suggest that this reclaimed sediment can be utilized for the production of vegetables intended for human consumption. The results from this case study also suggest that sediment material with similar physicochemical characteristics and elemental concentrations that fall within the pertinent regulatory guidelines should also be a suitable and safe medium for vegetable production.  相似文献   

20.
Mass transfer plays a significant role in the ozonation process. The prediction models associated with the volumetric overall mass transfer coefficient (KLa) and initial fractional ozone absorption (FOA0) during the ozonation process were developed through the use of dimensional analysis. It was found that the volumetric overall mass transfer coefficient is the function of diffusivity, agitation speed, and gas flow rate, and the parameters in the KLa equation are determined. Application of the prediction models for KLa and FOA0 would yield information to choose the most practically feasible operating parameters. The removability of total organic carbon (TOC) can be estimated based on the mass balance relationship and kinetic expression of TOC oxidation, during continuous laboratory ozonation of humic acid solution. The reaction rate constant averaged 0.0291 L/mg·min. The developed model in combination with the mass transfer and reaction kinetics can be used successfully in forecasting the most efficient agitation speed to control the formation of organic compounds. Also, the critical value of ozone partial pressure to achieve the highest TOC removability can be determined through the use of the above developed model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号