首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

This work focuses on the accumulation and mobility properties of arsenic (As) and the effects of phosphate (P) on its movement in Pennisetum clandestinum Hochst (kikuyu grass), grown hydroponically under increasing arsenate (As(V)) concentrations. The uptake of both ions and the relative kinetics show that phosphate is an efficient competitive inhibitor of As(V) uptake. The P/As uptake rate ratios in roots indicate that P is taken up preferentially by P/As transporters. An arsenite (As(III)) efflux from roots was also found, but this decreased when the arsenate concentration in the solution exceeded 5???M.

Methods

Increases in both arsenite and arsenate concentrations in roots were observed when the arsenate concentration in the solution was increased, and the highest accumulation of As(III) in roots was found when plants were grown at 5???M As(V). The low ratios of As accumulated in shoots compared to roots suggest limited mobility of the metalloid within Kikuyu plants.

Results

The results indicate that arsenic resistance in kikuyu grass in conditions of moderate exposure is mainly dependent on the following factors: 1) phosphate nutrition: P is an efficient competitive inhibitor of As(V) uptake because of the higher selectivity of membrane transporters with respect to phosphate rather than arsenate; and 2) a detoxification mechanism including a reduction in both arsenate and arsenite root efflux.

Conclusions

The As tolerance strategy of Kikuyu limits arsenate uptake and As translocation from roots to shoots; therefore, this plant cannot be considered a viable candidate for use in the phytoextraction of arsenic from contaminated soils or water.  相似文献   

2.
Ascar L  Ahumada I  Richter P 《Chemosphere》2008,72(10):1548-1552
A study was done on the influence of redox potential on the mobility and availability of the various arsenic chemical forms in a Mollisol soil from central Chile amended with biosolid. Arsenic availability was strongly dependent on the applied redox potential. As expected, under reducing conditions (-200 mV vs Hg/Hg(2)Cl(2)) arsenic availability increased significantly, and arsenic was found mainly as arsenite. On the contrary under oxidizing conditions (200 mV vs Hg/Hg(2)Cl(2)) arsenic solubility decreased markedly and was governed by the presence of arsenate. The greatest concentration of organic arsenic species was found under reducing conditions, which would indicate that methylated species may participate in the transformation of arsenate to arsenite. In biosolid-amended soils the concentrations of methylated species increased as a function of time under reducing conditions, which can be attributed to the greater microbial activity resulting from the organic matter supply from the biosolid to soil. In all the systems, a high concentration of As(V) was found under reducing conditions, indicating that the chemical kinetics for the conversion of arsenate to arsenite is slow. Along time, the content of As(V) increased in the control soils, which may be attributed to the possible dissolution of iron oxides and hydroxides under reducing conditions.  相似文献   

3.
Tao Y  Zhang S  Jian W  Yuan C  Shan XQ 《Chemosphere》2006,65(8):1281-1287
Oxalate is exuded by plants in the rhizosphere and plays an important role in the soil/root interactions. Phosphate fertilizer is widely used all over the world and may influence the behavior of arsenic (As) in soils. In this study oxalate and phosphate were used as extractants to investigate their effects on the release of As from three As-contaminated soils and the chemical speciation of As. Concentrations of arsenite (As(III)) and arsenate (As(V)) released progressively increased by increasing the concentrations of oxalate or phosphate. The released As(V) content was higher than that of As(III) and the differences between As(V) and As(III) released by oxalate was more obvious than by phosphate. Greenhouse experiment was conducted to evaluate the effects of oxalate and phosphate on As uptake by wheat (Triticum vulgare L.). Addition of oxalate or phosphate resulted in the increase of As accumulation in both wheat root and shoot and the effect of phosphate was more obvious than that of oxalate.  相似文献   

4.
High-level arsenite removal from groundwater by zero-valent iron   总被引:15,自引:0,他引:15  
Lien HL  Wilkin RT 《Chemosphere》2005,59(3):377-386
The objectives of this study were to conduct batch and column studies to (i) assess the effectiveness of zero-valent iron for arsenic remediation in groundwater, (ii) determine removal mechanisms of arsenic, and (iii) evaluate implications of these processes with regard to the stability of arsenic and long-term remedial performance of the permeable reactive barrier (PRB) technology. A high concentration arsenic solution (50 mg l(-1)) was prepared by using sodium arsenite (arsenic (III)) to simulate groundwater at a heavily contaminated Superfund site in the USA. Batch studies indicate that the removal of arsenic is a two-step reaction with fast initial disappearance of arsenite followed by a slow subsequent removal process. Flow-through columns were conducted at a flow rate of 17 ml h(-1) under reducing conditions for 6.6 mo. Kinetic analysis suggested that arsenic removal behaves as a zero-order reaction at high arsenic concentrations. Arsenic removal rate constants decreased with time and arsenic breakthrough was observed in the column study. Arsenic removal capacity of zero-valent iron was determined to be approximately 7.5 mg As/g Fe. Carbonate green rust was identified from the analysis of surface precipitates; arsenite uptake by green rust may be a major mechanism responsible for arsenic remediation by zero-valent iron. Analysis of HCl-extractable arsenic from iron samples indicated that approximately 28% of arsenic was in the form of arsenate suggesting that a surface oxidation process was involved in the arsenic removal with zero-valent iron.  相似文献   

5.
Uptake and metabolisation of arsenic as a function of both the plant type and the chemical form of arsenic were examined. For this purpose two different plant species (Silene vulgaris and Plantago major) were selected that differed in their vitality and accumulation behaviour on arsenic-loaded substrates. The plants were cultivated on soil and irrigated with aqueous solutions of an inorganic arsenic compound (arsenious acid) and an organic compound (dimethylarsinate). The arsenic species accumulated in the parts of the plants above ground were extracted by PLE and determined using IC-ICP-MS. The concentrations and metabolisation products of arsenic found in the extracts indicate different mechanisms of arsenic uptake and transformation in both angiosperms. The arsenic species pattern showed that S. vulgaris was more arsenic--tolerable than P. major which is attributed to a low arsenate to arsenite concentration ratio in the plant compartments. S. vulgaris was also able to demethylate and reduce dimethylarsinate to form arsenite in a high extent. P. major accumulated only eight times lower concentration of arsenic, and the arsenate to arsenite concentration ratio shifted to higher values. Metabolisation products of dimethylarsinate did not occur under the present experimental conditions. The vitality of the angiosperms seems to be very dependent on the ability of the plant to reduce arsenate to arsenite.  相似文献   

6.
Plants can be used for effective and economical remediation of soil provided they are tolerant or resistant to contaminants. This study was conducted to determine effects of 2,4,6-trinitrotoluene (TNT) on growth and development of smooth bromegrass and tall fescue. Seeds of both species were grown in contaminated and non-contaminated soil mixed at ratios to obtain a range of concentrations and also in non-contaminated soil underlain by contaminated and non-contaminated soil mix. Germination, shoot and root dry weight, root length and area were measured. Germination and height of both species decreased with increasing TNT concentration. Shoot dry weight from tall fescue was 50% greater than smooth bromegrass at a given TNT concentration. Root length, area and dry weight of both species decreased with increasing TNT concentration. Root area and dry weight were greater for smooth bromegrass compared to tall fescue. This research indicates tall fescue and smooth bromegrass can germinate and grow in soils with concentrations less than 31 and 24 mg TNT l(-1), respectively.  相似文献   

7.
The influence of light on phytotoxicity of increased concentration (2, 5, 10 mg/l) of intact fluoranthene (FLT) and photomodified fluoranthene (phFLT) diluted in experimental solutions was investigated. The germination rate of lettuce (Lactuca sativa L.), onion (Allium cepa L.) and tomato (Lycopersicum esculentum L.) seeds and some parameters of seedlings primary growth of these plant species were used as laboratory indicators of phytotoxicity. Among them a length of root and shoot, their dry weight and a content of photosynthetic pigments in shoot were measured. The results demonstrated that the higher concentration (5 and 10 mg/l) of FLT and especially of phFLT significantly inhibited the germination rate of seeds and the length of root and shoot seedlings of all plant species. Decreased production of biomass expressed by dry weight of root and shoot was found in lettuce seedlings under the inhibitory effect of FLT and phFLT. An increased concentration of FLT and phFLT did not exhibit an unambiguous effect on the content of photosynthetic pigments in shoot of experimental plants. Only the highest concentration (10 mg/l) of FLT significantly increased content of chlorophylls a and b in lettuce, onion and tomato plants and content of carotenoids in lettuce and onion. Light intensified a significant inhibitory effect of phFLT in the most testified parameters of germination and seedling growth.  相似文献   

8.
Growth of embryonic axis of germinating pea seeds (Pisum sativum cv. Bonneville) was significantly inhibited by as low as 0.25 mM cadmium and the elongation of the radicle was affected more severely than that of the plumule. Total amylolytic activity, as well as activities of alpha- and beta-amylases, diminished progressively with increasing concentrations of the metal in the media. The deleterious effect on alpha-amylase persisted throughout, whereas beta-amylase activity recovered with time. The rate of respiration of seeds, measured by oxygen uptake, was markedly impeded by cadmium and the phase of rapid and linear development of respiratory activity (after 3 days of imbibition) was almost completely, suppressed in the presence of higher concentrations (1 mM) of the metal. The observed impact of cadmium on starch mobilization and on respiratory activity are discussed in relation to its adverse effects on seed germination.  相似文献   

9.
A novel method of preconcentration of trace arsenite and arsenate by using titanium dioxide nanoparticles as adsorbent was described. The concentrations of preconcentrated arsenite and arsenate were determined by a silver diethyldithiocarbamate spectrophotometric method without desorption. Batch adsorption experiments were carried out as a function of the pH, contact time, amount of titanium dioxide nanoparticles, and solution volume. In the pH range 5 to 6, adsorption rates of arsenite and arsenate were higher than 98%. The calibration coefficient was 0.9991, and the linear range was 0 to 100 microg/L. The developed method was precise, with the relative standard deviation <5% at concentration level of 10 microg/L, with a detection limit (3sigma, n=6) of 0.44 microg/L. The accuracy of the method for total arsenic was validated by standard reference materials (SRM 3103a) (National Institute of Standards and Technology, Gaithersburg, Maryland). The method was also applied to the analysis of arsenite and arsenate in natural water samples to verify the accuracy. The recovery values remained in a narrow range, from 95 to 103%.  相似文献   

10.
Zhang FS  Itoh H 《Chemosphere》2006,65(1):125-131
Photocatalytic oxidation of arsenite and simultaneous removal of the generated arsenate from aqueous solution were investigated. The whole process was performed using an adsorbent developed by loading iron oxide and TiO2 on municipal solid waste melted slag. The loading was carried out through chemical reactions and high-temperature process. In the removal process, arsenite was first oxidized to arsenate, and then was removed by adsorption. The oxidation of arsenite was rapid, but the adsorption of the generated arsenate was slow. A concentration of 100 mg l(-1) arsenite could be entirely oxidized to arsenate within 3 h in the presence of the adsorbent and under UV-light irradiation, but the equilibrium adsorption of the generated arsenate needed 10 h. Arsenite could also be oxidized to arsenate only by UV-light, but the reaction rate was approximately 1/3 of that of the photocatalyzed reaction. Both acidic and alkaline conditions were favorable for the oxidation reaction, and the optimum pH value for the oxidation and adsorption was proposed to be around 3. To oxidize and remove original 20 mg l(-1) or 50 mg l(-1) arsenite from aqueous solution, the necessary adsorbent amount was 2 g l(-1) or 5 g l(-1), respectively. Furthermore, the surface properties of the adsorbent were examined and the oxidation mechanism of arsenite was discussed. It is believed that the adsorbent developed in this study is efficient, cost-effective and environment-friendly for application in arsenic-contaminated wastewater treatment.  相似文献   

11.
Chronic exposure to arsenic (As) in rice has raised many health and environmental problems. As reported, great variation exists among different rice genotypes in As uptake, translocation, and accumulation. Under hydroponic culture, we find that the Chinese wild rice (Oryza rufipogon; acc. 104624) takes up the most arsenic among tested genotypes. Of the cultivated rice, the indica cv. 93-11 has the lowest arsenic translocation factor value but accumulates the maximum concentration of arsenic followed by Nipponbare, Minghui 86, and Zhonghua 11. Higher level of arsenite concentration (50 μM) can induce extensive photosynthesis and root growth inhibition, and cause severe oxidative stress. Interestingly, external silicate (Si) supplementation has significantly increased the net photosynthetic rate, and promoted root elongation, as well as strongly ameliorated the oxidative stress by increasing the activities of antioxidant enzymes superoxide dismutase, ascorbate peroxidase, and peroxidase in roots and/or leaves of 93-11 seedlings. Notably, 1.873 mM concentration of Si considerably decreases the total As uptake and As content in roots, but significantly increases the As translocation from roots to shoots. In contrast, Si supplementation with 1.0 mM concentration significantly increases the total As uptake and As concentrations in roots and shoots of 93-11 seedlings after 50 μM arsenite treatment for 6 days.  相似文献   

12.
Accumulation, transformation and toxicity of arsenic compounds to Japanese Medaka, Oryzias latipes were investigated. For sodium arsenite [As(II)] and disodium arsenate [As(V)], the mean value for 7-day lethal concentration LC50 for O. latipes were 14.6 and 30.3 mg As/l, respectively. Direct accumulation of arsenic in O. latipes increased as a function of As(III) concentration in water. A small proportion of accumulated arsenic was transformed to methylated arsenic. As much as 70% of the total arsenic accumulated in tissue was depurated. Accumulation and transformation of As(III) by O. latipes in a simple freshwater food chain were also investigated. The transformation of As(III) to As(V) by organisms was more prevalent than biomethylation of accumulated arsenic in organisms of the three steps of the food chain.  相似文献   

13.
Toxicity threshold of arsenite on intact rice seedlings was determined and arsenite uptake characteristics were investigated using non-toxic concentrations of arsenite.The arsenite toxicity threshold was 2.4 μM arsenite which reduced growth by 10% (EC10). The two highest arsenite levels induced wilting of seedlings and reduced both, transpiration rate and net photosynthetic rate. Arsenic content in plant tissue increased up to 10.7 μM arsenite and then declined with increasing arsenite concentration in the treatment solution. The contents of Si, P, K, and of micronutrients Cu, Fe, Mn and Zn in shoot d.m. were reduced by arsenite levels ≥ 5.3 μM. In the non-toxic range, arsenite uptake rate was linearly related to arsenite concentration.High arsenite levels reduced growth without being taken up which might be due to increasing binding of arsenite to proteins at the outer side of the plasmalemma.  相似文献   

14.
The uptake and metabolism of arsenate, As(V), as a function of time and concentration were examined in the lichen Hypogymnia physodes (L.) Nyl. Lichen thalli were exposed to As(V) in the form of a solution. Exponential uptake of As(V) from 4 microg mL(-1) As(V) solution was accompanied by constant arsenite, As(III), excretion back into the solution. Arsenate taken up into the lichens from 0, 0.1, 1, 10 microg mL(-1) As(V) solutions was partially transformed into As(III), dimethylarsinic acid (DMA) and (mono)methylarsonic acid (MA). 48 h after exposure, the main arsenic compound in the lichens was DMA in 0.1, As(III) in 1 and As(V) in 10 microg mL(-1) treatment. The proportion of methylated arsenic compounds decreased with increasing arsenate concentration in the exposure solution. These results suggest that at least two types of As(V) detoxification exist in lichens; arsenite excretion and methylation.  相似文献   

15.
Arsenic (As) as a major hazardous metalloid was affected by phytoplankton in many aquatic environments. The toxic dominant algae Microcystis aeruginosa was exposed to different concentrations of inorganic arsenic (arsenate or arsenite) for 15 days in BG11 culture media. Arsenic accumulation, toxicity, and speciation in M. aeruginos as well as the changes of As species in media were examined. M. aeruginosa has a general well tolerance to arsenate and a definite sensitivity to arsenite. Additionally, arsenate actively elevated As methylation by the algae but arsenite definitely inhibited it. Interestingly, the uptake of arsenite was more pronounced than that of arsenate, and it was correlated to the toxicity. Arsenate was the predominant species in both cells and their growth media after 15 days of exposure to arsenate or arsenite. However, the amount of the methylated As species in cells was limited and insignificantly affected by the external As concentrations. Upon uptake of the inorganic arsenic, significant quantities of arsenate as well as small amounts of arsenite, DMA, and MMA were produced by the algae and, in turn, released back into the growth media. Bio-oxidation was the first and primary process and methylation was the minor process for arsenite exposures, while bioreduction and the subsequent methylation were the primary metabolisms for arsenate exposures. Arsenic bioaccumulation and transformation by M. aeruginosa in aquatic environment should be paid more attention during a period of eutrophication.  相似文献   

16.
This study examined the roles of arsenic translocation and reduction, and P distribution in arsenic detoxification of Pteris vittata L. (Chinese Brake fern), an arsenic hyperaccumulator and Pteris ensiformis L. (Slender Brake fern), a non-arsenic hyperaccumulator. After growing in 20% Hoagland solution containing 0, 133 or 267 microM of sodium arsenate for 1, 5 or 10 d, the plants were separated into fronds, rhizomes, and roots. They were analyzed for biomass, and concentrations of arsenate (AsV), arsenite (AsIII) and phosphorus. Arsenic in the fronds of P. vittata was up to 20 times greater than that of P. ensiformis, yet showing no toxicity symptoms as did in P. ensiformis. While arsenic was concentrated primarily in the fronds of P. vittata as arsenite it was mainly concentrated in the roots of P. ensiformis as arsenate. Arsenic reduction in the plants took longer than 1-d. P. vittata maintained greater P in the roots while P. ensiformis in the fronds. The high arsenic tolerance of the hyperaccumulator P. vittata may be attributed to its ability to effectively reduce arsenate to arsenite in the fronds, translocate arsenic from the roots to fronds, and maintain a greater ratio of P/As in the roots.  相似文献   

17.

Introduction

The changes in photosynthetic pigments, chlorophyll fluorescence, protein content, and antioxidant enzymes were investigated in a foliose lichen Pyxine cocoes, which was subjected to increasing concentrations of arsenate.

Methods

The arsenate concentrations of 10, 25, 50, 75, 100, and 200???M were sprayed every alternate day on the lichen thallus. The thalli were then harvested on 10, 20, 30, and 45?days.

Results

The quantity of photosynthetic pigments exhibited a decreasing trend till 20?days but increased from 30?days onwards. Concomitantly, chlorophyll fluorescence also showed a decreasing trend with increasing arsenic treatment duration as well as concentration. The higher concentration of arsenate was found to be deleterious to the photosynthesis of lichen as the chlorophyll fluorescence and the amount of pigments decreased significantly. The protein content of lichen increased uninterruptedly as the concentration of arsenate as well as duration of treatment increased. The activities of superoxide dismutase and ascorbate peroxide increased initially at lower concentration of arsenate but declined at higher concentrations and longer duration of treatment.

Conclusions

The catalase activity was found to be most susceptible to arsenate stress as its activity started declining from very beginning of the experiment. P. cocoes also proved to be an excellent accumulator of arsenate whose concentration increased in the thallus corresponding to its increase in the treatment and duration. Thus, it can be utilized for active biomonitoring of arsenic pollution.  相似文献   

18.
Bagasse fly ash (BFA, a sugar industrial waste) was used as low-cost adsorbent for the uptake of arsenate and arsenite species from water. The optimum conditions for the removal of both species of arsenic were as follows: pH 7.0, concentration 50.0 μg/L, contact time 50.0 min, adsorbent dose 3.0 g/L, and temperature 20.0 °C, with 95.0 and 89.5 % removal of arsenate and arsenite, respectively. The Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich adsorption isotherms were used to analyze the results. The results of these models indicated single-layer uniform adsorption on heterogeneous surface. Thermodynamic parameters, i.e., ΔG°, ΔH°, and ΔS°, were also calculated. At 20.0 to 30.0 °C, the values of ΔG° lie in the range of ?4,722.75 to ?4,878.82 and ?4,308.80 to ?4,451.73 while the values of ΔH° and ΔS° were ?149.90 and ?121.07, and 15.61 and 14.29 for arsenate and arsenite, respectively, indicating that adsorption is spontaneous and exothermic. Pseudo-first-order kinetics was followed. In column experiments, the adsorption decreased as the flow rate increased with the maximum removal of 98.9 and 95.6 % for arsenate and arsenite, respectively. The bed depth service time and Yoon and Nelson models were used to analyze the experimental data. The adsorption capacity (N o) of BFA on column was 3.65 and 2.98 mg/cm3 for arsenate and arsenite, respectively. The developed system for the removal of arsenate and arsenite species is economic, rapid, and capable of working under natural conditions. It may be used for the removal of arsenic species from any contaminated water resources.  相似文献   

19.
Cadmium is largely documented on freshwater organisms while arsenic, especially arsenate, is rarely studied. The kinetic of the LC50s values for both metals was realized on Gammarus pulex. Physiological [i.e. metal concentration in body tissues, bioconcentration factor (BCF)] effects and behavioural responses (via pleopods beats) were investigated after 240-h exposure. Arsenate LC50 value was 100 fold higher than Cd-LC50 value after 240-h exposure, while concentrations in gammarids were similar for both metals at their respective LC50s. BCF decreased with increasing cadmium concentration while BCF remained stable with increasing arsenate concentration. Moreover, BCF was between 148 and 344 times lower for arsenate than cadmium. A significant hypoventilation was observed for cadmium concentrations exceeding or close to the 240h-LC50(Cd), while gammarids hyperventilated for the lowest arsenate concentrations and hypoventilated for the highest arsenate concentrations. We discussed the relationships between potential action mechanisms of these two metals and observed results.  相似文献   

20.
Norway spruce seedlings were grown under greenhouse conditions in Rootrainers with a vermiculite-peat moss mixture under various N-regimes for 6 months. Either ammonium or nitrate was applied in loads of 100 or 800 kg N ha(-1) year(-1) to seedlings which were either non-mycorrhizal or inoculated with the mycorrhizal fungi Hebeloma crustuliniforme or Laccaria bicolor. The use of increasing N loads enhanced shoot and total biomass, whereas root/shoot ratio, number of short roots and mycorrhization decreased. A significant enhancement of the concentration and content was obvious for the element N, whereas a significant decrease was obvious for P and Zn concentrations. The use of ammonium, as opposed to nitrate, significantly enhanced the biomass and the numbers of short roots, and reduced the root/shoot ratios, but did not influence the mycorrhization. It further significantly enhanced the N concentrations in roots and shoots. Fungal inoculation with H. crustuliniforme or L. bicolor compared to non-inoculated controls significantly enhanced shoot and total biomass, but reduced root/shoot ratios. The mycorrhization further significantly enhanced N and P concentrations and contents, but reduced Mn. Overall, the mycorrhization improved the P nutrition of the seedlings independently on the applied N loads or N sources. Dose response curves using ammonium nitrate as N source with a maximum load of 1600 kg N ha(-1) year(-1) applied on seedlings associated with H. crustuliniforme revealed that the maximum growth was reached at a load of 800 kg N ha(-1) year(-1) with a simultaneous decrease of the mycorrhization. In both shoots and roots, N concentrations increased constantly with increasing N loads, while P, Ca, and Zn concentrations decreased constantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号