首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chromium has become an important soil contaminant at many sites, and facilitating in situ reduction of toxic Cr(VI) to nontoxic Cr(III) is becoming an attractive remediation strategy. Acceleration of Cr(VI) reduction in soils by addition of organic carbon was tested in columns pretreated with solutions containing 1000 and 10 000 mg L(-1) Cr(VI) to evaluate potential in situ remediation of highly contaminated soils. Solutions containing 0,800, or 4000 mg L(-1) organic carbon in the form of tryptic soy broth or lactate were diffused into the Cr(VI)-contaminated soils. Changes in Cr oxidation state were monitored through periodic micro-XANES analyses of soil columns. Effective first-order reduction rate constants ranged from 1.4 x 10(-8) to 1.5 x 10(-7) s(-1), with higher values obtained for lower levels of initial Cr(VI) and higher levels of organic carbon. Comparisons with sterile soils showed that microbially dependent processes were largely responsible for Cr(VI) reduction, except in the soils initially exposed to 10 000 mg L(-1) Cr(VI) solutions that receive little (800 mg L(-1)) or no organic carbon. However, the microbial populations (< or = 2.1 x 10(5) g(-1)) in the viable soils are probably too low for direct enzymatic Cr(VI) reduction to be important. Thus, synergistic effects sustained in whole soil systems may have accounted for most of the observed reduction. These results show that acceleration of in situ Cr(VI) reduction with addition of organic carbon is possible in even heavily contaminated soils and suggest that microbially dependent reduction pathways can be dominant.  相似文献   

2.
The widespread use of chromium (Cr) has a deleterious impact on the environment. A number of pathways, both biotic and abiotic in character, determine the fate and speciation of Cr in soils. Chromium exists in two predominant species in the environment: trivalent [(Cr(III)] and hexavalent [Cr(VI)]. Of these two forms, Cr(III) is nontoxic and is strongly bound to soil particles, whereas Cr(VI) is more toxic and soluble and readily leaches into groundwater. The toxicity of Cr(VI) can be mitigated by reducing it to Cr(III) species. The objective of this study was to examine the effect of organic carbon sources on the reduction, microbial respiration, and phytoavailability of Cr(VI) in soils. Organic carbon sources, such as black carbon (BC) and biochar, were tested for their potential in reducing Cr(VI) in acidic and alkaline contaminated soils. An alkaline soil was selected to monitor the phytotoxicity of Cr(VI) in sunflower plant. Our results showed that using BC resulted in greater reduction of Cr(VI) in soils compared with biochar. This is attributed to the differences in dissolved organic carbon and functional groups that provide electrons for the reduction of Cr(VI). When increasing levels of Cr were added to soils, both microbial respiration and plant growth decreased. The application of BC was more effective than biochar in increasing the microbial population and in mitigating the phytotoxicity of Cr(VI). The net benefit of BC emerged as an increase in plant biomass and a decrease in Cr concentration in plant tissue. Consequently, it was concluded that BC is a potential reducing amendment in mitigating Cr(VI) toxicity in soil and plants.  相似文献   

3.
Effective and low-cost strategies for remediating chromium (Cr)-contaminated soil are needed. Chromium(VI) leaching from contaminated soil into ground water and surface water threatens water supplies and the environment. This study tested indigenous Cr(VI) microbial transformation in batch systems at 10 degrees C in the presence of various electron acceptors. The effects of carbon addition, spiked Cr(VI), and mixing highly contaminated soil with less contaminated soil were investigated. The results indicated that Cr(VI) can be biotransformed in the presence of different electron acceptors including oxygen, nitrate, sulfate, and iron. Sugar addition had the greatest effect on enhancing Cr(VI) removal. Less dissolved organic carbon (DOC) was consumed per amount of Cr(VI) transformed under anaerobic conditions [0.8-93 mg DOC/mg Cr(VI)] compared with aerobic conditions [1.4-265 mg DOC/mg Cr(VI)]. Toxicity of high concentrations (< 160 mg/L) of spiked Cr(VI) were not evident. At Cr(VI) concentrations > 40 mg/L, aerobic conditions promoted faster Cr(VI) reduction than anaerobic conditions with nitrate or sulfate present. Biotransformation of Cr(VI) in highly contaminated soil (22,000 mg Cr/kg) was facilitated by mixing with less-contaminated soil. The study results provide a framework for evaluating indigenous Cr(VI) microbial transformation and enhance the ability to develop strategies for soil treatment.  相似文献   

4.
Detoxification of Cr(VI) through reduction has been considered an effective method for reclaiming Cr-contaminated soil, sediment, and waste water. Organic matter is widely distributed in soil and aquatic systems; however, low Cr(VI) reduction rates inhibit the adoption of Cr reduction technologies by industry. Scientists have been aware of Cr(VI) reduction catalyzed by soil minerals; however, most of the studies focused on using semiconductors as catalysts with UV irradiation to accelerate the redox reactions. The objective of this study was to evaluate the rates of Cr(VI) reduction by fluorescence light in the presence of organic materials with or without specific soil minerals. Experimental results showed that dissolved organic compounds reduced Cr(VI) slowly under laboratory light; however, Cr(VI) reduction was greatly enhanced when growth chamber light was applied. Low photon flux (i.e., laboratory light) only enhanced Cr(VI) reduction by organics when Fe(III) was also present, because the Fe(II)-Fe(III) redox couple accelerated electron transfer and decreased electrostatic repulsion between reactants. Laboratory light was required to initiate Cr(VI) reduction catalyzed by TiO2; nonetheless, light-catalyzed Cr(VI) reduction by smectite and ferrihydrite could occur only when greater light energy was provided with a growth chamber light. Our results suggest a potential pathway for Cr(VI) reduction using naturally occurring organic compounds and colloids in acidic water systems or in surface soils when light is available.  相似文献   

5.
In this study, seven organic amendments (biosolid compost, farm yard manure, fish manure, horse manure, spent mushroom, pig manure, and poultry manure) were investigated for their effects on the reduction of hexavalent chromium [chromate, Cr(VI)] in a mineral soil (Manawatu sandy soil) low in organic matter content. Addition of organic amendments enhanced the rate of reduction of Cr(VI) to Cr(III) in the soil. At the same level of total organic carbon addition, there was a significant difference in the extent of Cr(VI) reduction among the soils treated with organic amendments. There was, however, a significant positive linear relationship between the extent of Cr(VI) reduction and the amount of dissolved organic carbon in the soil. The effect of biosolid compost on the uptake of Cr(VI) from the soil, treated with various levels of Cr(VI) (0-1200 mg Cr kg(-1) soil), was examined with mustard (Brassica juncea L.) plants. Increasing addition of Cr(VI) increased Cr concentration in plants, resulting in decreased plant growth (i.e., phytotoxicity). Addition of the biosolid compost was effective in reducing the phytotoxicity of Cr(VI). The redistribution of Cr(VI) in various soil components was evaluated by a sequential fractionation scheme. In the unamended soil, the concentration of Cr was higher in the organic-bound, oxide-bound, and residual fractions than in the soluble and exchangeable fractions. Addition of organic amendments also decreased the concentration of the soluble and exchangeable fractions but especially increased the organic-bound fraction in soil.  相似文献   

6.
Theories suggest that rapid microbial growth rates lead to quicker development of metal resistance. We tested these theories by adding hexavalent chromium [Cr(VI)] to soil, sowing Indian mustard (Brassica juncea), and comparing rhizosphere and bulk soil microbial community responses. Four weeks after the initial Cr(VI) application we measured Cr concentration, microbial biomass by fumigation extraction and soil extract ATP, tolerance to Cr and growth rates with tritiated thymidine incorporation, and performed community substrate use analysis with BIOLOG GN plates. Exchangeable Cr(VI) levels were very low, and therefore we assumed the Cr(VI) impact was transient. Microbial biomass was reduced by Cr(VI) addition. Microbial tolerance to Cr(VI) tended to be higher in the Cr-treated rhizosphere soil relative to the non-treated systems, while microorganisms in the Cr-treated bulk soil were less sensitive to Cr(VI) than microorganisms in the non-treated bulk soil. Microbial diversity as measured by population evenness increased with Cr(VI) addition based on a Gini coefficient derived from BIOLOG substrate use patterns. Principal component analysis revealed separation between Cr(VI) treatments, and between rhizosphere and bulk soil treatments. We hypothesize that because of Cr(VI) addition there was indirect selection for fast-growing organisms, alleviation of competition among microbial communities, and increase in Cr tolerance in the rhizosphere due to the faster turnover rates in that environment.  相似文献   

7.
Extensive use of hexavalent chromium [Cr(VI)] in various industrial applications has caused substantial environmental contamination. Chromium-resistant bacteria isolated from soils can be used to remove toxic Cr(VI) from contaminated environments. This study was conducted to isolate chromium-resistant bacteria from soils contaminated with dichromate and describes the effects of some environmental factors such as pH, temperature, and time on Cr(VI) reduction and resistance. We found that chromium-resistant bacteria can tolerate 2500 mg L(-1) Cr(VI), but most of the isolates tolerated and reduced Cr(VI) at concentrations lower than 1500 mg L(-1). Chromate reduction activity of whole cells was detected in five isolates. Most of these isolates belong to the genus Bacillus as identified by the 16S rRNA gene sequencing. Maximal Cr(VI) reduction was observed at the optimum pH (7.0-9.0) and temperature (30 degrees C) of growth. One bacterial isolate (Bacillus sp. ES 29) was able to aerobically reduce 90% of Cr(VI) in six hours. The Cr(VI) reduction activity of the whole cells of five isolates had a K(M) of 0.271 (2.61 mM) to 1.51 mg L(-1) (14.50 mM) and a V(max) of 88.4 (14.17 nmol min(-1)) to 489 mg L9-1) h(-1) (78.36 nmol min(-1)). Our consortia and monocultures of these isolates can be useful for Cr(VI) detoxification at low and high concentrations in Cr(VI)-contaminated environments and under a wide range of environmental conditions.  相似文献   

8.
Hexavalent chromium [Cr(VI)] is a common contaminant associated with nuclear reactors and fuel processing. Improper disposal at facilities in and and semiarid regions has contaminated underlying vadose zones and aquifers. The objectives of this study were to assess the potential for immobilizing Cr(VI) using a native microbial community to reduce soluble Cr(VI) to insoluble Cr(III) under conditions similar to those in the vadose zone, and to evaluate the potential for enhancing biological Cr(VI) reduction through nutrient addition. Batch microcosm and unsaturated flow column experiments were performed. Native microbial communities in subsurface sediments with no prior Cr(VI) exposure were shown to be capable of Cr(VI) reduction. In both the batch and column experiments, Cr(VI) reduction and loss from the aqueous phase were enhanced by adding high levels of both nitrate (NO3-) and organic C (molasses). Nutrient amendments resulted in up to 87% reduction of the initial 67 mg L(-1) Cr(VI) in an unsaturated batch experiment. Molasses and nitrate additions to 15 cm long unsaturated flow columns receiving 65 mg L(-1) Cr(VI) resulted in microbially mediated reduction and immobilization of 10% of the Cr during a 45-d experiment. All of the immobilized Cr was in the form of Cr(III), as shown by XANES analysis. This suggests that biostimulation of microbial Cr(VI) reduction in vadose zones by nutrient amendment is a promising strategy, and that immobilization of close to 100% of Cr contamination could be achieved in a thick vadose zone with longer flow paths and longer contact times than in this experiment.  相似文献   

9.
Transformation of diphenylarsinic acid in agricultural soils   总被引:1,自引:0,他引:1  
We investigated the transformation and fate of diphenylarsinic acid (DPAA) during incubation in two types of soils (Entisol and Andisol) under aerobic and anaerobic conditions. Under anaerobic conditions only, DPAA was transformed into methyldiphenylarsine oxide by methylation. Under both aerobic and anaerobic conditions, DPAA was degraded to phenylarsonic acid by dephenylation, and phenylarsonic acid was subsequently methylated to form methylphenylarsinic acid and dimethylphenylarsine oxide. The degradation of DPAA in the Andisol was less extensive than in the Entisol. In autoclaved soil under anaerobic conditions, DPAA underwent little degradation during the 24-wk incubation. In unautoclaved soils, the concentration of DPAA in soil clearly decreased after 24 wk of incubation, indicating that DPAA degradation was driven by microbial activity.  相似文献   

10.
含Cr(Ⅵ)废水生物处理技术及其影响因素   总被引:4,自引:0,他引:4  
本文综述了微生物还原处理含价铬的废水的研究进展。讨论了影响微生物还原Cr(Ⅵ)因素包括生物体密度、初始Cr(Ⅵ)的浓度、碳源、pH、温度、溶解氧、氧化还原电位、含氧阴离子和金属离子。微生物还原Cr(Ⅵ)技术作为一种富有创新的研究应用于Cr(Ⅵ)污染的环境恢复。  相似文献   

11.
Electric arc furnace (EAF) steel slag can be used as an alternative high-quality material in road construction. Although asphalts with slag aggregates have been recognized as environmentally acceptable, there is a lack of data concerning the potential leaching of toxic Cr(VI) due to the highly alkaline media of EAF slag. Leaching of selected water extractable metals from slag indicated elevated concentrations of total chromium and Cr(VI). To estimate the environmental impacts of asphalt mixes with slag, leachability tests based on diffusion were performed using pure water and salt water as leaching agents. Compact and ground asphalt composites with natural aggregates, and asphalt composites in which the natural aggregates were completely replaced by slag were prepared. The concentrations of total chromium and Cr(VI) were determined in leachates over a time period of 6 mo. After 1 and 6 mo, the concentrations of some other metals were also determined in the leachates. The results indicated that chromium in leachates from asphalt composites with the addition of slag was present almost solely in its hexavalent form. However, the concentrations were very low (below 25 μg L) and did not represent an environmental burden. The leaching of other metals from asphalt composites with the addition of slag was negligible. Therefore, the investigated EAF slag can be considered as environmentally safe substitute for natural aggregates in asphalt mixes.  相似文献   

12.
Uranium is a redox active contaminant of concern to both human health and ecological preservation. In anaerobic soils and sediments, the more mobile, oxidized form of uranium (UO(2)(2+) and associated species) may be reduced by dissimilatory metal-reducing bacteria. Despite rapid reduction in controlled, experimental systems, various factors within soils or sediments may limit biological reduction of U(VI), inclusive of competing electron acceptors and alterations in uranyl speciation. Here we elucidate the impact of U(VI) speciation on the extent and rate of reduction, and we examine the impact of Fe(III) (hydr)oxides (ferrihydrite, goethite, and hematite) varying in free energies of formation. Observed pseudo first-order rate coefficients for U(VI) reduction vary from 12 +/- 0.60 x 10(-3) h(-1) (0 mM Ca in the presence of goethite) to 2.0 +/- 0.10 x 10(-3) h(-1) (0.8 mM Ca in the presence of hematite). Nevertheless, dissolved Ca (at concentrations from 0.2 to 0.8 mM) decreases the extent of U(VI) reduction by approximately 25% after 528 h relative to rates without Ca present. Imparting an important criterion on uranium reduction, goethite and hematite decrease the dissolved concentration of calcium through adsorption and thus tend to diminish the effect of calcium on uranium reduction. Ferrihydrite, in contrast, acts as a competitive electron acceptor and thus, like Ca, decreases uranium reduction. However, while ferrihydrite decreases U(VI) in solutions without Ca, with increasing Ca concentrations U(VI) reduction is enhanced in the presence of ferrihydrite (relative to its absence)-U(VI) reduction, in fact, becomes almost independent of Ca concentration. The quantitative framework described herein helps to predict the fate and transport of uranium within anaerobic environments.  相似文献   

13.
Little information is available on the effect of phosphorus (P) enrichment on nitrogen (N) biogeochemical cycling in wetland soil. Of particular importance are the coupled nitrification-denitrification reactions that regulate the microbially mediated loss of N from wetland systems. Soils from the northern Florida Everglades have been affected by P loading from surface waters over the past 40 years. Elevated P levels have been show to have an effect on the size and activity of the microbial pool and a decrease in the N to P ratio of the microbial biomass. The objective of the study was to determine if P enrichment in soils affected microbial activities related to nitrification and denitrification in these flooded, peat soils. Potential nitrification rates of soil and detritus were determined using constantly stirred reactors under aerobic conditions while denitrification rates were determined from anaerobic incubations of slurry. Nitrification rates showed two distinct linear phases, a slower initial rate, signifying activity of nitrifiers present, followed by a sharp increase in the NH4+ conversion rate indicative of maximum potential rates. Initial rates of nitrification were highest in the surficial detrital layer decreasing with soil depth and did not correlate to soil total P. The potential rates of nitrification were 13 times greater than the initial rates. Potential denitrification rates were highest in the detritus and 0- to 10-cm soil interval with significantly lower values in the 10- to 30-cm soil interval, significantly correlated to total P of the soil. A significant (P < 0.01) relationship was seen between potential denitrification rates and soil total P suggesting an increased rate of N removal from P-enriched regions of the northern Everglades.  相似文献   

14.
Pentachlorophenol (PCP) is a persistent organic pollutant (POP) previously used as a timber treatment chemical to prevent sap stain and wood rot. Commonly used in wood treatment industries for the last 50 years, there are now many sites worldwide that are contaminated with PCP. Although persistent, PCP is a mobile contaminant and therefore has a propensity to leach and contaminate surrounding environments. Both willow (Salix sp., 'Tangoio') and poplar (Populus sp. 'Kawa') growing in an open-ended plastic greenhouse were found to tolerate soil PCP concentrations of 250 mg kg(-1) or less and both species stimulated a significant increase in soil microbial activity when compared to unplanted controls. Both poplar and willow could not survive PCP concentrations above 250 mg kg(-1) in soil. Pentachlorophenol degradation occurred in both planted and unplanted pots, but a higher rate of degradation was observed in the planted pots. Soil contaminated by wood-treatment activities often contains co-contaminants such as B, Cr, Cu and As, that are also used as timber preservatives. An additional column leaching experiment, done along side the potted trial, found that PCP, B, Cr, Cu and As were all present in the column leachate. This indicates that although Cu, Cr and As are generally considered immobile in the soil, they were mobilised under our column conditions. If a contaminated site were to be hydraulically 'sealed' using plants, a reticulation irrigation system should be installed to capture any contaminant leachate resulting from heavy rains. This captured leachate can either be independently treated, or reapplied to the site. Our data demonstrate a reduction in soil hydraulic conductivity with repeated application of leachate containing PCP and metal compounds but the soil did not become anaerobic. This would need to be considered in site remediation design.  相似文献   

15.
The chrome (Cr) is a metal utilized in various industrial sectors and its investigation in the environment is necessary, for the Cr (III) contain aessential micronutrients in the human nourishment and the Cr (VI), on the other hand, is toxic. In the present work soil contamination with Cr was realized in drainagelysimetersset in concentrations of 0, 200, 400, 600, 800 and 1000 mg kg−1 of total Cr, with the intuition to determine the total Cr and Cr (VI) flux in leached water, in soil and in plants of lettuce (Lactuca sativa L.). In the lysimeters were cultivated four plants, in three cultivation circles. In the end of the cultivations was observed, that the total applied Cr leached in the soil, evidencing the Cr mobility in latossoil with simulant characteristics to the ones utilized in this paper. The Cr (VI) concentrations in the soil increased soon after the treatment applications, but tend to decrees in the time elapse, the same tendences were observed for the total Cr concentrations in the leached water. The Cr absorption by plants was related to the Cr disponibility in the soil, for the soil concentration and the plants decreased with time passing. The Cr mobility in the soil possibilitated the groundwater contamination presenting risks to the water quality and, consequently to public health.  相似文献   

16.
Uranium is a pollutant of concern to both human and ecosystem health. Uranium's redox state often dictates whether it will reside in the aqueous or solid phase and thus plays an integral role in the mobility of uranium within the environment. In anaerobic environments, the more oxidized and mobile form of uranium (UO2(2+) and associated species) may be reduced, directly or indirectly, by microorganisms to U(IV) with subsequent precipitation of UO. However, various factors within soils and sediments, such as U(VI) speciation and the presence of competitive electron acceptors, may limit biological reduction of U(VI). Here we examine simultaneous dissimilatory reduction of Fe(III) and U(VI) in batch systems containing dissolved uranyl acetate and ferrihydrite-coated sand. Varying amounts of calcium were added to induce changes in aqueous U(VI) speciation. The amount of uranium removed from solution during 100 h of incubation with S. putrefaciens was 77% in absence of Ca or ferrihydrite, but only 24% (with ferrihydrite) and 14% (without ferrihydrite) were removed for systems with 0.8 mM Ca. Dissimilatory reduction of Fe(III) and U(VI) proceed through different enzyme pathways within one type of organism. We quantified the rate coefficients for simultaneous dissimilatory reduction of Fe(III) and U(VI) in systems varying in Ca concecentration (0-0.8 mM). The mathematical construct, implemented with the reactive transport code MIN3P, reveals predominant factors controlling rates and extent of uranium reduction in complex geochemical systems.  相似文献   

17.
There are numerous Cr(III)-contaminated sites on Department of Defense (DoD) and Department of Energy (DOE) lands that are awaiting possible clean up and closure. Ingestion of contaminated soil by children is the risk driver that generally motivates the likelihood of site remediation. The purpose of this study was to develop a simple statistical model based on common soil properties to estimate the hioaccessibility of Cr(III)-contaminated soil upon ingestion. Thirty-five uncontaminated soils from seven major soil orders, whose properties were similar to numerous U.S. DoD contaminated sites, were treated with Cr(III) and aged. Statistical analysis revealed that Cr(III) sorption (e.g., adsorption and surface precipitation) by the soils was strongly correlated with the clay content, total inorganic C, pH, and the cation exchange capacity of the soils. Soils with higher quantities of clay, inorganic C (i.e., carbonates), higher pH, and higher cation exchange capacity generally sequestered more Cr(III). The amount of Cr(III) bioaccessible from the treated soils was determined with a physiologically based extraction test (PBET) that was designed to simulate the digestive process of the stomach. The bioaccessibility of Cr(III) varied widely as a function of soil type with most soils limiting bioaccessibility to <45 and <30% after I and 100 d soil-Cr aging, respectively. Statistical analysis showed the bioaccessibility of Cr(III) on soil was again related to the clay and total inorganic carbon (TIC) content of the soil. Bioaccessibility decreased as the soil TIC content increased and as the clay content decreased. The model yielded an equation based on common soil properties that could be used to predict the Cr(III) bioaccessibility in soils with a reasonable level of confidence.  相似文献   

18.
Perchlorate (ClO4-) contamination of ground water and surface water is a widespread problem, particularly in the western United States. This study examined the effect of biodegradation on perchlorate fate and transport in soils. Solute transport experiments were conducted on two surface soils. Pulses of solution containing perchlorate and Br- were applied to saturated soil columns at steady state water flow. Perchlorate behaved like a nonreactive tracer in Columbia loam (coarse-loamy, mixed, superactive, nonacid, thermic Oxyaquic Xerofluvent) but was degraded in Yolo loam (fine-silty, mixed, superactive, nonacid, thermic Mollic Xerofluvent). Batch experiments demonstrated that perchlorate removal from solution in Yolo loam was caused by biodegradation. Other batch experiments with Yolo loam surface and subsurface soils, Columbia loam surface soil, and dredge tailings demonstrated that perchlorate biodegradation required anaerobic conditions, an adequate carbon source, and an active perchlorate-degrading microbial population. The sequential reduction of perchlorate and NO3- by an indigenous soil microbial community in Yolo loam batch systems was also studied. Nitrate reduction occurred much sooner than perchlorate reduction in soils that had not been previously exposed to perchlorate, but NO3- and perchlorate were simultaneously reduced in soils previously exposed to perchlorate. The results of this study have implications for in situ remediation schemes and for agricultural soils that have been contaminated by perchlorate-tainted irrigation water.  相似文献   

19.
To thoroughly investigate the metal contamination around chromated copper arsenate (CCA)/polyethylene glycol (PEG)-treated utility poles, a total of 189 soil samples obtained from different depths and distances near six treated poles in the Montreal area (Canada) were analyzed for Cu, Cr, and As content. Various soil physicochemical properties were also determined. Ground water samples collected below the poles were analyzed for metals and bioassays with Daphnia magna were conducted. Generally, sandy soils had lower contaminant levels than clayey and organic soils. Copper concentrations in soil were highest followed by As and Cr. The highest Cu (1460 +/- 677 mg kg(-1)), As (410 +/- 150 mg kg(-1)), and Cr (287 +/- 32 mg kg(-1)) concentrations were found at the ground line and immediately adjacent to the pole. Contaminant levels then decreased with distance, approaching background levels within 0.1 m from the pole for Cr and 0.5 m for Cu and As. Chromium and Cu levels generally approached background levels at a depth of 0.5 m. Average As content near the pole on all study sites was three to eight times higher than Quebec's Level C criterion (50 mg kg(-1)), although it dropped to 31 mg kg(-1) at 0.1 m. Results also showed that As persisted up to 1 m in soil depth (17-54 mg kg(-1)). Copper and Cr concentrations in ground water samples were always <1.000 mg L(-1) and <0.05 mg L(-1), respectively and Cr(VI) was <0.02 mg L(-1). One sample contained an As concentration >0.025 mg L(-1) but bioassays showed that, overall, ground water had a low ecotoxic potential.  相似文献   

20.
Pesticides applied to agricultural soils are subject to environmental concerns because leaching to groundwater reservoirs and aquatic habitats may occur. Knowledge of field variation of pesticide-related parameters is required to evaluate the vulnerability of pesticide leaching. The mineralization and sorption of the pesticides glyphosate and metribuzin and the pesticide degradation product triazinamin in a field were measured and compared with the field-scale variation of geochemical and microbiological parameters. We focused on the soil parameters clay and organic carbon (C) content and on soil respiratory and enzymatic processes and microbial biomass. These parameters were measured in soil samples taken at two depths (Ap and Bs horizon) in 51 sampling points from a 4-ha agricultural fine sandy soil field. The results indicated that the spatial variation of the soil parameters, and in particular the content of organic C, had a major influence on the variability of the microbial parameters and on sorption and pesticide mineralization in the soil. For glyphosate, with a co-metabolic pathway for degradation, the mineralization was increased in soils with high microbial activity. The spatial variability, expressed as the CV, was about five times higher in the Bs horizon than in the Ap horizon, and the local-scale variation within 100 m(2) areas were two to three times lower than the field-scale variation within the entire field of about 4 ha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号