首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
A new sampling device is described for the simultaneous collection of NH3, HNO3, HCl, SO2 and H2O2 in ambient air. The apparatus is based on air sampling by two parallel annular denuder tubes. The gases are collected by absorption in solutions present in the annulus of the denuder tubes. After a sampling time of 30 min at flow rate of 32 ℓ min−1 the solutions are extracted from the denuders and analyzed off-line. The detection limits of NH3, HNO3, HCL and SO2 are in the order of 0.1–0.5 μm−3. For H2O2 the detection limit is 0.01 μm−3. The reproducibility is 5–10% at the level of ambient air concentrations. Comparison of this novel technique with existing methods gives satisfactory results. The compact set-up offers the possibility of field experiments without the need of extensive equipment.  相似文献   

3.
Measurements of ammonia and particulate ammonium were made in the daytime (1200–1500) at a urban site in Yokohama during the 5-year period, 1982–1986. Diurnal NH3 concentrations showed a distinct seasonal trend with a maximum in summer. The diurnal monthly average concentrations were above 10 ppb during the late spring and summer months, while the concentrations during the winter months were between 1 and 5 ppb. The seasonal variation was found to be very similar to that of the average air temperature and showed a periodic pattern over 1 year. A good correlation was observed between diurnal NH3 concentrations and average air temperatures during the 5-year period. The annual mean concentrations were in the range of 6.6–7.6 ppb with only a minor deviation. The diurnal monthly average concentrations of particulate NH4+ were between 1 and 4 μg m−3 and no significant seasonal variations were seen. As a short-term study, simultaneous measurements of NH3, HNO3 and particulate NO3 were made. The diurnal mean concentrations of NH3 and HNO3 were 7.6 and 0.8 ppb, respectively. The concentration of particulate NO3 ranged from 0.3 to 6μg−3. Both HNO3 and particulate NO3 concentrations were relatively low and constant. Thus, NH3 and HNO3 levels did not agree with the concentrations predicted from the NH4NO3 equilibrium constant.  相似文献   

4.
ABSTRACT

Experiments on different annular denuder system (ADS)arrangements for sampling nitrous acid (HNO2) and ni-tric acid (HNO3) gases were conducted in this study toevaluate their sampling artifacts. The evaluation basis isthe one that employed one sodium chloride denuder forsampling HNO3 gas and two sodium carbonate (Na2CO3)denuders for sampling HNO2 gas, which is a commonlyemployed ADS arrangement in many field applicationsin the United States. A field study was conducted inHsinchu, Taiwan, and the results indicated that this ADSarrangement may yield over 80% relative errors for HNO3gas. It also showed that the relative errors for HNO2 gascan be less than 10% as sampled with only one Na2CO3denuder. This is attributed to the fact that the ambientHNO3 concentration measured in this study was relativelylow while the HNO2 concentration was high, as comparedto typical concentrations of these two gases measured inthe United States.

The sampling error of HNO3 gas may be due to highconcentrations of N-containing interfering speciespresent in Taiwan’s atmosphere. Because the relative sam-pling errors of HNO3 and HNO2 gases depend mainly ontheir concentrations in the atmosphere as well as con-centrations caused by interfering species, the risk for higherror while measuring low HNO2 concentrations by onlyone Na2CO3 denuder is also possible. As a result, it is sug-gested that pretests are necessary to evaluate possiblesources and degrees of sampling errors before fieldsampling of HNO2 and HNO3 gases. The sampling errorsof these two gases can, therefore, be minimized with abetter arrangement of the ADS.  相似文献   

5.
Measurements of gas-phase nitric acid were made by four separate techniques during a 7-day summertime period at a near-coastal site on Long Island, NY. Results from methods intercomparison data for HNO3, and their relationship to particulate NO3 and other odd N and oxidant species show the following: (a) high-volume filter pack HNO3 concentrations are well correlated with diffusion denuder difference (DD) results, except for small absolute losses with the former; (b) daytime real-time two-channel chemiluminescence HNO3 levels correlated well with DD results, but were higher during night-time periods; (c) results by a new Al2(SO4)3 denuder/thermal evolution technique were not in agreement with other techniques. Based on HNO3 and paniculate NO3 results reported herein, it appears that negative errors in HNO3filter-sampling techniques resulting from HNO3 loss by sorption generally exceed positive errors NH4NO3 volatilization at this site.  相似文献   

6.
The interference in HNO3 determination due to HNO2 and NOx retention on nylon filters has been evaluated in laboratory and field conditions. Nitrous acid is retained on nylon filters with efficiencies varying from 25% at 12ℓ min−1 to 80% at 2ℓ min−1, yielding NO2 ion. In ambient sampling performed during photochemical smog episodes, NO2 is oxidized to NO3 with conversion factors up to 100%, resulting in a positive bias in HNO3 determination.NO2 reacts heterogeneously with H2O on nylon surfaces according to the reaction 2NO2 + H2O → HNO2 + HNO3 with a removal constant of about 1 × 10−4 ms−1 at a H2O concentration of 20,000 ppm. The resulting nitrite and nitrate are independent of the sampling flow rate, while NO2 concentration, sampling time and exposed nylon surface area play a directly proportional role. Accordingly, the relative interference of NO2 with respect to HNO3 determination is almost negligible for nylon filters, usually run at relatively high flow rates, while it may be significant for nylon denuders, which are characterized by larger exposed surfaces and lower operating flow rates.  相似文献   

7.
In order to assess concentrations and daily patterns of air pollutants at a mountainous site in the South Coast Air Basin, a study was undertaken in the San Dimas Experimental Forest of the San Gabriel Mountains between April 1985 and October 1985. Continuous monitoring of O3, NO, NO2, SO2, total S compounds and light scattering coefficient was conducted. Particulate aerosols were collected twice a week and concentrations of nitrate, ammonium and sulfate in fine (< 2.5 μm diameter) and coarse (> 2.5 μm diameter) modes were determined.For the June–August period, when the levels of photochemical smog were the highest, monthly 24-h average concentrations of the pollutants were: O3, about 200 μg m−3; NO2, 40–75 μg m−3; NO, 1–5 μg m −3; and SO2, 0.5–5 μgm−3. The concentrations of O3 were about two times higher than in the neighboring stations of the South Coast Air Basin. O3, SO2 and total S concentrations peaked in the early afternoon, generally between 1500 and 1600 PST. Peak concentrations of NO occurred in the morning, generally between 1000 and 1100 PST. NO2 concentrations typically peaked in the late afternoon between 1500 and 1800 PST, but occasionally (in 9 % of days) maximum NO2 occurred in the morning, concurrently with the NO peaks. Daytime concentrations of the nitrate in fine aerosol fraction were generally between 100 and 600 nEq m −3, those of ammonium between 50 and 300 nEq m −3, and concentrations of sulfate between 60 and 250 nEq m−3. A 3-day denuder study showed that HNO3can make up to 73 % of the total amount of total nitrate in the air. NO2 was the most abundant N compound at Tan bark Flat (69–86% of the total amount of the monitored N compounds). Nitrate amounted to 9–15 %, HNO3 to 4–11 %, ammonium to 3–9%, and NO to 1–2% of the total amount of the measured nitrogen compounds.  相似文献   

8.
A fast response analyzer for HNO3 in highly polluted air is described. The time resolution attainable was 12 s. The method is based on the difference in a technique for HNO3-scrubbed and non-scrubbed air and the reduction of HNO3 to NO with the use of a line of catalytic converters and a method for the subsequent NO-ozone chemiluminescence. A sample air stream, in which particulates are removed with a Teflon filter, is divided into two channels. CH-1 is directly connected to the converter line, and CH-2 contains a HNO3 scrubber packed with a nylon fiber that goes to another converter line. Each converter line is composed of a hot quartz-bead converter (QBC) and a molybdenum converter (MC) in a series. A QBC reduces HNO3 to (NO+NO2), which is called NOx. The MC reduces the NOx to NO.For CH-1, the analyzer detects most compounds that typically comprise NOy (J. Geophys. Res. 91 (1986) 9781). These CH-1 compounds are called NOy′ hereafter (NOy-particulate nitrate) because the particulates are removed by the filter. A difference in the detector signal for the two channels indicates HNO3. For a blank test, atmospheric air in which HNO3 was pre-scrubbed by an extra nylon fiber was introduced to the analyzer. Variations in the blank value were 0.38±0.42 and 0.34±0.55 ppb during the high readings (NOy′-HNO3 ) (called NOy* hereafter) (111±12 ppb, N=180), and low NOy* readings (62±8 ppb, N=180), respectively, indicating that the lowest detection limit of the analyzer is 1.1 ppb (2σ). When the data obtained with the analyzer is compared to the data using the denuder method, a linear correlation with the regression of Y=0.973X+0.077 (r2=0.916 (N=20)) in the range of 0–6.5 ppb HNO3 is obtained, which is an excellent agreement. Atmospheric monitoring was carried out at Kobe. Although the average concentration of HNO3 was 2.6±1.3 ppb, ca.10 ppb for a HNO3 concentration was occasionally observed when the NOy* concentration was high, i.e., more than 100 ppb.  相似文献   

9.
A study of deposition velocities to snow was conducted during the 1982–1983 and 1983–1984 winters at the University of Michigan Biological Station in northern Michigan. Weekly measurements were made of dry deposition rates to snow and the atmospheric concentrations of the depositing species. SO2, with an average concentration of 2.2 ppb, was the dominant atmospheric sulfur containing species. NO2, with an average concentration of 1.8 ppb, was the dominant atmospheric nitrogenous species. NO3 deposition was due primarily to HNO3, which averaged 0.2 ppb. The HNO3 deposition velocity averaged 1.4cm s−1. The SO2 deposition velocity varied with temperature, averaging 0.15 cm s−1 for samples with appreciable exposure time above − 3°C, and 0.06 cm s−1 for samples which remained below an ambient temperature of −3°C. Deposition velocities of Ca2+, Mg2+ , Na+, K+ and NH+4 were 2.1, 1.5, 0.44, 0.51 and 0.10cm s−1, respectively. The mass median diameters of these species were 4.4, 2.7, 1.8, 0.9 and 0.46 μm, respectively.  相似文献   

10.
Monitoring of nitrogen dioxide (NO2) by passive sampling on the Danish island Funen (Fyn) show that the concentration of nitrogen dioxide is low (2–20 ppb). The level of NO2 in rural and suburban areas is governed by imported airpollution, and elevated NO2 concentrations due to local traffic are of limited importance. These results are supported by diffusion denuder measurements of nitric acid (HNO3) and particulate nitrate. Measurements of NO2 with chemiluminescence and diffusive passive sampling showed good agreement between the methods. The special mounting device for the diffusive samplers used in this work seem to have reduced the turbulence at the open end of the tube. The product from the reaction between nitrogen dioxide and triethanolamine was investigated and tentatively identified as triethanolamine N-oxide, which is in accordance with the observed 1 : 1 stoechiometry in the conversion of NO2 to nitrite ions.  相似文献   

11.
Metropolitan Taipei, which is located in the subtropical area, is characterized by high population and automobile densities. For convenience, most primary schools are located near major roads. This study explores the exposure of acid aerosols for schoolchildren in areas in Taipei with different traffic densities. Acid aerosols were collected by using a honeycomb denuder filter pack sampling system (HDS). Experimental results indicated that the air pollutants were significantly correlated with traffic densities. The ambient air NO2, SO2, HNO3, NO3, SO42−, and aerosol acidity concentrations were 31.3 ppb, 4.7 ppb, 1.3 ppb, 1.9 μg m−3, 18.5 μg m−3, and 49.5 nmol m−3 in high traffic density areas, and 6.1 ppb, 1.8 ppb, 0.9 ppb, 0.7 μg m−3, 8.8 μg m−3 and 14.7 nmol m−3 in low traffic density areas. The exposure levels of acid aerosols for schoolchildren would be higher than the measurements because the sampling height was 5 m above the ground. The SO2 levels were low (0.13–8.03 ppb) in the metropolitan Taipei. However, the SO42− concentrations were relatively high, and might be attributed to natural emissions of sulfur-rich geothermal sources. The seasonal variations of acid aerosol concentrations were also observed. The high levels of acidic particles in spring time may be attributed to the Asian dust storm and low height of the mixture layer. We conclude that automobile contributed not only the primary pollutants but also the secondary acid aerosols through the photochemical reaction. Schoolchildren were exposed to twice the acid aerosol concentrations in high traffic density areas compared to those in low traffic density areas. The incidence of allergic rhinitis of schoolchildren in the high traffic density areas was the highest in spring time. Accompanied by high temperature variation and high levels of air pollution in spring, the health risk of schoolchildren had been observed.  相似文献   

12.
Airborne gaseous and particulate matter in winter was measured over for 37 days in January and December 1997 at 2 sampling sites in northern Kyushu, Japan. One sampling site, Goto Island (an isolated island in the East China Sea), was about 200 km southwest of the other sampling site, Dazaifu city. In winter, acidic sulfates generated over the East Asian continent were transported to northwest Kyushu, to places such as Goto Island and the inland Kyushu area, and high sulfate concentrations were observed at the 2 sampling sites when strong NW winds blew. Acidity around Goto was mainly influenced by particulate NH4HSO4. The concentrations of NH3 at Goto Island were lower than at Dazaifu city. The difference in NH3 levels at the 2 sampling sites plays an important role in the chemical forms and sizes of the particulate matter. Nitrates at Goto Island were mostly present as NaNO3 and Ca(NO3)2 in coarse-size particles. During the process of long-range transport of air pollutants from the Asian continent to Goto, gaseous HNO3 was produced by a photochemical reactions of nitrogen oxides in the atmosphere, and particulate NaNO3 and gaseous HCl were formed by a chlorine-loss reaction between NaCl and gaseous HNO3. When strong NW winds blew, acidic sulfates together with some of the NaNO3 and/or Ca(NO3)2 and some of gaseous HCl and HNO3, which exist in the sea to the west of Kyushu and Goto Island, were transported to inland Kyushu such as Dazaifu city. During the process of transport, most of the acidic sulfates and acidic gases were mixed with regional air pollutants such as chlorides and nitrates existing around Dazaifu city, and neutralized forming (NH4)2SO4, NH4Cl and NH4NO3 in an environment of excess NH3. Therefore, the main chemical forms of NO3 at Dazaifu city varied day-by-day from fine-sized NH4NO3 to coarse-sized NaNO3 and/or Ca(NO3)2. The appearance of NO3 in coarse-size particles at Dazaifu city was due to the transport of NO3 from around the sea to the west of Kyushu.  相似文献   

13.
A 14-week filter pack (FP) sampler evaluation field study was conducted at a site near Bondville, IL to investigate the impact of weekly sampling duration. Simultaneous samples were collected using collocated filter packs (FP) from two independent air quality monitoring networks (CASTNet and Acid-MODES) and using duplicate annular denuder systems (ADS). Precision estimates for most of the measured species are similar for weekly ADS and composited FPs. There is generally good agreement between the weekly CASTNet FP results aggregated from weekly daytime and weekly nighttime samples and those aggregated from daily 24 h Acid-MODES samples; although SO2 is the exception, and CASTNet concentrations are higher than Acid-MODES. Comparison of weekly ADS results with composited weekly FP results from CASTNet shows good agreement for SO2-4. With the exception of the two weeks where the FP exceeded the ADS, both HNO3 and the sum of particulate and gaseous NO-3 show good agreement. The FP often provides good estimates of HNO3, but when used to sample atmospheres that have experienced substantial photochemical reactivity, FP HNO3 determinations using nylon filters may be biased high. It is suggested that HNO2 or some other oxidized nitrogen compound can accumulate on a regional scale and may interfere with the FP determination of HNO3. FP particulate NO-3 results are in fair agreement with the ADS. Since FP SO2 results are biased low by 12–20%, SO2 concentration in the CASTNet data archive should be adjusted upward. Nylon presents problems as a sampling medium in terms of SO2 recovery and specificity for HNO3. Additional comparative sampler evaluation studies are recommended at several sites over each season to permit comprehensive assessment of the concentrations of atmospheric trace constituents archived by CASTNet.  相似文献   

14.
Concentrations of traffic-related air pollution can be highly variable at the local scale and can have substantial seasonal variability. This study was designed to provide estimates of intra-urban concentrations of ambient nitrogen dioxide (NO2) in Montreal, Canada, that would be used subsequently in health studies of chronic diseases and long-term exposures to traffic-related air pollution. We measured concentrations of NO2 at 133 locations in Montreal with passive diffusion samplers in three seasons during 2005 and 2006. We then used land use regression, a proven statistical prediction method for describing spatial patterns of air pollution, to develop separate estimates of spatial variability across the city by regressing NO2 against available land-use variables in each of these three periods. We also developed a “pooled” model across these sampling periods to provide an estimate of an annual average. Our modelling strategy was to develop a predictive model that maximized the model R2. This strategy is different from other strategies whose goal is to identify causal relationships between predictors and concentrations of NO2.Observed concentrations of NO2 ranged from 2.6 ppb to 31.5 ppb, with mean values of 12.6 ppb in December 2005, 14.0 ppb in May 2006, and 8.9 ppb in August 2006. The greatest variability was observed during May. Concentrations of NO2 were highest downtown and near major highways, and they were lowest in the western part of the city. Our pooled model explained approximately 80% of the variability in concentrations of NO2. Although there were differences in concentrations of NO2 between the three sampling periods, we found that the spatial variability did not vary significantly across the three sampling periods and that the pooled model was representative of mean annual spatial patterns.  相似文献   

15.
A chamber placed in a constant temperature freezing room was used to study the surface resistance during deposition of HNO3 to a snow surface. The resistance decreased with increasing temperature from larger than 5 s mm−1 at − 18°C to about l s mm−1 at −3°C. Measurements of gaseous and particulate nitrate concentrations during winter at a rural site in south central Sweden gave concentrations in the range of 0.4–5 μg HNO3 m−1 and 0.3–3 μg NO3 m−3 with a mean value of 1.3 μg HNO3 m−3 and 0.7 μg NO3 m−3, respectively. The results indicate that for periods with temperatures below − 2°C estimated dry deposition of HNO3 to snow is at most 4 % of measured wet deposition of nitrate in the area.  相似文献   

16.
Deposition of nitric acid (HNO3) vapor to soils has been evaluated in three experimental settings: (1) continuously stirred tank reactors with the pollutant added to clean air, (2) open-top chambers at high ambient levels of pollution with and without filtration reducing particulate nitrate levels, (3) two field sites with high or low pollution loads in the coastal sage plant community of southern California. The results from experiment (1) indicated that the amount of extractable NO3 from isolated sand, silt and clay fractions increased with atmospheric concentration and duration of exposure. After 32 days, the highest absorption of HNO3 was determined for clay, followed by silt and sand. While the sand and silt fractions showed a tendency to saturate, the clay samples did not after 32 days of exposure under highly polluted conditions. Absorption of HNO3 occurred mainly in the top 1 mm layer of the soil samples and the presence of water increased HNO3 absorption by about 2-fold. Experiment (2) indicated that the presence of coarse particulate NO3 could effectively block absorption sites of soils for HNO3 vapor. Experiment (3) showed that soil samples collected from open sites had about 2.5 more extractable NO3 as compared to samples collected from beneath shrub canopies. The difference in NO3 occurred only in the upper 1–2 cm as no significant differences in NO3 concentrations were found in the 2–5 cm soil layers. Extractable NO3 from surface soils collected from a low-pollution site ranged between 1 and 8 μg NO3–N g−1, compared to a maximum of 42 μg NO3–N g−1 for soils collected from a highly polluted site. Highly significant relationship between HNO3 vapor doses and its accumulation in the upper layers of soils indicates that carefully prepared soil samples (especially clay fraction) may be useful as passive samplers for evaluation of ambient concentrations of HNO3 vapor.  相似文献   

17.
Two new long pathlength spectrometers, utilizing 25-m basepath multiple reflection optical systems, were employed for the first time during an intercomparison of measurement methods for atmospheric nitrogenous species held at Claremont, CA, 11–19 September 1985. Measurement of nitrogenous species using these closed optical path systems, as opposed to single pass systems extending several kilometers, permit the resulting in situ absolute spectroscopic data to serve as benchmark values for point monitors employing denuders or filter packs. The FT-IR spectrometer was operated at a total pathlength of 1150 m and spectral resolution of 0.125 cm−1, with corresponding detection sensitivities of 160 nmolem−3 for HNO3 and 60 nmole m−3 for NH3 (4 and 1.5 ppb, respectively). Concurrent measurements of HONO, NO2 and NO3 radicals were conducted with the differential optical absorption spectrometer operated at 800 m total pathlength with detection limits of 24, 160 and 0.8 nmole m−3 (0.6, 4 and 0.02 ppb) for HONO, NO2, and NO3 radicals, respectively.  相似文献   

18.
A field evaluation between two annular denuder configurations was conducted during the spring of 2003 in the marine Arctic at Ny-Ålesund, Svalbard. The IIA annular denuder system (ADS) employed a series of five single-channel annular denuders, a cyclone and a filter pack to discriminate between gas and aerosol species, while the EPA-Versatile Air Pollution Sampler (VAPS) configuration used a single multi-channel annular denuder to protect the integrity of PM2.5 sample filters by collecting acidic gases. We compared the concentrations of gaseous nitric acid (HNO3), nitrous acid (HONO), sulfur dioxide (SO2) and hydrochloric acid (HCl) measured by the two systems. Results for HNO3 and SO2 suggested losses of gas phase species within the EPA-VAPS inlet surfaces due to low temperatures, high relative humidities, and coarse particle sea-salt deposition to the VAPS inlet during sampling. The difference in HNO3 concentrations (55%) between the two data sets might also be due to the reaction between HNO3 and NaCl on inlet surfaces within the EPA-VAPS system. Furthermore, we detected the release of HCl from marine aerosol particles in the EPA-VAPS inlet during sampling contributing to higher observed concentrations. Based on this work we present recommendations on the application of denuder sampling techniques for low-concentration gaseous species in Arctic and remote marine locations to minimize sampling biases. We suggest an annular denuder technique without a large surface area inlet device in order to minimize retention and/or production of gaseous atmospheric pollutants during sampling.  相似文献   

19.
Because investigations of PAN at higher southern latitudes are very scarce, we measured surface PAN concentrations for the first time in Antarctica. During the Photochemical Experiment at Neumayer (PEAN'99) campaign mean surface PAN mixing ratios of 13±7 pptv and maximum values of 48 pptv were found. When these PAN mixing ratios were compared to the sum of NOx and inorganic nitrate they were found to be equal or higher. Low ambient air temperatures and low PAN concentrations caused a slow homogeneous PAN decomposition rate of approximately 5×10−2 pptv h−1. These slow decay rates were not sufficient to firmly establish the simultaneously observed NOx concentrations. In addition, low concentration ratios of [HNO3]/[NOx] imply that the photochemical production of NOx within the snow pack can influence surface NOx mixing ratios in Antarctica. Alternate measurements of PAN mixing ratios at two different heights above the snow surface were performed to derive fluxes between the lower troposphere and the underlying snow pack using calculated friction velocities. Most of the concentration differences were below the precision of the measurements. Therefore, only an upper limit for the PAN flux of ±1×1013 molecules m−2 s−1 without a predominant direction can be estimated. However, PAN fluxes below this limit can still influence both the transfer of nitrogen compounds between atmosphere and ice, and the PAN budget in higher southern latitudes.  相似文献   

20.
We evaluated the loss of HNO3 within a Teflon-coated aluminum cyclone of an annular diffusion denuder atmospheric sampling system (ADS) under simulated marine conditions. To simulate marine environment, the cyclones were pre-coated with NaCl aerosol droplets. Loss of vapor-phase HNO3 within the NaCl-coated cyclone was generally greater than 30% at relative humidities (RH) of 60 and 80% and as large as 67% when the cumulative HNO3 dosages were lower than 3 μg. In contrast, there was little loss of HNO3 (<8%) in cyclones with no NaCl coating at RHs ranging from 0 to 80%, at HNO3 air concentrations of 4.3±1.6 μg m−3, and at cumulative HNO3 dosages of greater than 5 μg. However, at lower HNO3 cumulative dosages (<3 μg), losses in the non-coated cyclones were strongly influenced by RH, ranging from 9% in dry air to 58% at 80% RH. The enhanced loss of HNO3 in the NaCl-coated cyclone was most likely caused by the reaction between HNO3 and NaCl on the cyclone wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号