首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 209 毫秒
1.
Size fractionated chemical speciation of acidic aerosols were performed for ammonium sulfate, other sulfates, ammonium nitrate and other nitrates in a sub-tropical industrial area, Bina, India during December 2003 to November 2004. Analysis of variance (ANOVA) revealed highly significant temporal variations (p > .001) in the concentrations of nitrate and sulfate aerosols in all the three size fractions (fine, mid-size and coarse). Winter demonstrated utmost concentrations of ammonium sulfate, which ranged from 3.2 to 26.4 microg m(-3) in fine particles and 0.20-0.34 microg m(-3) in coarse particles. Ammonium sulfate was chiefly in fine mode (43.77% of total particulate sulfate) as compared to coarse particles (28.60% of total particulate sulfate). The major fraction Ammonium sulfate existed in different forms in atmospheric aerosols, for example NH4Fe(SO4)2, (NH4)2SO4, (NH4)3H(SO4)2 in fine particles, and (NH4)4(NO3)SO4+ in coarse particles. Other sulfate concentrations were also higher during winter ranging from 1.89 to 14.3 microg m(-3) in fine particles and 0.12-0.65microg m(-3) in coarse particles. Ammonium nitrate constituted the major fraction of total particulate nitrate all through the year and was principally in fine particles (the highest concentration in January i.e. 14.2 microg m(-3)). Other nitrates were mainly distributed in the fine particles (highest concentration in January i.e. 11.2 microg m(-3)) All the sulfate and nitrate species were mainly distributed in fine mode and have significant impact on human health.  相似文献   

2.
The water-soluble ions in fine (PM<2.5) and coarse (PM2.5−10) atmospheric aerosols collected in Christchurch during winter 2001, spring 2000 and summer 2001, and in Auckland during winter 2001 have been studied in terms of coarse–fine and day–night differences. Although the chemical characteristics of the coarse particles were similar in both cities, those of the fine particles collected in the Christchurch winter were significantly different, as manifested by higher concentrations of nss-K+, nss-Cl, nss-Ca2+, nss-SO42−, NO3 and NH4+. It was found that nighttime PM10 and nss-K+ concentrations were much higher than their daytime concentrations in the Christchurch winter but a clear day–night difference was not apparent in the Auckland winter. Moreover, in the winter, sea-salt ions did not show a day–night difference; however, nss-SO42− had opposite day–night variation in the two cities. An ion balance calculation has shown that in most samples, coarse particles can be neutral or alkaline, however, fine particles can be neutral or acidic. The possibility of ammonium salts existing in the fine particles collected in the Christchurch winter is discussed and it is concluded that a variety of ammonium salts were present. Equivalent ratios suggest that the fine particles may be significantly aged in the Christchurch winter.The evidence from our soluble ion study strongly suggests that wood and coal burning and secondary aerosols make a significant contribution to fine particulate mass in the Christchurch atmosphere. Thus, home-heating, a sheltered geographic location and relatively calm atmospheric condition are thought to be the major causes for the serious atmospheric particulate pollution in the Christchurch winter.  相似文献   

3.
Fang GC  Chang CN  Wu YS  Wang NP  Wang V  Fu PP  Yang DG  Che SC 《Chemosphere》2000,41(9):1349-1359
Aerosol samples for PM2.5, PM(2.5-10) and TSP were collected from June to September 1998 and from February to March 1999 in central Taiwan. Ion chromatography was used to analyze the acidic anions: sulfate, nitrate and chloride in the Universal samples. The ratios of fine particle concentrations to coarse particle concentrations displayed that the fine particle concentrations are almost greater than that of coarse particle concentrations in Taichung area. The average concentrations of PM2.5, PM(2.5-10) and TSP in urban sites are higher than in suburban and rural sites at both daytime and night-time. Chloride dominated in the coarse mode in daytime and in fine mode in night-time. Nitrate can be found in both the coarse and fine modes. Sulfate dominated in fine mode in both daytime and night-time.  相似文献   

4.
A laboratory and field study was performed to assess the contribution to visibility reduction of both light scattering and absorption by air pollutant particles and gases. Gaseous precursors to important visibility-reducing aerosol species were measured. Emphasis was placed on minimizing sampling artifacts for nitrate and sulfate since previous visibility studies were generally subject to substantial errors from these sources. Optical techniques for measuring the particle absorption coefficient and elemental carbon were evaluated. The aerosol species measured were fine and coarse particulate mass, sulfate, nitrate and elemental carbon, plus organic carbon and ammonium ion. The gases measured were nitric acid, NH3, SO2, NO2 and O3. Sampling was done at San Jose, Riverside and downtown Los Angeles. The light-scattering efficiency of fine particulate nitrate appeared to be higher than that of sulfate, in contrast to the findings of most prior studies. At all sites light scattering by sulfate, nitrate and elemental carbon particles contributed more than half of the light extinction. Light absorption by particles, due almost exclusively to elemental carbon, contributed 10–20% of the extinction.  相似文献   

5.
The ionic compositions of particulate matter with aerodynamic diameter < or = 2.5 microm (PM2.5) and size-resolved aerosol particles were measured in Big Bend National Park, Texas, during the 1999 Big Bend Regional Aerosol and Visibility Observational study. The ionic composition of PM2.5 aerosol was dominated by sulfate (SO4(2-)) and ammonium (NH4+). Daily average SO4(2-) and NH4+ concentrations were strongly correlated (R2 = 0.94). The molar ratio of NH4+ to SO4(2-) averaged 1.54, consistent with concurrent measurements of aerosol acidity. The aerosol was observed to be comprised of a submicron fine mode consisting primarily of ammoniated SO4(2-) and a coarse particle mode containing nitrate (NO3-). The NO3- appears to be primarily associated with sea salt particles where chloride has been replaced by NO3-, although formation of calcium nitrate (Ca(NO3)2) is important, too, on several days. Size-resolved aerosol composition results reveal that a size cut in particulate matter with aerodynamic diameter < or = 1 microm would have provided a much better separation of fine and coarse aerosol modes than the standard PM2.5 size cut utilized for the study. Although considerable nitric acid exists in the gas phase at Big Bend, the aerosol is sufficiently acidic and temperatures sufficiently high that even significant future reductions in PM2.5 SO4(2-) are unlikely to be offset by formation of particulate ammonium nitrate in summer or fall.  相似文献   

6.
The indoor-outdoor concentration relationship of particulate matter PM9.0 (aerodynamic diameter 9 μm or smaller) and its chemical composition (sulfate, nitrate, chloride and ammonium) has been studied. Samples were collected using four identical Anderson impactors, each one collecting nine size ranges by eight impactor stages (9, 5.8, 4.7, 3.3, 2.1, 1.1, 0.65 and 0.43 μm) plus a back-up filter representing particles finer than 0.45 μm. Concentrations of sulfate, nitrate and chloride were determined by ion chromatography, and an ammonium-selective ion electrode plus a Corning pH ion meter were used to determine ammonium ion. The results revealed that sulfate was the predominant component and chloride the least abundant. The size distribution of sulfate, nitrate and ammonium very strongly peaked near 0.65 μm and with very little at the larger sizes. The chloride concentration was depleted in the fine particles and enhanced in the relatively coarser particles, with the peak at 3.3 μm. All these concentrations had a significant linear relationship with mass concentrations in outdoor samples. In indoor samples, the same relation was observed only for sulfate and ammonium, which were also significantly correlated with each other. Furthermore, indoor sulfate, chloride and ammonium concentrations were higher towards the finest particle sizes, indicating a higher potential inhalation health hazard. The study also confirmed that indoor air quality depends on outdoor atmospheric pollution level, indoor activities and virtually on the particle size. Finally, the study would assist in selecting the type of collector required to reduce the level of particulates to an acceptable level for indoor ambient air.  相似文献   

7.
As part of a major study to investigate the indoor air quality in residential houses in Singapore, intensive aerosol measurements were made in an apartment in a multistory building for several consecutive days in 2004. The purpose of this work was to identify the major indoor sources of fine airborne particles and to assess their impact on indoor air quality for a typical residential home in an urban area in a densely populated country. Particle number and mass concentrations were measured in three rooms of the home using a real-time particle counter and a low-volume particulate sampler, respectively. Particle number concentrations were found to be elevated on several occasions during the measurements. All of the events of elevated particle concentrations were linked to indoor activities based on house occupant log entries. This enabled identification of the indoor sources that contributed to indoor particle concentrations. Activities such as cooking elevated particle number concentrations < or =2.05 x 10(5) particles/cm3. The fine particles collected on Teflon filter substrates were analyzed for selected ions, trace elements, and metals, as well as elemental and organic carbon (OC) contents. To compare the quality of air between the indoors of the home and the outdoors, measurements were also made outside the home to obtain outdoor samples. The chemical composition of both outdoor and indoor particles was determined. Indoor/outdoor (I/O) ratios suggest that certain chemical constituents of indoor particles, such as chloride, sodium, aluminum, cobalt, copper, iron, manganese, titanium, vanadium, zinc, and elemental carbon, were derived through migration of outdoor particles (I/O <1 or - 1), whereas the levels of others, such as nitrite, nitrate, sulfate, ammonium, cadmium, chromium, nickel, lead, and OC, were largely influenced by the presence of indoor sources (I/O >1).  相似文献   

8.
Outdoor and indoor fine particulate species were measured at the Lindon Elementary School in Lindon, Utah, to determine which components of ambient fine particles have strong indoor and outdoor concentration correlations. PM2.5 mass concentrations were measured using tapered element oscillating microbalance (TEOM) monitors and by gravimetric analysis of Teflon filter samples. Gas-phase HNO3, sulfur dioxide, particulate nitrate, strong acid, and particulate sulfate were measured using annular denuder samplers. Soot was measured using quartz filters in filter packs. Total particulate number was measured with a condensation nucleus counter (CNC). Total particulate number and fine particulate sulfate and soot were correlated for ambient and indoor measurements. Indoor PM2.5 mass showed a low correlation with outdoor PM2.5 mass because of the influence of coarse material from student activities on indoor PM2.5. Fine particle acidity and the potentiation of biological oxidative mechanisms by iron were not correlated indoors and outdoors.  相似文献   

9.
Measurement of the deposition of sedimenting particles requires a sampling device, which avoids simultaneous deposition of gases and aerosols to the collection surface. A sampler constructed for the purpose of collecting rain and sedimenting particles is described and characterized in detail, in particular with regard to its collection efficiency for rain. Its collection properties for gases and aerosols are shown to be negligible. From two years of sampling at different heights it was found that resuspension of particles and co-condensation of gases near the plant canopy may lead to a major overestimation of bulk deposition. As a consequence, the extension towards the canopy of the constant flux layer for sedimenting particles has to be determined experimentally. Bulk deposition of sodium, potassium, magnesium, calcium, lead, copper, cadmium, manganese, iron, ammonium, nitrate, phosphate, sulfate, total sulfur and chloride at Braunschweig-V?lkenrode, Southeast Lower Saxony, Germany, were recorded for six years. During this period a considerable decrease was observed in the deposition of lead, cadmium, nitrate, sulfate and total sulfur.  相似文献   

10.
During April 1996–June 1997 size-segregated atmospheric aerosol particles were collected at an urban and a rural site in the Helsinki area by utilising virtual impactors (VI) and Berner low-pressure impactors (BLPI). In addition, VI samples were collected at a semi-urban site during October 1996–May 1997. The average PM2.3 (fine particle) concentrations at the urban and rural sites were 11.8 and 8.4 μg/m3, and the PM2.3−15 (coarse particle) concentrations were 12.8 and about 5 μg/m3, respectively. The difference in fine particle mass concentrations suggests that on average, more than one third of the fine mass at the urban site is of local origin. Evaporation of fine particle nitrate from the VI Teflon filters during sampling varied similarly at the three sites, the average evaporation being about 50–60%.The average fine particle concentrations of the chemical components (25 elements and 13 ions) appeared to be fairly similar at the three sites for most components, which suggests that despite the long-range transport, the local emissions of these components were relatively evenly distributed in the Helsinki area. Exceptions were the average fine particles Ba, Fe, Sb and V concentrations that were clearly highest at the urban site pointing to traffic (Ba, Fe, Sb) and to combustion of heavy fuel oil (V) as the likely local sources. The average coarse particle concentrations for most components were highest at the urban site and lowest at the rural site.Average chemical composition of fine particles was fairly similar at the urban and rural sites: non-analysed fraction (mainly carbonaceous material and water) 43% and 37%, sulphate 21% and 25%, crustal matter 12% and 13%, nitrate 12% and 11%, ammonium 9% and 10% and sea-salt 2.5% and 3.2%, respectively. At the semi-urban site also, the average fine particle composition was similar. At the urban site, the year round average composition of coarse particles was dominated by crustal matter (59%) and the non-analysed components (28%, mainly carbonaceous material and water), while the other contributions were much lower: sea-salt 7%, nitrate 4% and sulphate 2%. At the rural site, the coarse samples were collected in spring and summer and the percentage was clearly lower for crustal matter (37%) and sea-salt (3%) but higher for the not-analysed fraction (51%). At the semi-urban site, the average composition of coarse particles was nearly identical to that at the urban site.Correlations between the chemical components were calculated separately for fine and coarse particles. In urban fine particles sulphate, ammonium, Tl, oxalate and PM2.3 mass correlated with each other and originated mainly from long-range transport. The sea-salt ions Na+, Cl and Mg2+ formed another group and still another group was formed by the organic anions oxalate, malonate, succinate, glutarate and methane sulphonate. Ni and V correlated strongly pointing to combustion of heavy fuel oil as the likely source. In addition, some groups with lower correlations were detected. At the rural and semi-urban sites, the correlating components were rather similar to those at the urban site, although differences were also observed.  相似文献   

11.
Recent studies associate particulate air pollution with adverse health effects; however, the exposure to indoor particles of outdoor origin is not well characterized, particularly for individual chemical species. We conducted a field study in an unoccupied, single-story residence in Clovis, California to provide data and analyses to address issues important for assessing exposure. We used real-time particle monitors both outdoors and indoors to quantify nitrate, sulfate, and carbon particulate matter of particle size 2.5 μm or less in diameter (PM-2.5). The results show that measured indoor ammonium nitrate concentrations were significantly lower than would be expected based solely on penetration and deposition losses. The additional reduction can be attributed to the transformation indoors of ammonium nitrate into ammonia and nitric acid gases, which are subsequently lost by deposition and sorption to indoor surfaces. A mass balance model that accounts for the kinetics of ammonium nitrate evaporation was able to reproduce measured indoor ammonium nitrate and nitric acid concentrations, resulting in a fitted value of the deposition velocity for nitric acid of 0.56 cm s−1. The results indicate that indoor exposure to outdoor ammonium nitrate in Central Valley of California are small, and suggest that exposure assessments based on total particle mass measured outdoors may obscure the actual causal relationships for indoor exposure to particles of outdoor origin.  相似文献   

12.
Scavenging ratios for sulfate on the south-central Greenland Ice Sheet at Dye 3 have been computed for 1982–1984. The ratios are based on measured concentrations in snow and estimated concentrations in air. The snow data have been obtained from snowpit samples which were dated by comparing δ18O values with meteorological records. The airborne concentrations have been estimated from data collected at coastal Greenland sites. Scavenging ratios resulting from this process are found to be in the range ~ 100–200 in winter and ~ 200–400 in summer. The greater summer values are attributed to increased riming, resulting in scavenging of sulfate as condensation nuclei and possible oxidation of SO2 in cloudwater droplets. Using the airborne and snowpit concentrations with assumed dry deposition velocities of 0.02–0.05 cms, it is estimated that dry deposition is responsible for roughly 10–30% of the total sulfate deposition on a year-round basis at Dye 3. During portions of the Arctic winter, however, when the snow is unrimed and when there is less precipitation, dry deposition may be dominant.  相似文献   

13.
Abstract

As part of a major study to investigate the indoor air quality in residential houses in Singapore, intensive aerosol measurements were made in an apartment in a multistory building for several consecutive days in 2004. The purpose of this work was to identify the major indoor sources of fine airborne particles and to assess their impact on indoor air quality for a typical residential home in an urban area in a densely populated country. Particle number and mass concentrations were measured in three rooms of the home using a real-time particle counter and a low-volume particulate sampler, respectively. Particle number concentrations were found to be elevated on several occasions during the measurements. All of the events of elevated particle concentrations were linked to indoor activities based on house occupant log entries. This enabled identification of the indoor sources that contributed to indoor particle concentrations. Activities such as cooking elevated particle number concentrations ≤2.05 × 105 particles/cm3. The fine particles collected on Teflon filter substrates were analyzed for selected ions, trace elements, and metals, as well as elemental and organic carbon (OC) contents. To compare the quality of air between the indoors of the home and the outdoors, measurements were also made outside the home to obtain outdoor samples. The chemical composition of both outdoor and indoor particles was determined. Indoor/outdoor (I/O) ratios suggest that certain chemical constituents of indoor particles, such as chloride, sodium, aluminum, cobalt, copper, iron, manganese, titanium, vanadium, zinc, and elemental carbon, were derived through migration of outdoor particles (I/O<1 or ≈1), whereas the levels of others, such as nitrite, nitrate, sul-fate, ammonium, cadmium, chromium, nickel, lead, and OC, were largely influenced by the presence of indoor sources (I/O >1).  相似文献   

14.
Size-resolved aerosol particle samples in the size range 0.1–10 μm aerodynamic diameter were collected in the years 2003 and 2004 at an urban background station in Mainz, Germany. Size, morphology, chemical composition and mixing state of more than 5400 individual particles of 7 selected sampling days were analyzed in detail by scanning electron microscopy and energy-dispersive X-ray microanalysis. In addition, transmission electron microscopy, aerosol mass spectrometry and atomic force microscopy were applied to obtain detailed information about the mixing state of the particles. The fine particle fraction (diameter<1 μm) is always dominated by complex secondary aerosol particles (⩾90% by number) independent from air mass origin. These particles are complex internal mixtures of ammonium and sodium sulfates, nitrates, and organic material. Between 20% and 40% of the complex secondary aerosol particles contain soot inclusions. The composition of the coarse particle fraction (>1 μm diameter) is strongly dependant on air mass history with variable abundances of complex secondary aerosol particles, aged sea salt, silicates, silicate mixtures, calcium sulfates, calcium sulfate/carbonate mixtures, calcium nitrate/carbonate mixtures, biological particles, and external soot.The dominance of complex secondary aerosol particles shows that reduction of the precursor gases is a major goal for successful reduction strategies for PM10.  相似文献   

15.
Air pollutants are associated with adverse respiratory effects mainly in susceptible groups. This study was designed to assess the impact of the ionic composition of particulate matter on asthmatic respiratory functions in São Paulo city. From May to July 2002, fine and coarse particulate matter fractions were collected and their respective chemical composition with respect to major ions (Na+, Mg2+, K+, Ca2+, NH4+, Cl, NO3 and SO42−) were determined in each aqueous-extract fraction. The results showed predominant concentrations of SO42− (48.4%), NO3 (19.6%) and NH4+ (12.5%) in the fine fraction, whereas NO3 (35.3%), SO42− (29.1%), Ca2+ (13.1%) and Cl (12.5%) were the predominant species in the coarse fraction. The association between the chemical components of both fractions and the daily peak expiratory flow (PEF) measurements (morning and evening) of the 33 asthmatic individuals were assessed through a linear mixed-effects model. The results showed a significant negative correlation (decrease of PEF) between morning PEF and coarse chloride (3-day moving average) and between evening PEF and coarse Na+ (3-day moving average), coarse Mg2+ (3-day moving average) and coarse NH4+ (2- and 3-day moving average). A significant negative correlation has also been observed between morning and evening PEF and Mg2+ in the fine fraction. These results suggest that some particle chemical constituents may increase the responsiveness of airways and that coarse particles that deposit in the upper airways may be more relevant for asthmatic response and irritation. However, the results do not prove a clear causal relationship.  相似文献   

16.
Measurement of daily size-fractionated ambient PM10 mass, metals, inorganic ions (nitrate and sulfate) and elemental and organic carbon were conducted at source (Downey) and receptor (Riverside) sites within the Los Angeles Basin. In addition to 24-h concentration measurements, the diurnal patterns of the trace element and metal content of fine (0–2.5 μm) and coarse (2.5–10 μm) PM were studied by determining coarse and fine PM metal concentrations during four time intervals of the day.The main source of crustal metals (e.g., Al, Si, K, Ca, Fe and Ti) can be attributed to the re-suspension of dust at both source and receptor sites. All the crustals are predominantly present in supermicron particles. At Downey, potentially toxic metals (e.g., Pb, Sn, Ni, Cr, V, and Ba) are predominantly partitioned (70–85%, by mass) in the submicron particles. Pb, Sn and Ba have been traced to vehicular emissions from nearby freeways, whereas Ni and Cr have been attributed to emissions from powerplants and oil refineries upwind in Long Beach. Riverside, adjacent to Southern California deserts, exhibits coarser distributions for almost all particle-bound metals as compared to Downey. Fine PM metal concentrations in Riverside seem to be a combination of few local emissions and those transported from urban Los Angeles. The majority of metals associated with fine particles are in much lower concentrations at Riverside compared to Downey. Diurnal patterns of metals are different in coarse and fine PM modes in each location. Coarse PM metal concentration trends are governed by variations in the wind speeds in each location, whereas the diurnal trends in the fine PM metal concentrations are found to be a function both of the prevailing meteorological conditions and their upwind sources.  相似文献   

17.
Aerosol size and chemical characteristics govern their optical and radiative effects and their potential for cloud nucleation. This paper reports the size and chemical characteristics of surface aerosols measured at Mumbai during the Indian Ocean Experiment-Intensive Field Phase (INDOEX-IFP), January–March 1999. Carbonaceous (30%) and ionic (20%) constituents contributed significantly to aerosol mass. High black carbon concentrations and a low organic to black carbon ratio implied the predominance of primary carbonaceous aerosol, while a high nss-sulphate contribution in the fine mode, suggested a probable anthropogenic origin. Non-sea-salt potassium (nss-K+) and black carbon concentrations correlated during January and early February, with nss-K+ in the fine mode contributing 86% of total-K+, implying a common origin from a local biomass-burning source. Crustal sources were dominant during late-February and March, with 69% of the aerosol mass present in the coarse mode, and 60% of the variation in PM-10 measured during 12:00–16:00 h being explained by a crustal source factor. Chloride depletion was estimated throughout the study, more significantly during January and early February, from the higher RH and lower Ca2+/Na2+ ratios. A negative correlation was obtained of chloride with nitrate, indicating probable nitrate substitution. During late-February and March, nitrate correlated with calcium suggesting an association with soil. Nss-sulphate correlated with calcium but not sodium, implying a probable association with crustal aerosols.  相似文献   

18.
Particulate compositions including elemental carbon (EC), organic carbon (OC), water-soluble ionic species, and elemental compositions were investigated during the period from 2004 to 2006 in southern Taiwan. The correlation between the pollutant standard index (PSI) of ambient air quality and the various particle compositions was also addressed in this study. PSI revealed a correlation with fine (r = 0.74) and coarse (r = 0.80) particulate matter (PM). PSI manifested a significant correlation with the amount of analyzed ionic species (r approximately 0.80) in coarse and fine particles and a moderate correlation with carbon content (r = 0.63) in fine particles; however, it showed no correlation with elemental content. Although the ambient air quality ranged from good to moderate, the ionic species including chloride (Cl-), nitrate (NO3-), sulfate (SO4(2-)), sodium (Na+), ammonium (NH4+), magnesium (Mg2+), and calcium (Ca2+) increased significantly (1.5-3.7 times for Daliao and 1.8-6.9 times for Tzouying) in coarse PM. For fine particles, NO3-, SO4(2-), NH4+, and potassium (K+) also increased significantly (1.3-2.4 times for Daliao and 2.8-9.6 times for Tzouying) when the air quality went from good to moderate. For meteorological parameters, temperature evidenced a slightly negative correlation with PM concentration and PSI value, which implied a high PM concentration in the low-temperature condition. This reflects the high frequency of PM episodes in winter and spring in southern Taiwan. In addition, the mixing height increase from 980 to 1450 m corresponds to the air quality condition changing from unhealthy to good.  相似文献   

19.
Measurements on size distribution of atmospheric aerosol were made at Dayalbagh, Agra during July to September 1998. A 4-stage cascade particle sampler (CPS - 105) which fractionates particles in sizes ranging between 0.7 and >10.9 μm, was used. Samples were collected on Whatman 41 filters. The filters were analyzed for the major water-soluble ions. The anions (F, Cl, NO3 and SO4) were analyzed by Dionex DX-500 ion chromatograph while atomic absorption and colorimetric techniques were used for the analysis of cations (Na, K, Ca and Mg) and NH4, respectively. The average mass of aerosol was found to be 131.6 μg m−3 and aerosol composition was found to be influenced by terrigeneous sources. The mass size distribution of total aerosol and the ions NH4, Cl, NO3, K, Ca, Mg, SO4 and Na was bimodal while that of F was unimodal. SO4, F, K and NH4 dominated in the fine mode while Ca, Mg, Cl and NO3 were in abundance in coarse fraction. Na was found in both coarse as well as fine mode. Coarse mode SO4 and NO3 have been ascribed to contribution from re-suspension of soil and formation by heterogeneous oxidation on soil derived particles. Preponderance of K in fine mode is attributed to emissions from vegetation and from burning of plant materials. Ca, Mg, Cl and NO3 are largely soil derived and hence dominate in coarse fraction. Equivalent ratios of NH4/(SO4+NO3) were calculated for both fine and coarse aerosols. The coarse mode ratio varied between 0.7 and 1.4 while in fine mode it ranged between 1.4 and 1.9. It shows that aerosol is basic, the basicity of coarse mode is due to higher concentration of soil-derived alkaline components while the basicity in fine mode is due to neutralization of acidity by NH3.  相似文献   

20.
A three dimensional chemical transport model (PMCAMx) is applied to the Mexico City Metropolitan Area (MCMA) in order to simulate the chemical composition and mass of the major PM1 (fine) and PM1–10 (coarse) inorganic components and determine the effect of mineral dust on their formation. The aerosol thermodynamic model ISORROPIA-II is used to explicitly simulate the effect of Ca, Mg, and K from dust on semi-volatile partitioning and water uptake. The hybrid approach is applied to simulate the inorganic components, assuming that the smallest particles are in thermodynamic equilibrium, while describing the mass transfer to and from the larger ones. The official MCMA 2004 emissions inventory with improved dust and NaCl emissions is used. The comparison between the model predictions and measurements during a week of April of 2003 at Centro Nacional de Investigacion y Capacitacion Ambiental (CENICA) “Supersite” shows that the model reproduces reasonably well the fine mode composition and its diurnal variation. Sulfate predicted levels are relatively uniform in the area (approximately 3 μg m?3), while ammonium nitrate peaks in Mexico City (approximately 7 μg m?3) and its concentration rapidly decreases due to dilution and evaporation away from the urban area. In areas of high dust concentrations, the associated alkalinity is predicted to increase the concentration of nitrate, chloride and ammonium in the coarse mode by up to 2 μg m?3 (a factor of 10), 0.4 μg m?3, and 0.6 μg m?3 (75%), respectively. The predicted ammonium nitrate levels inside Mexico City for this period are sensitive to the physical state (solid versus liquid) of the particles during periods with RH less than 50%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号