首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Soluble fluoride (F), measured using an ion-selective electrode, was monitored during 1982–1983 in monthly bulk (wet and dry) atmospheric deposition samples collected at 17 locations in the lower Tamar Valley, Tasmania, where an aluminium (Al) smelter is located. Glass samplers (funnel-bottle type) were used, with duplications by plastic samplers at five locations later. The spatial and temporal variations in F deposition in relation to wind flow and rainfall are discussed, and its impact on the environment is highlighted. The mean deposition rates of F, as measured from September 1982 to August 1983, ranged from about 90 μg m−2 day−1 at the intended ‘background’ location to 12,568 μg m−2day−1 at a location about 1 km east-southeast from the smelter. The depositional fluxes of F and insoluble Al (another elemental tracer of the smelter) are significantly correlated (P < 0.001). They were much higher within 3 km of the smelter, where vegetation damage by fluoride contamination was most evident. However, air emissions from the smelter could travel at least 10 km up the valley. Wet deposition was the predominant removal process for F during autumn and winter, while dry deposition appeared to be more significant in summer. The plastic samplers collected about 8 and 17% more F and Al, respectively, but with higher standard deviations. Thus the variations observed could be largely due to sampling fluctuations.  相似文献   

2.
Scavenging ratios for sulfate on the south-central Greenland Ice Sheet at Dye 3 have been computed for 1982–1984. The ratios are based on measured concentrations in snow and estimated concentrations in air. The snow data have been obtained from snowpit samples which were dated by comparing δ18O values with meteorological records. The airborne concentrations have been estimated from data collected at coastal Greenland sites. Scavenging ratios resulting from this process are found to be in the range ~ 100–200 in winter and ~ 200–400 in summer. The greater summer values are attributed to increased riming, resulting in scavenging of sulfate as condensation nuclei and possible oxidation of SO2 in cloudwater droplets. Using the airborne and snowpit concentrations with assumed dry deposition velocities of 0.02–0.05 cms, it is estimated that dry deposition is responsible for roughly 10–30% of the total sulfate deposition on a year-round basis at Dye 3. During portions of the Arctic winter, however, when the snow is unrimed and when there is less precipitation, dry deposition may be dominant.  相似文献   

3.
A steady state mesoscale model developed to predict primary SO2 concentrations from a single point source is presented. The model was validated with data from the Midwest Interstate Sulfur Transport and Transformation (MISTT) project, with root mean square errors of 9.69 μg m?3 and 0.42 μg m?3 for SO2 and SO4 respectively. Wet deposition (washout and rainout), eddy dispersivity, dry deposition of SO2 and mean wind speed were found to be the most important factors controlling sulfur dioxide and sulfate concentrations. Estimation of precipitation acidity was then carried out using scavenging theory. The greatest potential acidification occurred approximately 200 km from the source along plume centerllne, which indicates a rather local effect as opposed to a long distance effect. The cross-plume influence was up to 60 km in width at a distance of 400 km from the source.  相似文献   

4.
During 1981 and 1982 a project was undertaken to determine the possible health impact of airborne emissions from a Canadian uranium (U) refinery. High volume air samplers and dustfall collectors were located within 2 km of the refinery to obtain samples of U dust. Concentrations of U in air varied from 2 to 200 ng m−3 with a geometric mean of 20 ng m−3. Reasonable agreement was obtained between the measured concentrations and the predictions of a long-term atmospheric dispersion model. Measurements of particle sizes and deposition velocities of U-bearing dust indicated that its behaviour was typical of general urban dust. Thus standard dosimetric models could be used to estimate radiation doses. The dose to the nearest receptor from 1 year of refinery operation was estimated to be 0.16 millisieverts, and the collective dose to area residents was 0.14 person-sieverts. No observable health effects would be expected at these levels.  相似文献   

5.
Estimates of short-term, regional-scale spatial distributions of ozone (O3) and hydrogen peroxide (H2O2) dry deposition over the northeast U.S. are presented. Dry deposition fluxes to surfaces are computed using a regional tropospheric chemistry model with deposition velocities which vary with local meteorology, land type, insolation, seasonal factors and surface wetness. A compilation of O3 surface resistances is presented based on a survey of O3 dry deposition measurements. The surface resistance for H2O2 is assumed to be small under most conditions, causing H2O2 to dry deposit at a rate which is frequently limited by surface-layer turbulence. Regional patterns of dry deposition velocities for these oxidants over the northeast U.S. are computed using landuse data and meteorological information predicted using a mesoscale meteorology model. Domain-averaged O3 deposition velocities during a spring period reach a mid-day peak of 0.7–0.8 cm s−1 and drop to 0.1–0.2 cm s−1 at night. Domain-averaged H2O2 deposition velocities at a height of approximately 80 m are predicted to reach a mid-day peak of 1.6–2.0cm s−1, and fall to 0.6–0.9 cm s−1 at night. Time-averaged surface-layer H2O2 concentrations show a latitude dependence, with higher concentrations in the south. H2O2 concentrations are significantly reduced due to efficient wet removal and chemical destruction during the passage of a cyclonic frontal system. In contrast, O3 concentrations are predicted to rise during the passage of a frontal system due to efficient vertical exchange of midtropospheric air into the boundary layer during convective conditions, followed by synoptic-scale subsidence occurring in the high pressure airmass following a cyclone. Maximum O3 deposition during this 3-day springtime period occurs in polluted agricultural areas. In contrast, H2O2 dry deposition exhibits a latitude dependence with maximum 3-day accumulations occurring in the south. Domain-averaged mid-day deposition rates for O3 and H2O2 were 45–50 μmol m−2 h−1 and 4–5 μmol m−2 h−1. At night, deposition rates were approximately 5–10 μmol m−2 h−1 and 1.5–2.5 μmol m−2 h−1 for O3 and H2O2. These model results show that regional patterns of oxidant dry deposition are strongly influenced by oxidant concentrations, atmospheric stability, surface roughness and numerous other surface and meteorological factors. Each of these factors must be well-characterized before regional patterns of biological damage associated with oxidant dry deposition can be quantified.  相似文献   

6.
In order to quantify the atmospheric nitrate and sulfate deposition and to investigate factors related to the variability of deposition during 1983 and 1984, precipitation samples from five different meteorological stations in Schleswig-Holstein (Northern Germany) were collected in weekly intervals, using the bulk-sample method. The average element depositions in kg ha−1 a−1 were: 20 for S and 5.5 for N in List (North Sea Island Sylt) and Schleswig, 12 for S and 4.7 for N in Kiel, 16 for S and 4.3 for N in Luebeck and 18 for S and 4.2 for N in Quickborn near Hamburg.N and S concentrations showed a close relationship to the amount of precipitation and the following functions for the estimation of nitrate-N and sulfate-S deposition in Schleswig-Holstein could be derived: (x = precipitation in mm a−1, y = N or S deposition in kg ha−1 a−1) NO3-N: y = 0.003x + 2.29; SO4−S: y = 0.014x + 4.71. According to these relationships most of the element deposition occurred during atmospheric conditions of predominating winds from the west. Especially in the case of S, atmospheric deposition is the only external source of S supply for plants on many agricultural soils. Sometimes the low sulfur input is not sufficient to cover the requirements of agricultural crops in Schleswig-Holstein. Due to the negative S balance in many soils, future increase of S deficiency is expected.  相似文献   

7.
Stable sulfur isotope ratios and major ions in bulk snowpack samples were monitored at a network of 52 high-elevation sites along and near the Continental Divide from 1993 to 1999. This information was collected to better define atmospheric deposition to remote areas of the Rocky Mountains and to help identify the major source regions of sulfate in winter deposition. Average annual δ34S values at individual sites ranged from +4.0 to +8.2‰ and standard deviations ranged from 0.4 to 1.6‰. The chemical composition of all samples was extremely dilute and slightly acidic; average sulfate concentrations ranged from 2.4 to 12.2 μeq l−1 and pH ranged from 4.82 to 5.70. The range of δ34S values measured in this study indicated that snowpack sulfur in the Rocky Mountains is primarily derived from anthropogenic sources. A nearly linear relation between δ34S and latitude was observed for sites in New Mexico, Colorado, and southern Wyoming, which indicates that snowpack sulfate in the southern part of the network was derived from two isotopically distinct source regions. Because the major point sources of SO2 in the region are coal-fired powerplants, this pattern may reflect variations in the isotopic composition of coals burned by the plants. The geographic pattern in δ34S for sites farther to the north in Wyoming and Montana was much less distinct, perhaps reflecting the paucity of major point sources of SO2 in the northern part of the network.  相似文献   

8.
The trends in and relationships between ambient air concentrations of sulfur dioxide and sulfate aerosols at 48 urban sites and 27 nonurban sites throughout the U.S. between 1963 and 1972 have been analyzed. The substantial decreases in ambient SO2 concentrations measured at urban sites in the eastern and midwestern U.S. are consistent with the corresponding reductions in local SO2 emissions, but these decreases have been accompanied by only modest decreases in ambient sulfate concentrations. Large differences in the amounts of SO2 emitted within individual air quality control regions are associated with much smaller differences in the corresponding ambient sulfate concentrations. Substantial changes in the patterns of SO2 emissions between air quality regions result in essentially no differences between ambient sulfate concentrations in those air quality regions. Comparisons of several air quality regions in the eastern and western U.S. with similar SO2 emission levels and patterns of emissions clearly demonstrates the higher ambient sulfate concentration levels in eastern air quality control regions. Relationships between SO2, sulfates, and vanadium concentrations at eastern nonurban U.S. sites cannot be explained by local emission sources. These various observed results can be best explained by long distance sulfur oxide transport with chemical conversion of SO2 to sulfates occurring over ranges of hundreds of kilometers. This conclusion has been suggested earlier and the present analysis strongly supports previous discussions. An impact of long range transport of sulfates is to emphasize the need for Consistent strategies for reduction of sulfur oxides throughout large geographical regions. Additions of large capacities involving elevated sources in mid-continental or western regions could result in significant increases in sulfate concentrations well downwind of such sources. Some of the types of research activities required to quantitate crucial experimental parameters are discussed.  相似文献   

9.
The contribution of dry deposition to the total atmospheric input of acidifying compounds and base cations is of overwhelming importance. Throughfall measurements provide an estimate of the total deposition to forest soils, including dry deposition, but some uncertainties, related to the canopy interaction processes, affect this approach. We compared the concentrations and the fluxes of the main ions determined in wet-only, bulk and throughfall samples collected at five forest sites in Italy. The contribution of coarse particles deposited onto the bulk samplers was of prime importance for base cations, representing on average from 16% to 46% of the bulk deposition. The extent of this dry deposition depended on some geographical features of the sites, such as the distance from the sea and the annual rainfall. The possibility of applying specific bulk/wet ratios to estimate the wet deposition proved to be limited by the temporal variability of these ratios, which must be considered together with the spatial variability. A direct comparison of the dry contribution deriving from the bulk–wet and the throughfall–wet demonstrated that an extensive natural surface (forest canopy) performs better than a small synthetic surface (funnel of the bulk sampler) in collecting dry deposition of SO42−, NO3 and Na+. The canopy exchange model was applied to both bulk and wet data to estimate the contribution of dry deposition to the total input of base cations, and the uncertainty associated to the model discussed. The exclusive use of bulk data led to a considerable underestimation of base cation dry deposition, which varies among the study sites.  相似文献   

10.
Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) were measured in bulk deposition at three Danish rural forest sites with a mutual maximum distance of 450 km. At one of the forest sites concentrations in the ambient atmosphere were sampled from a 12 m high tower. Sampling was carried out within a period of 3 years with sampling intervals of 1–2 months. Mean bulk deposition fluxes were 1 ng m−2 yr−1 I-TEQ and deviated less than 30% between the sites. Yearly average PCDD/F concentrations in the atmosphere were 24 fg m−3 I-TEQ with maximum values in the winter period. During winter months atmospheric concentrations of PCDD/F and oxidized sulphur compounds showed a positive correlation, furthermore seasonal bulk deposition showed correlation between PCDD/F and sulphate.  相似文献   

11.
Gas and aerosol measurements were made during the Polar Sunrise Experiment 2000 at Alert, Nunavut (Canada), using two independent denuder/filter systems for sampling and subsequent analysis by ion chromatography. Twelve to forty-eight hour samples were taken during a winter (9–21 February 2000) and a spring (17 April–5 May 2000) campaign. During the spring campaign, samples were taken at two different heights above the snow surface to investigate concentration differences. Total particulate NO3 is the most abundant inorganic nitrogen compound during Arctic springtime (mean 137.4 ng m−3). The NO3 fluxes were calculated above the snow surface to help identify processes that control snow–atmosphere exchange of reactive nitrogen compounds. We suggest that the observed fluxes of coarse particle NO3 via snow deposition may contribute to the nitrogen inventory in the snow surface. Measurements of surface snow provide experimental data that constrain the contribution of dry deposition of coarse particle NO3 to <7%. Wet deposition in falling snow appears to be the major contributor to the nitrate input to the snow.  相似文献   

12.
A modified factor analysis/multiple regression (FA/MR) receptor-oriented source apportionment model has been developed which permits application of FA/MR statistical methods when some of the tracers are not unique to an individual source type. The new method uses factor and regression analyses to apportion non-unique tracer ambient concentrations in situations where there are unique tracers for all sources contributing to the non-unique tracer except one, and ascribes the residual concentration to that source. This value is then used as the source tracer in the final FA/MR apportionment model for ambient paniculate matter. In addition, factor analyses results are complemented with examination of regression residuals in order to optimize the number of identifiable sources.The new method has been applied to identify and apportion the sources of inhalable particulate matter (IPM; D5015 μm), Pb and Fe at a site in Newark, NJ. The model indicated that sulfate/secondary aerosol contributed an average of 25.8 μ−3 (48%) to IPM concentrations, followed by soil resuspension (8.2 μ−3 or 15%), paint spraying/paint pigment (6.7/gmm−3or 13%), fuel oil burning/space heating (4.3 μ−3 or 8 %), industrial emissions (3.6 μm−3 or 7 %) and motor vehicle exhaust (2.7 μ−3 or 15 %). Contributions to ambient Pb concentrations were: motor vehicle exhaust (0.16μm−3or 36%), soil resuspension (0.10μm−3 or 24%), fuel oil burning/space heating (0.08μm−3or 18%), industrial emissions (0.07 μ−3 or 17 %), paint spraying/paint pigment (0.036 μm−3or 9 %) and zinc related sources (0.022 μ−3 or 5 %). Contributions to ambient Fe concentrations were: soil resuspension (0.43μ−3or 51%), paint spraying/paint pigment (0.28 μm−3or 33 %) and industrial emissions (0.15 μ−3or 18 %). The models were validated by comparing partial source profiles calculated from modeling results with the corresponding published source emissions composition.  相似文献   

13.
A radiation fog physics, gas- and aqueous-phase chemistry model is evaluated against measurements in three sites in the San Joaquin Valley of California (SJV) during the winter of 1995. The measurements include for the first time vertically resolved fog chemical composition measurements. Overall the model is successful in reproducing the fog dynamics as well as the temporal and spatial variability of the fog composition (pH, sulfate, nitrate, and ammonium concentrations) in the area. Sulfate production in the fog layer is relatively slow (1–4 μg m−3 per fog episode) compared to the episodes in the early 1980s because of the low SO2 concentrations in the area and the lack of oxidants inside the fog layer. Sulfate production inside the fog layer is limited by the availability of oxidants in the urban areas of the valley and by SO2 in the more remote areas. Nitrate is produced in the rural areas of the valley by the heterogeneous reaction of N2O5 on fog droplets, but this reaction is of secondary importance for the more polluted urban areas. The gas-phase production of HNO3 during the daytime is sufficient to balance the nitrate removed during the nighttime fog episodes. Entrainment of air from the layer above the fog provides another source of reactants for the fog layer. Wet removal is one of most important processes inside the fog layer in SJV. We estimate based on the three episodes investigated during IMS95 that a typical fog episode removes 500–2000 μg m−2 of sulfate, 2500–6500 μg m−2 of nitrate, and 2000–3500 μg m−2 of ammonium. For the winter SJV valley the net fog effect corresponds to reductions in ground ambient concentrations of 0.05–0.2 μg m−3 for sulfate, 3–6 μg m−3 for total nitrate, and 1–3 μg m−3 for total ammonium.  相似文献   

14.
Surface soil and passive air samples from a network of 23 sampling sites across Costa Rica were analyzed for polycyclic aromatic hydrocarbons (PAHs), allowing for an evaluation of absolute levels, spatial distribution patterns, air/soil concentration (A/S) ratios and relative composition. Annual mean concentrations of four-ring PAHs in air were low (median of approximately 40 pg m−3), except in Costa Rica's densely populated central valley (approximately 650 pg m−3). PAH concentrations in soil were also low (median of 5 ng g−1 dry weight) and comparable to those reported for other tropical regions. These low soil concentrations result in A/S ratios of four-ring PAHs in Costa Rica that are higher than the equilibrium air–soil partitioning coefficients and also higher than A/S ratios reported for temperate locations. A series of model calculations of increasing complexity were used to seek an explanation for variable A/S ratios of PAHs under tropical and temperate conditions. Temperature-driven changes in air–soil partitioning and differences in PAH degradability under temperate and tropical conditions are insufficient to explain the higher soil concentrations and lower A/S ratios in temperate regions. However, these can be explained by atmospheric deposition of PAHs during historical periods of much higher emissions and air concentrations and by persistence of PAHs in soils on the order of decades. Low PAH concentrations in tropical soils were found to be consistent with constant or increasing emissions, and in particular, do not require that degradation rates in soil are much faster than in temperate areas. In comparison to temperate soils, soils from Costa Rica and other tropical regions have a higher relative abundance of the lighter PAHs. This likely reflects a higher source contribution from biomass burning in the tropics, as well as the preferential loss of lighter PAHs from temperate soils that experienced high PAH deposition in the past.  相似文献   

15.
Fine particulate matter (PM2.5) was sampled at 5 Spanish locations during the European Community Respiratory Health Survey II (ECRHS II). In an attempt to identify and quantify PM2.5 sources, source contribution analysis by principal component analysis (PCA) was performed on five datasets containing elemental composition of PM2.5 analysed by ED-XRF. A total of 4–5 factors were identified at each site, three of them being common to all sites (interpreted as traffic, mineral and secondary aerosols) whereas industrial sources were site-specific. Sea-salt was identified as independent source at all coastal locations except for Barcelona (where it was clustered with secondary aerosols). Despite their typically dominant coarse grain-size distribution, mineral and marine aerosols were clearly observed in PM2.5. Multi-linear regression analysis (MLRA) was applied to the data, showing that traffic was the main source of PM2.5 at the five sites (39–53% of PM2.5, 5.1–12.0 μg m−3), while regional-scale secondary aerosols accounted for 14–34% of PM2.5 (2.6–4.5 μg m−3), mineral matter for 13–31% (2.4–4.6 μg m−3) and sea-salt made up 3–7% of the PM2.5 mass (0.4–1.3 μg m−3). Consequently, despite regional and climatic variability throughout Spain, the same four main PM2.5 emission sources were identified at all the study sites and the differences between the relative contributions of each of these sources varied at most 20%. This would corroborate PM2.5 as a useful parameter for health studies and environmental policy-making, owing to the fact that it is not as subject to the influence of micro-sitting as other parameters such as PM10. African dust inputs were observed in the mineral source, adding on average 4–11 μg m−3 to the PM2.5 daily mean during dust outbreaks. On average, levels of Al, Si, Ti and Fe during African episodes were higher by a factor of 2–8 with respect to non-African days, whereas levels of local pollutants (absorption coefficient, S, Pb, Cl) showed smaller variations (factor of 0.5–2).  相似文献   

16.
Meteorological analyses of acidic deposition data were undertaken to quantify the effect of Sudbury emissions on precipitation quality and air quality in Ontario during the period 1980–1983 with particular emphasis on the Sudbury smelter shutdown period (July 1982–March 1983). The techniques used included air parcel trajectories and detailed meteorological analysis.Results indicate that the contribution of the Sudbury smelters to sulphate wet deposition in central and southern Ontario was small—less than 12 % of the wet deposition at the study sites. The smelter contribution to sulphur dry deposition was greater—possibly as high as 47 % of the total at Kapuskasing, and up to about 20–30% of the total in central Ontario, with a smaller contribution (less than 5 %) to the southwest and west of Sudbury. These percentages apply to the smelter emission rate in the early 1980s, i.e. about 0.9 million metric tons of SO2 per year.  相似文献   

17.
A study was conducted by the Atmospheric Environment Service (AES) to compute the transboundary sulphur flux between eastern Canada and the eastern United States on a monthly and annual basis for the years 1980–1983.The S fluxes were calculated using the AES Lagrangian model. SO2 and SO4 concentrations were computed at 16 line segment mid-points along the Canada-U.S. border from western Ontario through Quebec to the Maritimes. Sulphur fluxes were determined at 6-h intervals and summed temporally and spatially to obtain the total transboundary S flux. By using only the Canadian and only the U.S. emissions, the total S flux contributions from each country could be determined.Canadian and U.S. emissions declined from 1980 to 1983 by 20% and 11%, respectively, then increased slightly in 1983. The total annual S flux from the U.S. to Canada ranged from 1.86 Mt S (1980) to 1.61 Mt S (1983) while the flux from Canada to the U.S. ranged from 0.75 Mt S (1980) to 0.52 Mt S (1982). Fluxes between both countries were highest (lowest) in the winter (summer) because of the stronger (lighter) winds and higher (lower) SO2 concentrations. However, SO4 mass flux peaked in summer and early fall because of higher chemical conversion rates.Annual transboundary fluxes were observed to change by up to 20% in response to emissions changes and meteorological variability and these two influences should be considered together when assessing flux changes.  相似文献   

18.
Pine pollen concentrations in air at a semi-remote site in northern Wisconsin attained levels of 18 and 25 μ m−3 in late May and early June of 1979 and 1981, respectively. The upper and lower limits for the deposition velocity of pine pollen at this site are approximately 30 and 1.3 cm s−1, respectively. Consequently, the average annual pine pollen flux at this location for 1979 and 1981 was between 8.0 and 0.35 g m−2. Deposition of total phosphorus and organic C by pollen dispersal are about 5–100% and 11–240%, respectively, of the measured bulk atmospheric loading rate in the region. Pine pollen fluxes of water-extractable K are about 10–230% of the average annual wet deposition, while the fluxes of waterextractable NO3 and SO4−2 by pollen appear to be negligible in comparison to the total atmospheric deposition (wet plus dry deposition) by other particles. The annual pine pollen flux to Crystal Lake, an oligotrophic seepage lake in the region, was estimated to be 6.5 g m−2 during 1981. The deposition of total P by pollen to this lake was 5.8 kg a−1, which is 45 % of the external input of total phosphorus. About 60% of the total P in samples of Pinus strobus and P. resinosa was dissolved reactive P, which is readily available for plant uptake. Because P is the limiting nutrient for many lacustrine systems and pine pollen dispersal coincides with the period of phytoplankton blooms in temperate-region lakes, this episodic input of P may represent an important source for seepage lakes whose external inputs are dominated by atmospheric deposition.  相似文献   

19.
Federal Tier 3 motor vehicle emission and fuel sulfur standards have been promulgated in the United States to help attain air quality standards for ozone and PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm). The authors modeled a standard similar to Tier 3 (a hypothetical nationwide implementation of the California Low Emission Vehicle [LEV] III standards) and prior Tier 2 standards for on-road gasoline-fueled light-duty vehicles (gLDVs) to assess incremental air quality benefits in the United States (U.S.) and the relative contributions of gLDVs and other major source categories to ozone and PM2.5 in 2030. Strengthening Tier 2 to a Tier 3-like (LEV III) standard reduces the summertime monthly mean of daily maximum 8-hr average (MDA8) ozone in the eastern U.S. by up to 1.5 ppb (or 2%) and the maximum MDA8 ozone by up to 3.4 ppb (or 3%). Reducing gasoline sulfur content from 30 to 10 ppm is responsible for up to 0.3 ppb of the improvement in the monthly mean ozone and up to 0.8 ppb of the improvement in maximum ozone. Across four major urban areas—Atlanta, Detroit, Philadelphia, and St. Louis—gLDV contributions range from 5% to 9% and 3% to 6% of the summertime mean MDA8 ozone under Tier 2 and Tier 3, respectively, and from 7% to 11% and 3% to 7% of the maximum MDA8 ozone under Tier 2 and Tier 3, respectively. Monthly mean 24-hr PM2.5 decreases by up to 0.5 μg/m3 (or 3%) in the eastern U.S. from Tier 2 to Tier 3, with about 0.1 μg/m3 of the reduction due to the lower gasoline sulfur content. At the four urban areas under the Tier 3 program, gLDV emissions contribute 3.4–5.0% and 1.7–2.4% of the winter and summer mean 24-hr PM2.5, respectively, and 3.8–4.6% and 1.5–2.0% of the mean 24-hr PM2.5 on days with elevated PM2.5 in winter and summer, respectively.

Implications: Following U.S. Tier 3 emissions and fuel sulfur standards for gasoline-fueled passenger cars and light trucks, these vehicles are expected to contribute less than 6% of the summertime mean daily maximum 8-hr ozone and less than 7% and 4% of the winter and summer mean 24-hr PM2.5 in the eastern U.S. in 2030. On days with elevated ozone or PM2.5 at four major urban areas, these vehicles contribute less than 7% of ozone and less than 5% of PM2.5, with sources outside North America and U.S. area source emissions constituting some of the main contributors to ozone and PM2.5, respectively.  相似文献   

20.
The dry deposition rates of sulfate particles to artificial surfaces within and above a mature hardwood forest were measured over an annual range of synoptic weather conditions. Artificial, or ‘surrogate’, surfaces representing both rough and smooth textural types included deposition buckets, petri dishes, filter paper, Teflon configurations and polycarbonate membranes. Ambient concentrations of sulfate and sulfur dioxide were also monitored.The artificial surfaces were evaluated on the basis of the magnitude of the sulfate dry deposition rates and measurement precision. Correlations between techniques and the magnitude of the deposition velocities identified technique similarities. Ambient concentrations of the sulfur oxides and the deposition rates were not well correlated. For diverse reasons, many of the techniques were found to have limited reliability. The petri dish, bucket inside and filter plate surfaces were found to represent the most precise devices for the estimation of dry deposition to smooth, complex and rough artificial surfaces, respectively. Seasonal averages for samplers exposed at all heights were 11.2, 27.7 and 71.2μg SO42−m−2h−1, yielding mean deposition velocities to surfaces exposed within the forest canopy of 0.03,0.11 and 0.14 cm s−1 and an annual estimate of the potential dry deposition to a foliated hardwood forest of 4.0, 11.5 and 21.0 kg SO42−ha−1 for the petri dish, bucket inside and filter plate surfaces, respectively. The indirect ratio between deposition rates and velocities results from varying concentrations of ambient sulfate between sampling periods. The accuracy of the filter plate data is suspect due to a significant correlation with sulfur dioxide concentrations. Sulfur concentration and deposition rate gradients indicate the forest is providing a net sink for sulfur pollutants during periods with foliage.The wide range of dry deposition rates estimated from the variety of deposition surfaces emphasizes the uncertainty of the artificial surface measurement techniques. In spite of these limitations, surrogate surfaces provide an estimate of sulfate flux rates not currently obtainable from natural surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号