首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 792 毫秒
1.
On June 5 and 6 of 1980, two parallel plume oxidation studies were carried out in the vicinity of the Tennessee Valley Authority's Colbert Steam Plant. One study was performed in a smog chamber into which stack gases were injected and mixed with ambient air. The other study included direct airborne sampling of the power plant plume. Atmospheric oxidation rates for the conversion of SO2 to SO4 2- and the removal rates of NO x (which is presumably the rate of NO3 - formation) were estimated for both studies. The SO2 to SO4 2- rate coefficients were found to be 0.022 ± 0.009 h-1 for both chamber experiments and the first airborne sampling day. For the second day, a rate constant of 0.041 ± 0.052 h-1 was estimated from the aircraft data. The large deviation in this value is explained by the fact that the plume from the power plant combined and reacted with the urban plume from the city of Florence, AL. The formation of a very large "O3 bulge" on this day is also attributed to the mixed plumes. The first order rate coefficients for NO x removal were estimated to be 0.27 ± 0.14 h-1 for both chamber experiments and the first airborne sampling day. A NO x removal rate could not be determined for the second airborne sampling day.  相似文献   

2.
ABSTRACT

The visual impact of primary particles emitted from stacks is regulated according to stack opacity criteria. In-stack monitoring of the flue gas opacity allows plant operators to ensure that the plant meets U.S. Environmental Protection Agency opacity regulations. However, the emission of condensable gases such as SO3 (that hydrolyzes to H2SO4), HCl, and NH3, which may lead to particle formation after their release from the stack, makes the prediction of stack plume opacity more difficult.

We present here a computer simulation model that calculates the opacity due to both primary particles emitted from the stack and secondary particles formed in the atmosphere after the release of condensable gases from the stack. A comprehensive treatment of the plume rise due to buoyancy and momentum is used to calculate the location at which the condensed water plume has evaporated (i.e., where opacity regulations apply).

Conversion of H2SO4 to particulate sulfate occurs through nucleation and condensation on primary particles. A thermodynamic aerosol equilibrium model is used to calculate the amount of ammonium, chloride, and water present in the particulate phase with the condensed sulfate. The model calculates the stack plume opacity due to both primary and secondary particles. Examples of model simulations are presented for three scenarios that differ by the emission control equipment installed at the power plant: (1) electrostatic precipitators (ESP), (2) ESP and flue gas desulfurization, and (3) ESP and selective catalytic reduction. The calculated opacity is most sensitive to the primary particulate emissions. For the conditions considered here, SO3 emissions showed only a small effect, except if one assumes that most H2SO4 condenses on primary particles. Condensation of NH4Cl occurs only at high NH3 emission rates (about 25 ppm stack concentration).  相似文献   

3.
ABSTRACT

Airborne measurements were made of gaseous and particulate species in the plume of a large coal-fired power plant after flue gas desulfurization (FGD) controls were installed. These measurements were compared with measurements made before the controls were installed. The light scattering and number and volume distributions of plume excess particles were determined by nephelometry and optical particle counting techniques. The plume impact based on optical techniques was much lower than that observed in earlier measurements. Indeed, plume excess volumes as a function of particle size were of the same magnitude as the variability of the background volume distribution. In situ excess plume scattering actually decreased with distance from the source, in contrast to pre-FGD conditions. The upper limit for the dry rate of SO2-to-SO4 2- conversion was estimated from plume excess volume measurements to be about 4% lir1. This is slightly greater than the upper limit, 3.5% lir1, estimated by earlier researchers, but the same as that estimated using the present technique with the earlier data. The cross-plume profile of volume suggests SO2-to-SO4 2- conversion is highest at the plume edges. The greatest benefit of SO2 reduction on plume excess volume and visibility appears to occur far downwind of the source.  相似文献   

4.
A study is presented of the physics and chemistry relevant to the visual impact of the plume from an electric power generating plant located in the Mojave Desert. The amount of light absorption by particles in the plume did not differ significantly from that by particles in the ambient air. While sulfate and nitrate occasionally contributed substantially to the total particle mass in the plume, generally they contributed < 10% to that mass, with the contribution of sulfate substantially greater than that of nitrate. Mean rates of gas-to-particle conversion in the plume were ∼ 0.6% h−1 for sulfate and ∼ 0.08% h−1 for nitrate. Light scattering by the plume was more dependent on the total mass of particles in the sub-μm size range than on sulfate mass alone. At a wavelength of 550 nm, NO2 absorption frequently contributed about equally with light scattering particles to the optical depth of the plume.  相似文献   

5.
Airborne measurements were performed in the plume of the Cumberland Power Plant during August 1998 using a highly sensitive SO2 instrument. The measurements confirmed previous suggestions that NOy species are removed from the plume at a faster rate than SO2. The differential removal rate (the difference between loss rate of NOy and that of SO2) was estimated to be 0.06 h−1. This value implies that the NOy loss rate is in the range of 0.09–0.14 h−1. The application of a mathematical argument, based on the convolution integral, enabled improved synchronization of the data from the SO2 and NOy instruments. Examination of the synchronized data revealed that the concentration ratio of SO2 and NOy varies across the plume. Near the source it is higher at the wings of the plume, while in the core of the plume it is similar to the ratio at the release point. Two possible explanations of the observations are discussed: conversion to non-measurable NOy species, and in-plume loss of NOy (as HNO3) via dry deposition.  相似文献   

6.
ABSTRACT

The rate of conversion of SO2 to SO4 2- was re-estimated from measurements made in the plume of the Cumberland power plant, located on the Cumberland River in north-central Tennessee, after installation of flue gas desulfurization (FGD) scrubbers for SO2 removal in 1994. The ratio of SO2 to NOy emissions into the plume has been reduced to ~0.1, compared with a prescrubber value of ~2. To determine whether the SO2 emissions reduction has correspondingly reduced plume-generated particulate SO4 2- production, we have compared the rates of conversion before and after scrubber installation. The prescrubber estimates were developed from measurements made during the Tennessee Plume Study conducted in the late 1970s. The post-scrubber estimates are based upon two series of research flights in the summers of 1998 and 1999. During two of these flights, the Cumberland plume did not mix with adjacent power plant plumes, enabling rate constants for conversion to be estimated from samples taken in the plume at three downwind distances. Dry deposition losses and the fact the fact that SO2 is no longer in large excess compared with SO4 2- have been taken into account, and an upper limit for the conversion rate constant was re-estimated based on plume excess aerosol volume. The estimated upper limit values are 0.069 hr-1 and 0.034 hr-1 for the 1998 and 1999 data, respectively. The 1999 rate is comparable with earlier values for nonscrubbed plumes, and although the 1998 upper limit value is higher than expected, these estimates do not provide strong evidence for deviation from a linear relationship between SO2 emissions and SO4 2- formation.  相似文献   

7.
8.
The extent of SO2 conversion on Membrana (Ghia) Nylasorb nylon filters under field conditions has been evaluated and found to be quite variable. The S-SO42− loading on the nylon filters is higher at higher SO2 concentrations, and on a long term basis approaches a saturatio limit of 2.5 μg S-SO42− on a 47mm disc, at a dosage of 230 μg SO2 approximately. The % conversion decreases as the SO2 concentration increases. On a long term basis, at an SO2 concentration range of 1.0–7.7 μg m−3, the conversion ranges from 8.2% to 2.1%. The dependence of SO2 conversion on nylon filters on relative humidity displays a diurnal pattern. An expression has been derived to explain the observed % SO2 conversion on nylon filters as a combined effect of the ambient SO2 concentration and relative humidity.  相似文献   

9.
The reactive and optics model of emissions (ROME) is a reactive plume visibility model that simulates the potential atmospheric impacts of stack emissions. We present here an evaluation of the ability of ROME to simulate several plume physical and chemical variables, using an experimental data base that consists of a total of 40 case studies from four field programs. The evaluation variables include plume height, horizontal width, NOx and SO2 maximum concentrations, NO2/NOx concentration ratio at the plume centerline, and plume-to-sky radiance ratios. Three algorithms used to simulate plume dispersion in ROME were compared: (1) the empirical Pasquill–Gifford–Turner (PGT) scheme, (2) a first-order closure (FOC) algorithm and (3) a second-order closure (SOC) algorithm that simulates the instantaneous plume dimensions.The plume height results show a correlation of 0.82 between simulated and measured values and a gross error that is 13% of the mean measured value. For plume horizontal dispersion, the second-order closure algorithm produces a moderate correlation (0.54) and a small bias (5% of the mean measured value) in comparison with the field data. Although the PGT scheme also demonstrates moderate correlation with the measurements, it produces a negative bias by significantly underestimating plume horizontal dispersion. The first-order closure algorithm overestimates plume width and shows the least correlation (with the measurements) of the three dispersion algorithms.For the NYSEG data set where coordinated measurements of stack emissions, meteorology at plume height and plume characteristics were available, the SOC algorithm provides better correlations for NOx concentrations, NO2/NOx ratios and plume visibility than the FOC and PGT algorithms. For plume visibility, the SOC algorithm shows a correlation of 0.96 at 405 nm, the wavelength where the plume was visible, and it simulates no visible plume at the other wavelengths (550 and 700 nm).A comparison of ROME simulations with those of the plume visibility model PLUVUE II shows that ROME, with the SOC algorithm, performs better for all variables.  相似文献   

10.
Data from 137 sets of plume observations, comprising nearly 1 500 data points, are correlated with two simple formulae. These formulae, one for the buoyancy-dominated rise region and the other for the stratification-dominated levelled-off region of a plume, represent an approximate form of the entrainment theory of Hoult, et al. (1968)1 for the case of uniform atmospheric stratification and zero wind shear. The observations, which are those of the Tennessee Valley Authority and of Bringfelt (1968),6 were made of plumes whose source strengths ranged from 0.4 to 111 Mw and which were emitted from stacks of heights between 21 and 183 m. The two formulae are found to correlate the data equally well over all values of the stack exit and meteorological parameters, provided only that the bulk mean velocity of the stack gases exceeds the mean wind speed by at least 20%. The ratio of observed to calculated plume rise is found to be distributed log normally about the mean value.

The median rise at large distances downstream was found to differ insignificantly from that given by the effective stack height formula recommended recently11 for large buoyant plumes. Based upon the correlation, two formulae are recommended for computing median plume rise at all distances downstream of the stack. The formulae include an estimate of the expected uncertainty in the predicted rise.  相似文献   

11.
ABSTRACT

Receptor-based chemical mass balance (CMB) analysis techniques are designed to apportion species that are conserved during pollutant transport using conserved source profiles. The techniques will fail if non-conservative species (or profiles) are not properly accounted for in the CMB model. The straightforward application of the CMB model developed for Project MOHAVE using regional profiles resulted in a significant under-prediction of total sulfate oxides (SOx, SO2 plus fine particulate sulfate) for many samples at Meadview, AZ. In addition, for these samples the concentration of the inert tracer emitted from the MOHAVE Power Project (MPP), ocPDCH, was also under-predicted. A second-generation model has been developed which assumes that separation of particles and SO2 can occur in the MPP plume during nighttime stable plume conditions. This second-generation CMB model accounts for all SOx present at the various receptor sites. In addition, the concentrations of ocPDCH and the presence of other inert tracers of emission from regional sources are accurately predicted. The major source of SOx at Meadview was the MPP, but the major source of sulfate at this site was the Las Vegas urban area. At Hopi Point in the Grand Canyon, the Baja California region (Imperial Valley and northwestern Mexico) was the major source of both SOx and sulfate.  相似文献   

12.
Factor analysis comparisons between the MAP3S network and Minnesota precipitation chemistry data show marked differences. An assessment of ambient aerosol and precipitation chemistry data obtained at several Colorado and Minnesota sites suggests that natural source inputs may contribute to the sulfate observed in ambient aerosol and at least partly, explain the marked differences of Minnesota and Colorado precipitation chemistry data from that of MAP3S (eastern U.S.). However, a recently proposed mechanism, SO2 to SO4 conversion on the surface of dust particles, may be more important than natural sources in explaining western and midwestern precipitation chemistry data. It is concluded that these predominantly non-acidic SO4 sources may explain the poor association between the H+ and SO4 in many western and some midwestern precipitation chemistry data sets.  相似文献   

13.
ABSTRACT

During wintertime, haze episodes occur in the Dallas-Ft. Worth (DFW) urban area. Such episodes are characterized by substantial light scattering by particles and relatively low absorption, leading to so-called “white haze.” The objective of this work was to assess whether reductions in the emissions of SO2 from specific coal-fired power plants located over 100 km from DFW could lead to a discernible change in the DFW white haze. To that end, the transport, dispersion, deposition, and chemistry of the plume of a major power plant were simulated using a reactive plume model (ROME). The realism of the plume model simulations was tested by comparing model calculations of plume concentrations with aircraft data of SF6 tracer concentrations and ozone concentrations. A second-order closure dispersion algorithm was shown to perform better than a first-order closure algorithm and the empirical Pasquill-Gifford-Turner algorithm. For plume impact assessment, three actual scenarios were simulated, two with clear-sky conditions and one with the presence of fog prior to the haze. The largest amount of sulfate formation was obtained for the fog episode. Therefore, a hypothetical scenario was constructed using the meteorological conditions of the fog episode with input data values adjusted to be more conducive to sulfate formation. The results of the simulations suggest that reductions in the power plant emissions lead to less than proportional reductions in sulfate concentrations in DFW for the fog scenario. Calculations of the associated effects on light scattering using Mie theory suggest that reduction in total (plume + ambient) light extinction of less than 13% would be obtained with a 44% reduction in emissions of SO2 from the modeled power plant.  相似文献   

14.
The trends in and relationships between ambient air concentrations of sulfur dioxide and sulfate aerosols at 48 urban sites and 27 nonurban sites throughout the U.S. between 1963 and 1972 have been analyzed. The substantial decreases in ambient SO2 concentrations measured at urban sites in the eastern and midwestern U.S. are consistent with the corresponding reductions in local SO2 emissions, but these decreases have been accompanied by only modest decreases in ambient sulfate concentrations. Large differences in the amounts of SO2 emitted within individual air quality control regions are associated with much smaller differences in the corresponding ambient sulfate concentrations. Substantial changes in the patterns of SO2 emissions between air quality regions result in essentially no differences between ambient sulfate concentrations in those air quality regions. Comparisons of several air quality regions in the eastern and western U.S. with similar SO2 emission levels and patterns of emissions clearly demonstrates the higher ambient sulfate concentration levels in eastern air quality control regions. Relationships between SO2, sulfates, and vanadium concentrations at eastern nonurban U.S. sites cannot be explained by local emission sources. These various observed results can be best explained by long distance sulfur oxide transport with chemical conversion of SO2 to sulfates occurring over ranges of hundreds of kilometers. This conclusion has been suggested earlier and the present analysis strongly supports previous discussions. An impact of long range transport of sulfates is to emphasize the need for Consistent strategies for reduction of sulfur oxides throughout large geographical regions. Additions of large capacities involving elevated sources in mid-continental or western regions could result in significant increases in sulfate concentrations well downwind of such sources. Some of the types of research activities required to quantitate crucial experimental parameters are discussed.  相似文献   

15.
ABSTRACT

The rate of formation of secondary particulate matter (PM) in power plant plumes varies as the plume material mixes with the background air. Consequently, the rate of oxidation of sulfur dioxide (SO2) and nitrogen dioxide (NO2) to sulfate and nitric acid, respectively, can be very different in plumes and in the background air (i.e., air outside the plume). In addition, the formation of sulfate and nitric acid in a power plant plume is a strong function of the chemical composition of the background air and the prevailing meteorological conditions.

We describe the use of a reactive plume model, the Reactive and Optics Model of Emissions, to simulate sulfate and nitrate formation in a power plant plume for a variety of background conditions. We show that SO2 and NO2 oxidation rates are maximum in the background air for volatile organic compound (VOC)-limited airsheds but are maximum at some downwind distance in the plume when the background air is nitrogen oxide (NOx)-limited. Our analysis also shows that it is essential to obtain measurements of background concentrations of ozone, aldehydes, peroxyacetyl nitrate, and other VOCs to properly describe plume chemistry.  相似文献   

16.
Vehicle particle emissions are studied extensively because of their health effects, contribution to ambient PM levels and possible impact on climate. The aim of this work was to obtain a better understanding of secondary particle formation and growth in a diluting vehicle exhaust plume using 3-d information of simulations together with measurements. Detailed coupled computational fluid dynamics (CFD) and aerosol dynamics simulations have been conducted for H2SO4–H2O and soot particles based on measurements within a vehicle exhaust plume under real conditions on public roads.Turbulent diffusion of soot and nucleation particles is responsible for the measured decrease of number concentrations within the diesel car exhaust plume and decreases coagulation rates. Particle size distribution measurements at 0.45 and 0.9 m distance to the tailpipe indicate a consistent soot mode (particle diameter Dp∼50 nm) at variable operating conditions. Soot mode number concentrations reached up to 1013 m−3 depending on operating conditions and mixing.For nucleation particles the simulations showed a strong sensitivity to the spatial dilution pattern, related cooling and exhaust H2SO4(g). The highest simulated nucleation rates were about 0.05–0.1 m from the axis of the plume. The simulated particle number concentration pattern is in approximate accordance with measured concentrations, along the jet centreline and 0.45 and 0.9 m from the tailpipe. Although the test car was run with ultralow sulphur fuel, high nucleation particle (Dp⩽15 nm) concentrations (>1013 m−3) were measured under driving conditions of strong acceleration or the combination of high vehicle speed (>140 km h−1) and high engine rotational speed (>3800 revolutions per minute (rpm)).Strong mixing and cooling caused rapid nucleation immediately behind the tailpipe, so that the highest particle number concentrations were recorded at a distance, x=0.45 m behind the tailpipe. The simulated growth of H2SO4–H2O nucleation particles was unrealistically low compared with measurements. The possible role of low and semi-volatile organic components on the growth processes is discussed. Simulations for simplified H2SO4–H2O–octane–gasoil aerosol resulted in sufficient growth of nucleation particles.  相似文献   

17.
A year-long field study to characterize the ionic species in PM2.5 was carried out in Shanghai and Beijing, China, in 1999–2000. Weekly samples of PM2.5 were collected using a special low flow rate (0.4 l min−1) sampler. In Shanghai, SO42− NO3 and NH4+ were the dominant ionic species, which accounted for 46%, 18% and 17% of the total mass of ions, respectively. Local SO2 emissions were an important source of SO42− in PM2.5 because the SO42− concentration was correlated with the SO2 concentration (r=0.66). The relatively stable SO42−/SO2 mass ratio over a large range of temperatures suggests that gas-phase oxidation of SO2 played a minor role in the formation of SO42−. The sum of SO42− and NO3 was highly correlated with NH4+ (r=0.96), but insufficient ammonium was present to totally neutralize the aerosol. In Beijing, SO42−, NO3 and NH4+ were also the dominant ionic species, constituting 44%, 25% and 16% of the total mass of water-soluble ions, respectively. Local SO2 emissions were an important source of SO42− in the winter since SO42− was correlated with SO2 (r=0.83). The low-mass SO42−/SO2 ratio (0.27) during winter, which had low humidity, suggests that gas-phase oxidation of SO2 was a major route of sulfate formation. In the summer, however, much higher mass ratios of SO42−/SO2 (5.6) were observed and were ascribed to in-cloud sulfate formation. The annual average ratio of NO3/SO42− was 0.4 and 0.6 in Shanghai and in Beijing, respectively, suggesting that stationary emissions were still a dominant source in these two cities.  相似文献   

18.
When multiple stacks are grouped or ganged together at a site, the effluent plumes are often observed to merge downwind, forming a single buoyant plume whose rate of rise is enhanced relative to the rise of the plumes individually. The magnitude of this rise enhancement depends on many factors, and the few available models for rise enhancement do not always agree with one another. In the present study the rise behaviour of pairs of merging, buoyant plumes was studied by physical modelling in a water flume at 1:500 scale. The experiments were conducted at several stack separation distances and various exit velocity ratios for stack pairs aligned with, or perpendicular to, the ambient flow. Limited experiments were also done with the stacks aligned at other angles to the flow. The stack releases were made buoyant by heating the source water, and the resulting plumes were measured with an array of sensitive temperature probes. From these measurements it was possible to determine the plume structure and rise rates. For small stack separations when the stacks are aligned with the ambient flow, the experimental results show that the enhanced rise is close to, and sometimes above, the maximum theoretical rise enhancement factor of 21/3. For the perpendicular orientation there is little or no rise enhancement. The rise enhancement for other stack orientations is somewhere between these two extremes. A plausible physical explanation for the observed behaviour is given, based on initial momentum shielding and line vortex dynamics in the merging plumes.  相似文献   

19.
This paper is intended to be used by specialists engaged in air and precipitation quality management on regional and continental scales. Major goals are to establish definition, methodology and specific values of background air and precipitation quality for sulfur (S) and nitrogen (N) species to be used in practical applications of air resources management. Major findings are the following:
  • 1.(a) 69% of SO2 and 63 % of NO2 concentration over Europe originate from continental scale anthropogenic sources,
  • 2.(b) 15% of precipitation sulfate and 11% of precipitation nitrate over Europe are contributed by hemispheric background,
  • 3.(c) hemispheric background pollution values for Europe were found as 1.25 μg (SO2-S)m−3, 0.80 μg (SO42−-S)m−3, 0.157 mg (SO42−-S)l−1 and 0.04 mg (NO3-N)ℓ−1.
  相似文献   

20.
The rate of incorporation of radiolabeled sulfur dioxide has been determined in submicron sized ammonium sulfate droplet aerosols with and without catalytic metal ions (Fe3+, Mn2+). The sulfate droplets were generated by nebulizing solutions with a multiple jet Collison nebulizer and aged up to 30 min in a 10 m3 plug-flow reaction duct. Radiolabeled 35SO2 was metered into purified air to provide a concentration of 5 ppm.Three different atmospheres were studied: SO2 in purified air, SO2 in the presence of ammonium sulfate aerosol (1 mg m−3, 1 μm MMAD), and SO2 in the presence of ammonium sulfate aerosol containing Fe3+ and Mn2+ ions. No measurable SO2 conversion was detected in samples from atmospheres without the catalytic metal ions. A net SO2 conversion rate equivalent to 0.02 % h−1 was observed in the presence of Fe3+ and Mn2+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号