首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An analysis of fine particulate data in eastern North Carolina was conducted to investigate the impact of the hog industry and its emissions of ammonia into the atmosphere. The fine particulate data are simulated using ISORROPIA, an equilibrium thermodynamic model that simulates the gas and aerosol equilibrium of inorganic atmospheric species. The observational data analyses show that the major constituents of fine particulate matter (PM2.5) are organic carbon, elemental carbon, sulfate, nitrate, and ammonium. The observed PM2.5 concentration is positively correlated with temperature but anticorrelated with wind speed. The correlation between PM2.5 and wind direction at some locations suggests an impact of ammonia emissions from hog facilities on PM2.5 formation. The modeled results are in good agreement with observations, with slightly better agreement at urban sites than at rural sites. The predicted total inorganic particulate matter (PM) concentrations are within 5% of the observed values under conditions with median initial total PM species concentrations, median relative humidity (RH), and median temperature. Ambient conditions with high PM precursor concentrations, low temperature, and high RH appear to favor the formation of secondary PM.  相似文献   

2.
We have developed a modelling system for predicting the traffic volumes, emissions from stationary and vehicular sources, and atmospheric dispersion of pollution in an urban area. This paper describes a comparison of the NOx and NO2 concentrations predicted using this modelling system with the results of an urban air quality monitoring network. We performed a statistical analysis to determine the agreement between predicted and measured hourly time series of concentrations at four permanently located and three mobile monitoring stations in the Helsinki Metropolitan Area in 1996–1997 (at a total of ten urban and suburban measurement locations). At the stations considered, the so-called index of agreement values of the predicted and measured time series of the NO2 concentrations vary between 0.65 and 0.82, while the fractional bias values range from −0.29 to +0.26. In comparison with corresponding results presented in the literature, the agreement between the measured and predicted datasets is good, as indicated by these statistical parameters. The seasonal variations of the NO2 concentrations were analysed in terms of the relevant meteorological parameters. We also analysed the difference between model predictions and measured data diagnostically, in terms of meteorological parameters, including wind speed and direction (the latter separately for two wind speed classes), atmospheric stability and ambient temperature, at two monitoring stations in central Helsinki. The modelling system tends to overpredict the measured NO2 concentrations both at the highest (u⩾6 m s−1) and at the lowest wind speeds (u<2 m s−1). For higher wind speeds, the modelling system overpredicts the measured NO2 concentrations in certain wind direction intervals; specific ranges were found for both monitoring stations considered. The modelling system tends to underpredict the measured concentrations in convective atmospheric conditions, and overpredict in stable conditions. The possible physico-chemical reasons for these differences are discussed.  相似文献   

3.
The predictions of three urban air pollution models with varying degrees of mathematical and computational complexities are compared against the hourly SO2 ground-level concentrations observed on 10 winter nights of the RAPS experiment in St. Louis. The emphasis in this study is on the prediction of urban area source concentrations. Statistics for the paired comparison of predictions of each model with the observations are presented. The RAM and the ATDL model with stable diffusion coefficients overestimated the observed night-time concentrations. The results show that the performance of the ATDL model with near-neutral diffusion coefficients is comparable to the more sophisticated 3-D grid numerical model.  相似文献   

4.
The information presented in this paper is directed to air pollution scientists with an interest in applying air quality simulation models. RAM is the three letter designation for this efficient Gaussian-plume multiple-source air quality algorithm. RAM is a method of estimating short-term dispersion using the Gaussian steady-state model. This algorithm can be used for estimating air quality concentrations of relatively stable pollutants for averaging times from an hour to a day in urban areas from point and area sources. The algorithm is applicable for locations with level or gently rolling terrain where a single wind vector for each hour is a good approximation to the flow over the source area considered. Calculations are performed for each hour. Hourly meteorological data required are wind direction, wind speed, stability class, and mixing height. Emission information required of point sources consists of source coordinates, emission rate, physical height, stack gas volume flow and stack gas temperature. Emission information required of area sources consists of south-west corner coordinates, source area, total area emission rate and effective area source height. Computation time is kept to a minimum by the manner in which concentrations from area sources are estimated using a narrow plume hypothesis and using the area source squares as given rather than breaking down all sources to an area of uniform elements. Options are available to the user to allow use of three different types of receptor locations: 1 ) those whose coordinates are input by the user, 2) those whose coordinates are determined by thé model and are downwind óf significant point and area sources where maxima are likely to occur, and 3) those whose coordinates are determined by the model to give good area coverage of a specific portion of the region. Computation time is also decreased by keeping the number of receptors to a minimum.  相似文献   

5.
An evaluation of the steady-state dispersion model AERMOD was conducted to determine its accuracy at predicting hourly ground-level concentrations of sulfur dioxide (SO2) by comparing model-predicted concentrations to a full year of monitored SO2 data. The two study sites are comprised of three coal-fired electrical generating units (EGUs) located in southwest Indiana. The sites are characterized by tall, buoyant stacks, flat terrain, multiple SO2 monitors, and relatively isolated locations. AERMOD v12060 and AERMOD v12345 with BETA options were evaluated at each study site. For the six monitor–receptor pairs evaluated, AERMOD showed generally good agreement with monitor values for the hourly 99th percentile SO2 design value, with design value ratios that ranged from 0.92 to 1.99. AERMOD was within acceptable performance limits for the Robust Highest Concentration (RHC) statistic (RHC ratios ranged from 0.54 to 1.71) at all six monitors. Analysis of the top 5% of hourly concentrations at the six monitor–receptor sites, paired in time and space, indicated poor model performance in the upper concentration range. The amount of hourly model predicted data that was within a factor of 2 of observations at these higher concentrations ranged from 14 to 43% over the six sites. Analysis of subsets of data showed consistent overprediction during low wind speed and unstable meteorological conditions, and underprediction during stable, low wind conditions. Hourly paired comparisons represent a stringent measure of model performance; however, given the potential for application of hourly model predictions to the SO2 NAAQS design value, this may be appropriate. At these two sites, AERMOD v12345 BETA options do not improve model performance.

Implications:

A regulatory evaluation of AERMOD utilizing quantile-quantile (Q–Q) plots, the RHC statistic, and 99th percentile design value concentrations indicates that model performance is acceptable according to widely accepted regulatory performance limits. However, a scientific evaluation examining hourly paired monitor and model values at concentrations of interest indicates overprediction and underprediction bias that is outside of acceptable model performance measures. Overprediction of 1-hr SO2 concentrations by AERMOD presents major ramifications for state and local permitting authorities when establishing emission limits.  相似文献   


6.
In 1997, a measuring campaign was conducted in a street canyon (Runeberg St.) in Helsinki. Hourly mean concentrations of CO, NOx, NO2 and O3 were measured at street and roof levels, the latter in order to determine the urban background concentrations. The relevant hourly meteorological parameters were measured at roof level; these included wind speed and direction, temperature and solar radiation. Hourly street level measurements and on-site electronic traffic counts were conducted throughout the whole of 1997; roof level measurements were conducted for approximately two months, from 3 March to 30 April in 1997. CO and NOx emissions from traffic were computed using measured hourly traffic volumes and evaluated emission factors. The Operational Street Pollution Model (OSPM) was used to calculate the street concentrations and the results were compared with the measurements. The overall agreement between measured and predicted concentrations was good for CO and NOx (fractional bias were −4.2 and +4.5%, respectively), but the model overpredicted the measured NO2 concentrations (fractional bias was +22%). The agreement between the measured and predicted values was also analysed in terms of its dependence on wind speed and direction; the latter analysis was performed separately for two categories of wind velocity. The model qualitatively reproduces the observed behaviour very well. The database, which contains all measured and predicted data, is available for further testing of other street canyon dispersion models. The dataset contains a larger proportion of low wind speed cases, compared with other available street canyon measurement datasets.  相似文献   

7.
The numerical model developed in the first part of this investigation is applied to assess the behavior of sulfur dioxide and sulfate concentration distributions in an urban area using the St Louis Regional Air Pollution Study (RAPS) data. Statistical techniques chosen to determine the accuracy and uncertainty associated with the numerical model results include paired analysis and resampling analysis. The results of the numerical model are also compared with those of RAM, a Gaussian plume model. Finally, the behavior of point and area emission sources in an urban area is assessed to provide an insight into the complex interrelationships between the emissions and meteorological conditions which determine the distribution of ground level concentrations.  相似文献   

8.
The evaluation of the high percentiles of concentration distributions is required by most national air quality guidelines, as well as the EU directives. However, it is problematic to compute such high percentiles in stable, low wind speed or calm conditions. This study utilizes the results of a previous measurement campaign near a major road at Elimäki in southern Finland in 1995, a campaign specifically designed for model evaluation purposes. In this study, numerical simulations were performed with a Gaussian finite line source dispersion model CAR-FMI and a Lagrangian dispersion model GRAL, and model predictions were compared with the field measurements. In comparison with corresponding results presented previously in the literature, the agreement of measured and predicted data sets was good for both models considered, as measured using various statistical parameters. For instance, considering all NOx data (N=587), the so-called index of agreement values varied from 0.76 to 0.87 and from 0.81 to 1.00 for the CAR-FMI and GRAL models, respectively. The CAR-FMI model tends to slightly overestimate the NOx concentrations (fractional bias FB=+14%), while the GRAL model has a tendency to underestimate NOx concentrations (FB=−16%). The GRAL model provides special treatment to account for enhanced horizontal dispersion in low wind speed conditions; while such adjustments have not been included in the CAR-FMI model. This type of Lagrangian model therefore predicts lower concentrations, in conditions of low wind speeds and stable stratification, in comparison with a standard Lagrangian model. In low wind speed conditions the meandering of the flow can be quite significant, leading to enhanced horizontal dispersion. We also analyzed the difference between the model predictions and measured data in terms of the wind speed and direction. The performance of the CAR-FMI model deteriorated as the wind direction approached a direction parallel to the road, and for the lowest wind speeds. However, the performance of the GRAL model varied less with wind speed and direction; the model simulated better the cases of low wind speed and those with the wind nearly parallel to the road.  相似文献   

9.
Urban-scale air pollutants for sulfur dioxide, nitrogen dioxide, particulate matter with aerodynamic diameter > or = 10 microm, and ozone (O3) were simulated over the Seoul metropolitan area, Korea, during the period of July 2-11, 2002, and their predicting capabilities were discussed. The Air Pollution Model (TAPM) and the highly disaggregated anthropogenic and the biogenic gridded emissions (1 km x 1 km) recently prepared by the Korean Ministry of Environment were applied. Wind fields with observational nudging in the prognostic meteorological model TAPM are optionally adopted to comparatively examine the meteorological impact on the prediction capabilities of urban-scale air pollutants. The result shows that the simulated concentrations of secondary air pollutant largely agree with observed levels with an index of agreement (IOA) of >0.6, whereas IOAs of approximately 0.4 are found for most primary pollutants in the major cities, reflecting the quality of emission data in the urban area. The observationally nudged wind fields with higher IOAs have little effect on the prediction for both primary and secondary air pollutants, implying that the detailed wind field does not consistently improve the urban air pollution model performance if emissions are not well specified. However, the robust highest concentrations are better described toward observations by imposing observational nudging, suggesting the importance of wind fields for the predictions of extreme concentrations such as robust highest concentrations, maximum levels, and >90th percentiles of concentrations for both primary and secondary urban-scale air pollutants.  相似文献   

10.
Abstract

Urban-scale air pollutants for sulfur dioxide, nitrogen dioxide, particulate matter with aerodynamic diameter >10 μm, and ozone (O3) were simulated over the Seoul metropolitan area, Korea, during the period of July 2-11, 2002, and their predicting capabilities were discussed. The Air Pollution Model (TAPM) and the highly disaggregated anthropogenic and the biogenic gridded emissions (1 km × 1 km) recently prepared by the Korean Ministry of Environment were applied. Wind fields with observational nudging in the prognostic meteorological model TAPM are optionally adopted to comparatively examine the meteorological impact on the prediction capabilities of urban-scale air pollutants. The result shows that the simulated concentrations of secondary air pollutant largely agree with observed levels with an index of agreement (IOA) of >0.6, whereas IOAs of ~0.4 are found for most primary pollutants in the major cities, reflecting the quality of emission data in the urban area. The observationally nudged wind fields with higher IOAs have little effect on the prediction for both primary and secondary air pollutants, implying that the detailed wind field does not consistently improve the urban air pollution model performance if emissions are not well specified. However, the robust highest concentrations are better described toward observations by imposing observational nudging, suggesting the importance of wind fields for the predictions of extreme concentrations such as robust highest concentrations, maximum levels, and >90th percentiles of concentrations for both primary and secondary urban-scale air pollutants.  相似文献   

11.
The wind speed dependence of concentrations of PM10, chloride, sulphate, nitrate, organic carbon, elemental carbon, particle number and NOx has been determined at three separate sites, Marylebone Road (kerbside), North Kensington (urban background) and Harwell (rural). The data are best described by a general dilution term multiplied by up to three separate source-related terms which we interpret as representing long-range transport sources, discrete local (including area) sources and marine sources respectively. Using this approach, the various particulate metrics can be quantitatively disaggregated according to the contributions of the three source types. The behaviour of nitrate is anomalous, probably due to an influence of wind speed upon the dissociation of ammonium nitrate.  相似文献   

12.
The RAM model provided by the U.S. EPA has been applied to the metropolitan Detroit area for SO2 concentrations and is compared to concentrations predicted by a numerical model and to field data obtained by the 14 station air sampling network maintained by the Wayne County Air Pollution Control Division. Great care was taken to develop the emission inventory. Based upon examination of the temporal and spatial correspondence of the respective model predictions and observed concentrations, the correlation coefficients for the 24-hour averaged data, the correlation coefficients for over 700 3-hour averaged observations, and the cumulative frequency distributions of the model output and observations, it is concluded that the numerical model provides a superior predictive tool to evaluate cause and effect relations, but that the RAM model, at far lower cost, predicts the correct magnitude of the worst events. Hence RAM might well be used in the Detroit Area for statistically based regulatory decisions.  相似文献   

13.
An elemental composition study of atmospheric aerosols from the City of Colima, in the Western Coast of Mexico, is presented. Samples of PM(15)-PM(2.5) and PM(2.5) were collected with Stacked Filter Units (SFU) of the Davis design, in urban and rural sites, the latter located between the City of Colima and the Volcán de Colima, an active volcano. Elemental analyses were carried out using Particle Induced X-ray Emission (PIXE). The gravimetric mass concentrations for the fine fraction were slightly higher in the urban site, while the mean concentrations in the coarse fraction were equal within the uncertainties. High Cl contents were determined in the coarse fraction, a fact also observed in emissions from the Volcán de Colima by other authors. In addition to average elemental concentrations, cluster analysis based on elemental contents was performed, with wind speed and direction data, showing that there is an industrial contributor to aerosols North of the urban area. Moreover, a contribution from the volcanic emissions was identified from the grouping of S, Cl, Cu, and Zn, elements associated to particles emitted by the Volcán de Colima.  相似文献   

14.
Polycyclic aromatic hydrocarbons (PAHs) were measured in the Baltimore and adjacent Chesapeake Bay in July 1997. Time series of 4- and 12-h samples were taken at two sites 15 km apart in order to evaluate the influence of a number of processes on the short-term variability of PAH in the Baltimore and northern Chesapeake Bay atmospheres. PAH concentrations were 2–3-fold higher in the Baltimore atmosphere than in the adjacent Chesapeake Bay atmosphere. For example, gas-phase phenanthrene and pyrene concentrations were 12.5 and 2.14 ng m−3 in the Baltimore site and 5.57 and 0.548 ng m−3 in the Chesapeake Bay, respectively. The influence of wind direction, wind speed and temperature was evaluated by multiple linear regressions which indicated that atmospheric gas-phase PAH concentrations over the Chesapeake Bay were significantly higher when the air mass was from the urban/industrial Baltimore area. Furthermore, the increase of gas-phase low-MW PAH concentrations with temperature and wind speed suggests that volatilization from the bay is an important source of pollutants to the atmosphere, at least when air masses are not influenced by the Baltimore urban and industrial area. Indeed, while on the long-term, the Chesapeake Bay is a receptor of atmospherically deposited PAHs, on the short-term and during appropriate meteorological conditions, the bay acts as a source of pollutants to the atmosphere. Aerosol-phase PAH concentrations and temporal trends showed a strong dependence on aerosol soot content due to the high affinity of PAHs to the graphitic structure of soot. These results confirm the important influence of urban areas as a source of pollution to adjacent aquatic environments and as a driving factor of the short-term variability, either directly by transport of urban-generated pollutants or by volatilization of previously deposited pollutants. Conversely, the complex diurnal trends of gas-phase PAHs at the Baltimore site suggests that degradation processes dominate the diurnal trends of PAHs in urban atmospheres. This conclusion is supported by estimated rate constants for PAH reaction with OH radicals which show good agreement with reported values within a factor of two.  相似文献   

15.
A Gaussian atmospheric dispersion model, Industrial Source Complex Short Term (ISCST3), was used to estimate ground-level concentrations of sulphur dioxide (SO2) emitted from source categories of industrial and domestic heating in the city of Izmir, Turkey. Predictions were estimated for the year 2000 across a study area of 80 km x 100 km. Statistical analyses were carried out to evaluate the model performance by comparing predicted and observed SO2 concentrations at four ambient air quality monitoring stations using two main methods root mean square error (RMSE) and an index of agreement (d). The results showed that industry was found as the most air-polluting sector and industries located at outside of the metropolitan area were found to carry important risks for urban air quality. The most polluted area was found at a distance of about 1 km from a major petroleum refinery and a large petrochemical industry.  相似文献   

16.
In this paper, the Gaussian Atmospheric Dispersion Modeling System (ADMS4) was coupled with field observations of surface meteorology and concentrations of several air quality indicators (nitrogen oxides (NOx), carbon monoxide (CO), fine particulate matter (PM10) and sulfur dioxide (SO2)) to test the applicability of source emission factors set by the European Environment Agency (EEA) and the United States Environmental Protection Agency (USEPA) at an industrial complex. Best emission factors and data groupings based on receptor location, type of terrain and wind speed, were relied upon to examine model performance using statistical analyses of simulated and observed data. The model performance was deemed satisfactory for several scenarios when receptors were located at downwind sites with index of agreement 'd' values reaching 0.58, fractional bias 'FB' and geometric mean bias 'MG' values approaching 0 and 1, respectively, and normalized mean square error 'NMSE' values as low as 2.17. However, median ratios of predicted to observed concentrations 'Cp/Co' at variable downstream distances were 0.01, 0.36, 0.76 and 0.19 for NOx, CO, PM10 and SO2, respectively, and the fraction of predictions within a factor of two of observations 'FAC2' values were lower than 0.5, indicating that the model could not adequately replicate all observed variations in emittant concentrations. Also, the model was found to be significantly sensitive to the input emission factor bringing into light the deficiency in regulatory compliance modeling which often uses internationally reported emission factors without testing their applicability.  相似文献   

17.
If measures to reduce the industrial discharge of PM10 shall be planned with high accuracy, a first step must be to estimate the contribution of single industrial facilities to the overall PM10 burden as accurately as possible. In northern Duisburg as an example, an area where iron and steel producing industry is concentrated, PM10 was measured at 4 sampling sites very close to an industrial complex of blast furnaces, a sinter plant, oxygen steel works and a coke oven plant for 9 months in 2006. At two sites metals in PM10 were determined. The results, together with analytical data of urban background sites in the region and data of wind direction and wind speed were used for an estimation of the contribution of single plants to the PM10 burden. A careful analysis of the data showed, that the data of PM10, calcium, iron and zinc measured at two sites close to the industrial area and information about the urban background aerosol were sufficient to calculate the PM10 contribution of the main single plants. The data could be compared with those of modelling.  相似文献   

18.
A field measurement campaign was conducted near a major road in southern Finland from September 15 to October 30, 1995. The concentrations of NO, NO2 and O3 were measured simultaneously at three locations, at three heights (3.5, 6 and 10 m) on both sides of the road. Traffic densities and relevant meteorological parameters were also measured on-site. We have compared measured concentration data with the predictions of the road network dispersion model CAR-FMI, used in combination with a meteorological pre-processing model MPP-FMI. In comparison with corresponding results presented previously in the literature, the agreement of measured and predicted datasets was good, as measured using various statistical parameters. For all data (N=587), the index of agreement (IA) was 0.83, 0.82 and 0.89 for the measurements of NOx, NO2 and O3, respectively. The IA is a statistical measure of the correlation of the predicted and measured time series of concentrations. However, the modelling system overpredicts NOx concentrations with a fractional bias FB=+13%, and O3 concentrations with FB=+8%, while for NO2 concentrations FB=−2%. We also analyzed the difference between model predictions and measured data in terms of meteorological parameters. Model performance clearly deteriorated as the wind direction approached a direction parallel to the road, and for the lowest wind speeds. The range of variability concerning atmospheric stability, ambient temperature and the amount of solar radiation was modest during the measurement campaign. As expected, no clear dependencies of model performance were therefore detected in terms of these parameters. The experimental dataset is available for the evaluation of other roadside dispersion models.  相似文献   

19.
As of December 2006, the American Meteorological Society/U.S. Environmental Protection Agency (EPA) Regulatory Model with Plume Rise Model Enhancements (AERMOD-PRIME; hereafter AERMOD) replaced the Industrial Source Complex Short Term Version 3 (ISCST3) as the EPA-preferred regulatory model. The change from ISCST3 to AERMOD will affect Prevention of Significant Deterioration (PSD) increment consumption as well as permit compliance in states where regulatory agencies limit property line concentrations using modeling analysis. Because of differences in model formulation and the treatment of terrain features, one cannot predict a priori whether ISCST3 or AERMOD will predict higher or lower pollutant concentrations downwind of a source. The objectives of this paper were to determine the sensitivity of AERMOD to various inputs and compare the highest downwind concentrations from a ground-level area source (GLAS) predicted by AERMOD to those predicted by ISCST3. Concentrations predicted using ISCST3 were sensitive to changes in wind speed, temperature, solar radiation (as it affects stability class), and mixing heights below 160 m. Surface roughness also affected downwind concentrations predicted by ISCST3. AERMOD was sensitive to changes in albedo, surface roughness, wind speed, temperature, and cloud cover. Bowen ratio did not affect the results from AERMOD. These results demonstrate AERMOD's sensitivity to small changes in wind speed and surface roughness. When AERMOD is used to determine property line concentrations, small changes in these variables may affect the distance within which concentration limits are exceeded by several hundred meters.  相似文献   

20.
A pollutant dispersion model is developed, allowing fast evaluation of the maximum credible 1-h average concentration on any given ground-level receptor, along with the corresponding critical meteorological conditions (wind speed and stability class) for stacks with buoyant plumes in urban or rural areas. Site-specific meteorological data are not required, as the computed concentrations are maximized against all credible combinations of wind speed, stability class, and mixing height. The analysis is based on the dispersion relations of Pasquill-Gifford and Briggs for rural and urban settings, respectively, the buoyancy induced dispersion correlation of Pasquill, the wind profile exponent values suggested by Irwin, the buoyant plume rise relations of Briggs, as well as the Benkley and Schulman's model for the minimum mixing heights. The model is particularly suited for air pollution management studies, as it allows fast screening of the maximum impact on any selected receptor and evaluation of the ways to have this impact reduced. It is also suited for regulatory purposes, as it can be used to define the minimum stack size requirements for a given source as a function of the exit gas volume and temperature, the pollutant emission rates and their hourly concentration standards, as well as the source location relative to sensitive receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号