首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Wet and dry deposition as collected by a bucket were measured at two sites in southeastern Michigan for two years. The precipitation had an average pH of 4.27 and a SO2−4 to NO3 ratio of 2.0. Particulate dry deposition velocities of 0.6 cm s−1 for SO2−4 and NO3 and > 2 cm s−1 for Cl, Ca2+, Mg2+,Na+ and K+ were calculated. The ambient particle composition, dry bucket collection and wet deposition were compared at two sites, one urban and the other rural. Higher ambient particle concentrations and dry deposition rates were measured at the urban site than the rural site, indicating the influence of local emissions. However, local emissions had no effect on the wet deposition concentrations. The influence of more distant source regions was examined by separating the precipitation events by wind direction. The events from the south and east had the highest SO2−4 to NO3 ratios, which corresponded to the areas with the highest sulfur emissions. NO3 showed no directional dependence.Wet deposition was examined for the effect of storm type and seasonal trends. Contrary to a recent study on Long Island, we found higher concentrations of H+, SO2−4 and NH+4 in winter rain compared to snow. The wet deposition concentrations of H+, SO2−4, and NH+4 were highest in the summer, while only Na+ and Cl concentrations were highest in the winter, presumably due to winter road salting. The total deposition of acidic ions was highest in the summer and lowest in the winter, due both to lower concentrations and lower precipitation volumes in the winter. The dry deposition as collected by a bucket accounted for 1 % of total H+ deposition, 21 % of SO2−4 deposition, 27% of NO3 deposition, 50% of Cl deposition and 61 % of Ca2+ deposition.  相似文献   

2.
This paper reports the results of over 2 years of measurements of several of the species comprising atmospheric SOx (=SO2+SO42−) and NOy (=NO+NO2 + PAN + HNO3+NO3+ organicnitrates + HONO + 2N2O5 …) at Whiteface Mountain, New York. Continuous real-time measurements of SO2 and total gaseous NOy provided data for about 50% and 65% of the period, respectively, and 122 filter pack samples were obtained for HNO3, SO2 and aerosol SO42−, NO3, H+ and NH4+. Concentrations of SO2 and NOy were greatest in winter, whereas concentrations of the reaction products SO42− and HNO3were greatest in summer. The seasonal variation in SO42− was considerably more pronounced than that of HNO3and the high concentrations of SO42− aerosol present in summer were also relatively more acidic than SO42− aerosol in other seasons. As a result, SO42− aerosol was the predominant acidic species present in summer, HNO3was predominant in other seasons. Aerosol NO3 concentrations were low in all seasons and appeared unrelated to simultaneous NOy and HNO3concentrations. These data are consistent with seasonal variations in photochemical oxidation rates and with existing data on seasonal variations in precipitation composition. The results of this study suggest that emission reductions targeted at the summer season might be a cost-effective way to reduce deposition of S species, but would not be similarly cost-effective in reducing deposition of N species. kwAcid deposition, seasonal variation, sulfate, nitrate, nitric acid, sulfur dioxide, oxides of nitrogen, hydrogen peroxide, ozone, air pollution, Adirondack Mountains  相似文献   

3.
Wet and dry deposition were monitored at the University of Michigan Biological Station in rural northern Michigan for three winters. Dry deposition was measured by both the conventional bucket method and by measuring increases in concentration in exposed, elevated snow samples. Average results of the two methods were in reasonable agreement. The cumulative wet and dry deposition quantities are in good agreement with snowpack accumulations until the first thaw period. Dry deposition to snow accounts for less than 15% of the total H+, SO2−4, NO3 and NH+4 and approximately 25% of the Ca 2+, Mg 2+, Na+, K+ and Cl during an average precipitation year. Snowpack measurements were also made under deciduous and red pine canopies. Decreases in H+ and NO3 were observed under the red pine canopy.  相似文献   

4.
Vertical concentration profiles for NH3, HNO3 and HCl-gas and for NH4+, NO3, SO2−4, Cl and Na+ aerosol were obtained from a meteorological tower in the central part of the Netherlands. An upward NH3 flux of 0.12 μgm−2 s−1 was calculated from the NH3 profiles and meteorological data. From the HNO3 profiles a maximum HNO3 dry deposition velocity of 4 cm s−1 was calculated. Good agreement was found between the measured concentration products [NH3](g) × [HNO3](g) and the theoretical values at temperatures above 0°C and relative humidities below 80%. In other cases, higher NH3 and/or HNO concentrations in the gas phase were measured than theoretically predicted.  相似文献   

5.
Airborne particles of diameter > 0.4 μm reaching Dye 3, Greenland during April–May 1983 were highly variable in size and concentration from day to day. Five-day backward air mass trajectories suggest the importance of long-range transport from more northerly latitudes on days with high concentrations; particle sizes were larger on these days. Lower concentrations and smaller particle sizes were associated with transport from the south. It is inferred that Dye 3 may receive material emitted from Eurasian sources and transported over the Pole, similar to inferences for more northern Arctic sites.Elemental analysis of individual particles showed an abundance of crustal material, with many particles also containing sulfur. Bulk chemical analyses of airborne particles and fresh snow, collected during three snowstorms where ice nucleation dominated, provided data which were used to estimate mass-basis scavenging ratios. Average scavenging ratios were in the range ~1000–2000 for the crustal elements Al, Fe, K, Mg, Mn, and Na. Similar values were observed for Cd, Cu and NO3. The corresponding ratios for Pb and SO42− averaged less than 200. These ratios were used with precipitation rate data to estimate wet deposition velocities in the order of ~2 cm s−1 for the first nine species, and ~0.2 cm s−1 for Pb and SO42−. Comparing fresh and older surface snow concentrations gave an average dry deposition velocity of roughly 0.2 cm s−1 for the crustal elements, with the small fraction of large particles (~5–10 μm) dominating deposition; much smaller values were associated with the remaining species. When used with other data in the literature, the results of this study suggest that total deposition velocities of Pb and SO42− may be as small as 0.05 cm s−1 in relatively dry regions of the Arctic.  相似文献   

6.
Winter rains have lower NO3 levels but higher SO2−4 levels than snows in the NE United States. In this study, four years of winter precipitation data from SE Michigan were examined to help understand these differences. Although NO3 levels were indeed higher in snow than winter rain, the higher concentrations could be attributed to the generally lower precipitation depths associated with snow events than with rain events. The NO3 concentrations are inversely correlated with precipitation depth. There was no evidence that snow scavenged HNO3 in the air more efficiently than rain.Conversely, SO2−4 was far higher in winter rain than in snow. This could not be explained in terms of ground-level ambient S concentrations or the wind direction from which the storm originated. However, the cloud temperatures were high enough in the case of rain to suggest that the cloud hydrometeors could have been present as liquid droplets rather than ice crystals. The SO2−4 concentrations of the precipitation were highly correlated with the temperatures of the cloud layers. The data suggest that SO2 is incorporated and oxidized to SO2−4 in clouds most efficiently when the hydrometeors are present as liquid droplets. The fact that NO3does not show the same relationship suggests that incorporation of N species into cloud water followed by oxidation is not as important a process for N as for S.  相似文献   

7.
A chamber placed in a constant temperature freezing room was used to study the surface resistance during deposition of HNO3 to a snow surface. The resistance decreased with increasing temperature from larger than 5 s mm−1 at − 18°C to about l s mm−1 at −3°C. Measurements of gaseous and particulate nitrate concentrations during winter at a rural site in south central Sweden gave concentrations in the range of 0.4–5 μg HNO3 m−1 and 0.3–3 μg NO3 m−3 with a mean value of 1.3 μg HNO3 m−3 and 0.7 μg NO3 m−3, respectively. The results indicate that for periods with temperatures below − 2°C estimated dry deposition of HNO3 to snow is at most 4 % of measured wet deposition of nitrate in the area.  相似文献   

8.
A collocated, dry deposition sampling program was begun in January 1987 by the US Environmental Protection Agency to provide ongoing estimates of the overall precision of dry deposition and supporting data entering the Clean Air Status and Trends Network (CASTNet) archive. Duplicate sets of dry deposition sampling instruments were installed adjacent to existing instruments and have been operated for various periods at 11 collocated field sites. All sampling and operations were performed using standard CASTNet procedures. The current study documents the bias-corrected precision of CASTNet data based on collocated measurements made at paired sampling sites representative of sites across the network. These precision estimates include the variability for all operations from sampling to data storage in the archive. Precision estimates are provided for hourly, instrumental ozone (O3) concentration and meteorological measurements, hourly model estimates of deposition velocity (Vd) from collocated measurements of model inputs, hourly O3 deposition estimates, weekly filter pack determinations of selected atmospheric chemical species, and weekly estimates of Vd and deposition for each monitored filter pack chemical species and O3.Estimates of variability of weekly pollutant concentrations, expressed as coefficients of variation, depend on chemical species: NO3∼8.1%; HNO3∼6.4%; SO2∼4.3%; NH4+∼3.7%; SO42−∼2.3%; and O3∼1.3%. Precision of estimates of weekly Vd from collocated measurements of model inputs also depends on the chemical species: aerosols ∼2.8%; HNO3∼2.6%; SO2∼3.0%; and O3∼2.0%. Corresponding precision of weekly deposition estimates are: NO3∼8.6%; HNO3∼5.2%; SO2∼5.6%; NH4+∼3.9%; SO42−∼3.5%; and O3∼3.3%. Precision of weekly concentration, Vd estimates, and deposition estimates are comparable in magnitude and slightly smaller than the corresponding hourly values. Annual precision estimates, although uncertain due to their small sample size in the current study, are consistent with the corresponding weekly values.  相似文献   

9.
The chemical composition of pollutant species in precipitation sampled daily or weekly at 10 sites in Ireland for the five-year period, 1994–1998, is presented. Sea salts accounted for 81% of the total ionic concentration. Approximately 50% of the SO42− in precipitation was from sea-salt sources. The proportion of sea salts in precipitation decreased sharply eastwards. In contrast, the concentration of NO3 and the proportion of non-sea-salt SO42− increased eastwards reflecting the closer proximity to major emission sources. The mean (molc) ratio of SO42−:NO3 was 1.6 for all sites, indicating that SO42− was the major acid anion.The spatial correlation between SO42−, NO3 and NH4+ concentrations in precipitation was statistically significant. The regional trend in NO3 concentration was best described by linear regression against easting. SO42− concentration followed a similar pattern. However, the regression was improved by inclusion of elevation. Inclusion of northing in the regression did not significantly improve any of the relationships except for NH4+, indicating a significant increase in concentrations from northwest to southeast.The spatial distribution of deposition fluxes showed similar gradients increasing from west and southwest to east and northeast. However, the pattern of deposition shows the influence of precipitation volume in determining the overall input. Mean depositions of sulphur and nitrogen in precipitation were ≈30 ktonnes S yr−1 and 48 ktonnes N yr−1 over the five-year period, 1994–1998, for Ireland.Least-squares linear regression analysis indicated a slight decreasing trend in precipitation concentrations for SO42− (20%), NO3 (13%) and H+ (24%) and a slight increasing trend for NH4+ (15%), over the period 1991–1998.  相似文献   

10.
In this study, we present ∼1 yr (October 1998–September 1999) of 12-hour mean ammonia (NH3), ammonium (NH4+), hydrochloric acid (HCl), chloride (Cl), nitrate (NO3), nitric acid (HNO3), nitrous acid (HONO), sulfate (SO42−), and sulfur dioxide (SO2) concentrations measured at an agricultural site in North Carolina's Coastal Plain region. Mean gas concentrations were 0.46, 1.21, 0.54, 5.55, and 4.15 μg m−3 for HCl, HNO3, HONO, NH3, and SO2, respectively. Mean aerosol concentrations were 1.44, 1.23, 0.08, and 3.37 μg m−3 for NH4+, NO3, Cl, and SO42−, respectively. Ammonia, NH4+, HNO3, and SO42− exhibit higher concentrations during the summer, while higher SO2 concentrations occur during winter. A meteorology-based multivariate regression model using temperature, wind speed, and wind direction explains 76% of the variation in 12-hour mean NH3 concentrations (n=601). Ammonia concentration increases exponentially with temperature, which explains the majority of variation (54%) in 12-hour mean NH3 concentrations. Dependence of NH3 concentration on wind direction suggests a local source influence. Ammonia accounts for >70% of NHx (NHx=NH3+NH4+) during all seasons. Ammonium nitrate and sulfate aerosol formation does not appear to be NH3 limited. Sulfate is primarily associated ammonium sulfate, rather than bisulfate, except during the winter when the ratio of NO3–NH4+ is ∼0.66. The annual average NO3–NH4+ ratio is ∼0.25.  相似文献   

11.
Seasonal variations in atmospheric aerosol concentration and composition have been determined at two nearby sites, one urban and one rural, near Leeds, W. Yorkshire. Aerosols, sampled on a daily basis and collected in the size ranges < 2.5 μm and 2.5−15 μm, were analysed for total mass, SO2−4, NO3, Cl and NH+4. Dark smoke and SO2 were also measured at both sites. Results are given covering the period October 1982–September 1983. The average concentration of particles was higher at the urban site. The urban-rural difference in coarse particle concentration, which was about a factor of 2, was more significant than the difference in the fine particle concentration, which was only 1.3. Smoke and SO2 concentrations showed strong wintertime maxima and summertime minima. Fine NO3 and Cl concentrations also had pronounced wintertime maxima and summertime minima attributed to the variation in volatility of their ammonium salts. Total mass, SO2−4 and NH+4 did not show any clear seasonal variations. Anti-cyclonic conditions in summer resulted in elevated mass concentrations of secondary pollutants, e.g. SO2−4. The fine fraction contained ca 50% water-soluble inorganic ions at Leeds and slightly more at the rural site. These proportions showed little seasonal variation.  相似文献   

12.
The data set of N and S compound measurements from WATOX-85 has been examined in detail to assess that data quality and suitability for use in addressing the goals of the Western Atlantic Ocean Experiment. Accuracy estimates for particulate SO42− and NO3, SO2 and HNO3 have been made on the basis of the investigators' estimates and the results of intercomparisons. Intercomparisons of ground-based particulate SO42− and all filter SO2 and HNO3 measurements show them to be consistent with the 20% accuracies quoted by the investigators. Ground-based particulate NO3 and aircraft particulate SO42− show inconsistencies such that the accuracies can be no better than 28% and the aircraft particulate NO3 has an accuracy of no better than 60%.  相似文献   

13.
14.
Concentrations of major ions, SO42−, NO3, Cl, H+, Ca2+, K+, Mg2+, Ca2+ and conductivity were measured in approximately 300 daily, wet-only rain samples collected at a permanent rural station between 1993 and 1998. Concentrations of anthropogenic ions NH4+, SO42− and NO3 were among the highest values reported in whole EMEP network, suggesting that the Anatolian plateau is under strong influence of distant emission sources. Although transport of pollutants have significant influence on the chemical composition of precipitation, average pH of the rainwater is 6.2 due to extensive neutralization of acidity. Approximately 95% of the acidity in collected samples is neutralized, particularly in summer season. The neutralizing agents are primarily CaCO3 and NH3. Concentrations of crustal ions are higher in summer season due to enhanced resuspension of soil particles from dry surface soil. Concentrations of anthropogenic ions SO42− and NO3 do not change significantly between summer and winter due to higher intensity of rains in summer season. Although concentrations of ions measured in this study is among the highest reported in EMEP network, wet deposition fluxes are low compared to flux values reported for similar sites in Europe, due to low annual precipitation in the Anatolia. Wet deposition fluxes of all measured parameters are highly episodic. Source regions affecting chemical composition precipitation in the Central Anatolia is investigated using trajectory statistics.  相似文献   

15.
Network filter pack sampling protocol changed in 1989 from requiring a week-long daytime sample and a week-long nighttime sample to requiring a single week-long sample per week at each monitoring site. In the current study, single-filter pack weekly results are compared with weekly results aggregated from separate daytime and nighttime weekly filter pack samples collected at the monitoring site located at Egbert, Ontario, Canada. Comparisons of the concentrations resulting from the two sampling protocols for all major chemical species (SO42−, NO3, NH4+, HNO3, and SO2) show median biases of <5 nmol m−3 (0.1 ppb) and median relative biases of <10%. Median relative biases have the same sign for each species, suggesting biases in the same direction. Based on median differences, composite day–night weekly sampler results generally exceed the single-sampler weekly results (in all cases except for the summer nylon filter HNO3), and the magnitude depends on the constituent and on the season. Examination of seasonal results reveals large discrepancies in some cases, especially during summer. To use Clean Air Status and Trends Network results for trends analyses over time periods encompassing the 1989 protocol change, it may be useful to put all of the data on the same basis of sampler protocol. Algorithms derived from linear regression analyses using paired bootstrap sampling are offered to convert the recent results to the pre-1989 basis; however, they may only be appropriate for sites in the eastern US. Chemical and statistical reasoning suggests that the results of day–night weekly sampling are usually consistent with higher accuracy than single-sampler weekly results. Adjustments are indicated for summer Teflon NO3 and nylon HNO3, for summer and fall Teflon NH4, and for Total SO2 in each season. Nylon filters are also shown to have variable collection characteristics for SO2 that are consistent with a humidity effect. A network-wide change in the SO2 collection and/or retention characteristics of the nylon filters is found in April 1997.  相似文献   

16.
The regional-scale transport, chemistry and deposition of acidifying compounds, photochemical oxidants, and their precursors are analyzed using a second-generation Eulerian model. The important atmospheric processes are incorporated using chemical, dynamical and thermodynamical parameterizations having sufficient detail to accommodate boundary layer-free troposphere exchange in cloudy and cloud-free environments, and in-cloud and below-cloud wet removal and chemistry. Forty-one species are considered, many of which are also present in the liquid-drop phases. In the regional scale transport, the advected species are NO, NO2, SO2, SO−24, O3, HNO3, NH3, PAN, H2O2, HCHO, alkanes, C2H4, other olefins, aromatics, RCHO, ROOH, HNO2, RONO2 and RO2NO2. The model capabilities are illustrated by showing simulations in which non-precipitating clouds are present to absorb gas-phase species, chemically alter these, and then release them to the atmosphere.  相似文献   

17.
Two new long pathlength spectrometers, utilizing 25-m basepath multiple reflection optical systems, were employed for the first time during an intercomparison of measurement methods for atmospheric nitrogenous species held at Claremont, CA, 11–19 September 1985. Measurement of nitrogenous species using these closed optical path systems, as opposed to single pass systems extending several kilometers, permit the resulting in situ absolute spectroscopic data to serve as benchmark values for point monitors employing denuders or filter packs. The FT-IR spectrometer was operated at a total pathlength of 1150 m and spectral resolution of 0.125 cm−1, with corresponding detection sensitivities of 160 nmolem−3 for HNO3 and 60 nmole m−3 for NH3 (4 and 1.5 ppb, respectively). Concurrent measurements of HONO, NO2 and NO3 radicals were conducted with the differential optical absorption spectrometer operated at 800 m total pathlength with detection limits of 24, 160 and 0.8 nmole m−3 (0.6, 4 and 0.02 ppb) for HONO, NO2, and NO3 radicals, respectively.  相似文献   

18.
A year-long field study to characterize the ionic species in PM2.5 was carried out in Shanghai and Beijing, China, in 1999–2000. Weekly samples of PM2.5 were collected using a special low flow rate (0.4 l min−1) sampler. In Shanghai, SO42− NO3 and NH4+ were the dominant ionic species, which accounted for 46%, 18% and 17% of the total mass of ions, respectively. Local SO2 emissions were an important source of SO42− in PM2.5 because the SO42− concentration was correlated with the SO2 concentration (r=0.66). The relatively stable SO42−/SO2 mass ratio over a large range of temperatures suggests that gas-phase oxidation of SO2 played a minor role in the formation of SO42−. The sum of SO42− and NO3 was highly correlated with NH4+ (r=0.96), but insufficient ammonium was present to totally neutralize the aerosol. In Beijing, SO42−, NO3 and NH4+ were also the dominant ionic species, constituting 44%, 25% and 16% of the total mass of water-soluble ions, respectively. Local SO2 emissions were an important source of SO42− in the winter since SO42− was correlated with SO2 (r=0.83). The low-mass SO42−/SO2 ratio (0.27) during winter, which had low humidity, suggests that gas-phase oxidation of SO2 was a major route of sulfate formation. In the summer, however, much higher mass ratios of SO42−/SO2 (5.6) were observed and were ascribed to in-cloud sulfate formation. The annual average ratio of NO3/SO42− was 0.4 and 0.6 in Shanghai and in Beijing, respectively, suggesting that stationary emissions were still a dominant source in these two cities.  相似文献   

19.
The influence of nitric acid (HNO3) on the atmospheric corrosion of copper, zinc and carbon steel was investigated in laboratory exposures at 65% relative humidity (RH), 25 °C and 0.03 cm s−1 air velocity. The deposition velocity (Vd) of HNO3 on the specimens, the corrosion rates and corrosion products were determined by gravimetry, ion chromatography, X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) microspectroscopy. Comparisons were also made with literature data on the corrosion effects of sulfur dioxide (SO2), nitrogen dioxide (NO2) and ozone (O3).At 65% RH, the Vd of HNO3 on all metals was at least 70% of that of an ideal absorbent, i.e., an impregnated filter with perfect absorption for HNO3. The Vd of HNO3 was much higher than that of SO2, NO2 or O3, which is mainly attributed to the relatively high sticking coefficient, high solubility and high reactivity of HNO3 compared to the other gases. During identical exposures to HNO3, the corrosion rate of carbon steel was nearly three times higher than that of copper or zinc. However, when comparing the corrosion effects induced by HNO3 with those induced by SO2 alone or in combination with either NO2 or O3, HNO3 turned out to be far more aggressive than SO2. Relative to SO2, zinc is the metal most sensitive to HNO3, followed by copper and with carbon steel least sensitive to HNO3.  相似文献   

20.
Arctic air chemistry observations made in Canada between 1979 and 1984 are discussed. The weekly average concentration of 25 aerosol constituents has been measured routinely at three locations. Anthropogenic pollution typified by SO42− and V has a persistent seasonal cycle. SO42− concentrations are similar at all three locations, although they tend to be somewhat higher at Alert than at Mould Bay and Igloolik. The seasonal variation of an aerosol constituent depends on its source. There are four distinctive seasonal variations for:
  • 1.(i) anthropogenic constituents Cr, Cu, Mn, Ni, Pb, Sr, V, Zn, H+, NH4+, SO42−, NO3,
  • 2.(ii) halogens (excepting Cl) Br, I, F,
  • 3.(iii) sea salt elements Na, Mg, Cl and
  • 4.(iv) soil constituents Al, Ba, Ca, Fe and Ti. In the Arctic winter, the mean concentrations of anthropogenic aerosol constituents, except SO42−, are 2–4 times lower than annual mean concentrations in southern Sweden near a major source region. SO42− concentrations are only 30% lower mainly because of production from SO2. Light scattering (bscat) and SO42− observations indicate that the SO42− fraction of the fine particle mass fluctuates between 3 and 65% during the polluted winter months. Daily mean bsact, at Mould Bay that exceeds 50 × 10−6m−1 is associated with air originating from the northwest. The soluble major ion composition of aerosols during winter varies markedly with particle size. H+, NH4+ and SO42− dominate submicrometre particles while sea-salt ions Mg2+, Na+ and Cl predominate in supermicrometre particles. Winter SO2 concentrations at Mould Bay and Igloolik ranged from 0.2 to 1.5 ppb
  • 5.(v). The fraction of airborne S as SO2 ranged from 20 to 90% and peaked in late December-early January. The concentration of total NO3 (0.025–0.090 ppb(v)) is much lower than that of SO42− (0.3–1.2 ppb (v)).
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号