首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper presents the results of the lidar experiments that have been performed during January 1989 through August 1990 to study the aerosol vertical distributions in the nocturnal atmosphere and their comparison with near-simultaneous aerological soundings for environmental monitoring. During the study period, the aerosol distributions showed significant stratified aerosol layer structures in the lower atmosphere throughout the south-west monsoon season (June-September), while these structures appear to be either erratic or absent during remaining months of the year. In addition, the aerosols present in the lowest air layers up to 200 m are found to contribute significantly (about 40%) to the aerosol loading in the nocturnal boundary layer at the lidar site. The pre-monsoon to winter ratio of mixing depth and ventilation coefficient were found to be 1.11 and 1.62, respectively. Thus the height of the mixed layer (around 350 m) and the associated ventilation coefficients suggest that early winter evenings tend to have higher pollution potential at the experimental site. The results indicate that the lidar technique has the potential to yield good information on the structure of the nocturnal atmosphere which is found to be influenced by the atmospheric stability conditions as revealed by aerological observations.  相似文献   

2.
This paper describes the results of a study to determine the total mass and the mass distribution of atmospheric aerosols, especially that mass associated with particles greater than 10 μm diameter. This study also determined what fraction of the total aerosol mass a standard high-volume air sampler collects and what fraction and size interval settle out on a dust fall plate. A special aerosol sampling system was designed for this study to obtain representative samples of large airborne particles. A suburban sampling site was selected because no local point sources of aerosols existed nearby. Samples were collected under various conditions of wind velocity and direction to obtain measurements on different types of aerosols.

Study measurements show that atmospheric particulate matter has a bimodal mass distribution. Mass associated with large particles mainly ranged from 5 to 100 μm in size, while mass associated with small particles ranged from an estimated 0.03 to 5 μm in size. Combined, these two distributions produced a bimodal mass distribution with a minimum around 5 μm diameter. The high-volume air sampler was found to collect most of the total aerosol mass, not just that fraction normally considered suspended particulate. Dust fall plates did not provide a good or very useful measure of total aerosol mass. The two fundamental processes of aerosol formation, condensation and dispersion appear to account for the formation of a bimodal mass distribution in both natural and anthropogenic aerosols. Particle size distribution measurements frequently are in error because representative samples of large airborne particles are not obtained. Considering this descrepancy, air pollution regulations should specify or be based upon an upper particle size limit.  相似文献   

3.
4.
Research on Arctic haze has provided an example when anticyclones may play a dominant role in carrying out low-level tropospheric long-range transport. This dominant role of anticyclones in transporting Arctic haze may be the result of the unique geographic and climatological situation existing during winter/spring in which both the huge Eurasian continent and the adjacent ice-covered Arctic Ocean tend to be regions where anticyclones form and exist over long periods of the winter and spring seasons. It is assumed that the seasonal variation of transport mechanisms provided by anticyclones is the primary cause for the seasonal variation of Arctic haze. Centers of anticyclones are the regions where air masses form and obtain their characteristics, both meteorological and chemical, due to the aerosols and gases released into the air. Transport within an air flow along the edges of quasi-stationary anticyclones will remain under stable atmospheric conditions, hence, dilution, lifting and removal of aerosols and gases will be less compared to a transport within the influence of a cyclonic pressure system. According to the concept of isentropic flow, anticyclones may dominate only low-level transport, whereas cyclones may be more important in controlling transport at upper tropospheric levels.  相似文献   

5.
We analysed aerosol optical and physical properties in an urban environment (Kolkata) during winter monsoon pollution transport from nearby and far-off regions. Prevailing meteorological conditions, viz. low temperature and wind speed, and a strong downdraft of air mass, indicated weak dispersion and inhibition of vertical mixing of aerosols. Spectral features of WinMon aerosol optical depth (AOD) showed larger variability (0.68–1.13) in monthly mean AOD at short-wavelength (SW) channels (0.34–0.5 μm) compared to that (0.28–0.37) at long-wavelength (LW) channels (0.87–1.02 μm), thereby indicating sensitivity of WinMon AOD to fine aerosol constituents and the predominant contribution from fine aerosol constituents to WinMon AOD. WinMon AOD at 0.5 μm (AOD 0. 5) and Angstrom parameter ( α) were 0.68–0.82 and 1.14–1.32, respectively, with their highest value in December. Consistent with inference from spectral features of AOD, surface aerosol loading was primarily constituted of fine aerosols (size 0.23–3 μm) which was 60–70 % of aerosol 10- μm (size 0.23–10 μm) concentration. Three distinct modes of aerosol distribution were obtained, with the highest WinMon concentration at a mass median diameter (MMD) of 0.3 μm during December, thereby indicating characteristics of primary contribution related to anthropogenic pollutants that were inferred to be mostly due to contribution from air mass originating in nearby region having predominant emissions from biofuel and fossil fuel combustion. A relatively higher contribution from aerosols in the upper atmospheric layers than at the surface to WinMon AOD was inferred during February compared to other months and was attributed to predominant contribution from open burning emissions arising from nearby and far-off regions. A comparison of ground-based measurements with Moderate Resolution Imaging Spectroradiometer (MODIS) data showed an underestimation of MODIS AOD and α values for most of the days. Discrepancy in relative distribution of fine and coarse mode of MODIS AOD was also inferred.  相似文献   

6.
The chemical composition and size distribution of submicron aerosols were analyzed at a suburban site at Saitama, Japan, in the winter of 2004/2005, using an Aerodyne aerosol mass spectrometer. Although organics and nitrate were the dominant species during the sampling period, a large fraction of sulfate was observed at the accumulation mode when mass loading was low and wind speed was high. The size distributions of m/z 44 (mostly CO2+) and sulfate aerosols during periods of high wind speed showed remarkable similarities in the accumulation mode, indicating that oxygenated organics were aged aerosols and internally mixed with sulfate. Ozone concentrations were also increased during these high wind speed periods although nighttime (e.g., 12/17 2004), indicating that the oxygenated compounds were strongly influenced by transported and aged air masses. The diurnal profiles of ultrafine-mode organics and hydrocarbon-like organic aerosols (HOA) were similar to NOX derived from traffic and other combustion sources. The temporal variation of oxygenated organic aerosols (OOA) agreed well with that of nitrate as a secondary aerosol tracer, and the diurnal profile of the OOA fraction of organics increased during the day associated with higher UV light intensity. The result of time and size-resolved chemical composition of submicron particles indicated that the OOA is associated with both photochemical activity and transboundary pollution, and ultrafine-mode organic and HOA aerosols are mainly associated with combustion sources.  相似文献   

7.
Every year, during the pre-monsoon period (March–May), a pronounced increase in aerosol optical depth (AOD) is observed over the eastern Arabian Sea, which is attributed to the transport of continental aerosols. This paper presents the altitude distribution of tropospheric aerosols, characteristics of elevated aerosol layers and aerosol radiative heating of the atmosphere during the pre-monsoon season over Trivandrum (8.5°N, 77°E), a station located at the southwest coast of Indian peninsula which is covered by the eastern Arabian Sea plume. Altitude profiles of aerosol backscatter coefficient (βa) and linear depolarization ratio (LDR) reveal two distinct aerosol layers persisting between 0–2 km and 2–4 km. The layer at 2–4 km, which contributes about 25% of the AOD during polluted conditions, contains significant amount of non-spherical aerosols. This layer is prominent only when the advection of dry airmass occurs from the northern parts of the Indian subcontinent and northern Arabian Sea. Role of long-range transport in the development of this aerosol layer is further confirmed using latitude–altitude cross-section of βa observed by CALIPSO. Aerosol content in the layer below 2 km is large when advection of air occurs from the north and east Arabian Sea and is significantly small when it occurs from the southwest Arabian Sea or Indian Ocean. During the highly polluted conditions, aerosols tend to increase the diurnal mean atmospheric radiative heating rate by ~0.8 K day?1 at 500 m and 0.3 K day?1 at 3 km, which are about 80% and 30% of the respective radiative heating in the aerosol-free atmosphere.  相似文献   

8.
A model is presented that predicts the total quantities of ammonium, chloride, nitrate and water contained in atmospheric aerosols, their physical state and their distribution among aerosol particles of different sizes. The model is based on the thermodynamic equilibrium calculation of the ammonium/chloride/nitrate/sodium/sulfate/water system. The existence of water in the aerosol phase at low relative humidities is shown to be explained. Observed aerosol concentrations at Long Beach, California during 30–31 August 1982 are successfully predicted.  相似文献   

9.
In this paper, the physico-chemical basics of the sectional multicomponent aerosol model SEMA are described. SEMA includes condensation and evaporation of sulphuric acid, nitric acid, hydrogen chloride, ammonia, and water vapour. The model can be applied to predictions of the chemical composition and size distribution of aqueous tropospheric secondary and marine aerosols. In SEMA, multicomponent thermodynamics and particle-size-dependent condensation and evaporation are efficiently coupled by application of a new sectional approach.  相似文献   

10.
Aerosol backscatter measurements from a Vaisala CL31 ceilometer are compared directly with a co-located 532/1064 nm lidar in order to validate the CL31 for remote sensing of vertical aerosol structure. The cases examined include a significant aerosol event (biomass burning), which by virtue of its vertical extent, provides a robust measure of the vertical range of the ceilometer for aerosol applications. A second case is presented when the instruments were separated in order to illustrate the utility of a network of such instruments for elucidating spatial patterns in aerosol distribution and the advection of elevated pollutant layers. When co-located, the instruments show remarkable agreement and indicate that the CL31 can detect aerosol layers up to 3000 m AGL in ideal conditions (at night and with high aerosol concentrations as found in biomass burning or dust plumes). When separated, multiple instruments provide an opportunity to examine advection of pollutant layers as well as their evolution. This suggests that installation of a ceilometer network would provide a cost-effective means of examining three-dimensional aspects of regional air quality as well as distinguishing between regional and local sources of pollution  相似文献   

11.
Eight trace elements, Si, Cl, K, Ca, Ti, Mn, Fe and Zn in the near-ground atmospheric aerosols were evaluated in the northwestern part of Mount Kenya using a dichotomous sampler and an EDXRF spectrometer. The samples were taken at 2 sites situated in Nanyuki area, which is roughly on the Equator. The sampler segregated the aerosol into two aerodynamic diameter (ad) size fractions, fine (<3.5 μm ad) and coarse (>3.5 and <18 μm ad). The elemental concentrations in the two size fractions were quantified and the elements assigned to known sources. Local wind blown dust related to agricultural activities and fire burning was found to dominate the lower tropospheric aerosols. There was inconclusive evidence of long range-transported aerosols being moved by night transport from the middle to the lower parts of the troposphere. Influence of the Indian Ocean marine aerosol was suggested but conclusive evidence was lacking.  相似文献   

12.
The link between the African Monsoon systems and aerosol loading in Africa is studied using multi-year satellite observations of UV-absorbing aerosols and rain gauge measurements.The main aerosol types occurring over Africa are desert dust and biomass burning aerosols, which are UV-absorbing. The abundance of these aerosols over Africa is characterised in this paper using residues and Absorbing Aerosol Index (AAI) data from Global Ozone Monitoring Experiment (GOME) on board ERS-2 and SCanning Imaging Absorption SpectroMeter for Atmospheric ChartograpHY (SCIAMACHY) on board Envisat.Time series of regionally averaged residues from 1995 to 2008 show the seasonal variations of aerosols in Africa. Zonally averaged daily residues over Africa are related to monthly mean precipitation data and show monsoon-controlled atmospheric aerosol loadings. A distinction is made between the West African Monsoon (WAM) and the East African Monsoon (EAM), which have different dynamics, mainly due to the asymmetric distribution of land masses around the equator in the west. The seasonal variation of the aerosol distribution is clearly linked to the seasonal cycle of the monsoonal wet and dry periods in both studied areas.The residue distribution over Africa shows two distinct modes, one associated with dry periods and one with wet periods. During dry periods the residue varies freely, due to aerosol emissions from deserts and biomass burning events. During wet periods the residue depends linearly on the amount of precipitation, due to scavenging of aerosols and the prevention of aerosol emissions from the wet surface. This is most clear over east Africa, where the sources and sinks of atmospheric aerosols are controlled directly by the local climate, i.e. monsoonal precipitation. Here, the wet mode has a mean residue of ?1.4 and the dry mode has a mean residue of ?0.3. During the wet modes a reduction of one residue unit for every 160 mm monthly averaged precipitation was found. Shielding effects due to cloud cover may also play a role in the reduction of the residue during wet periods.A possible influence of aerosols on the monsoon, via aerosol direct and indirect effects, is plausible, but cannot directly be deduced from these data.  相似文献   

13.
The importance of including the global and regional radiative effects of aerosols in climate models has increasingly been realized. Accurate modeling of solar radiative forcing due to aerosols from anthropogenic sulfate and biomass burning emissions requires adequate spectral resolution and treatment of spatial and temporal variability. The variation of aerosol spectral optical properties with local relative humidity and dry aerosol composition must be considered. Because the cost of directly including Mie calculations within a climate model is prohibitive, parameterizations from off-line calculations must be used. Starting from a log-normal size distribution of dry ammonium sulfate, we developed optical properties for tropospheric sulfate aerosol at 15 relative humidities up to 99%. The resulting aerosol size distributions were then used to calculate bulk optical properties at wavelengths between 0.175 and 4 μm. Finally, functional fits of optical properties were made for each of 12 wavelength bands as a function of relative humidity. Significant variations in optical properties occurred across the total solar spectrum. Relative increases in specific extinction and asymmetry factor with increasing relative humidity became larger at longer wavelengths. Significant variation in single-scattering albedo was found only in the longest near-IR band. This is also the band with the lowest single scattering albedo. A similar treatment was done for aerosols from biomass burning. In this case, two size distributions were considered. One was based on a distribution measured for Northern Hemisphere temperate forest fires while the second was based on a measured size distribution for tropical fires. Equilibrium size distributions and compositions were calculated for 15 relative humidities and five black carbon fractions. Mie calculations and band averages of optical properties were done for each of the resulting 75 cases. Finally, fits were made for each of 12 spectral bands as functions of relative humidity and black carbon fraction. These optical properties result in global average forcing from anthropogenic sulfate aerosols of −0.81 Wm-2. The global average forcing for biomass aerosols ranged from −0.23 to −0.25 Wm-2 depending on the assumed size distribution, while fossil fuel organic and black carbon are estimated to heat the atmosphere by about 0.16 Wm-2.  相似文献   

14.
In this study, aerosol vertical distributions of 17 in-situ aircraft measurements during 2005 and 2006 springs are analyzed. The 17 flights are carefully selected to exclude dust events, and the analyses are focused on the vertical distributions of aerosol particles associated with anthropogenic activities. The results show that the vertical distributions of aerosol particles are strongly affected by weather and meteorological conditions, and 3 different types of aerosol vertical distributions corresponding to different weather systems are defined in this study. The measurement with a flat vertical gradient and low surface aerosol concentrations is defined as type-1; a gradual decrease of aerosols with altitudes and modest surface aerosol concentrations is defined as type-2; a sharp vertical gradient (aerosols being strongly depressed in the PBL) with high surface aerosol concentrations is defined as type-3. The weather conditions corresponding to the 3 different aerosol types are high pressure, between two high pressures, and low pressure systems (frontal inversions), respectively. The vertical mixing and horizontal transport for the 3 different vertical distributions are analyzed. Under the type-1 condition, the vertical mixing and horizontal transport were rapid, leading to strong dilution of aerosols in both vertical and horizontal directions. As a result, the aerosol concentrations in PBL (planetary boundary layer) were very low, and the vertical distribution was flat. Under the type-2 condition, the vertical mixing was strong and there was no strong barrier at the PBL height. The horizontal transport (wind flux) was modest. As a result, the aerosol concentrations were gradually reduced with altitude, with modest surface aerosol concentrations. Under the type-3 condition, there was a cold front near the region. As a result, a frontal inversion associated with weak vertical mixing appeared at the top of the inversion layer, forming a very strong barrier to prevent aerosol particles being exchanged from the PBL height to the free troposphere. As a result, the aerosol particles were strongly depressed in the PBL height, producing high surface aerosol concentrations. The measured vertical aerosol distributions have important implications for studying the effects of aerosols on photochemistry. The J[O3] values are reduced by 11%, 48%, and 50%, under the type-1, type-2, and type-3 conditions, respectively. This result reveals that atmospheric oxidant capacity (OH concentrations) is modestly reduced under the type-1 condition, but is significantly reduced under the type-2 and type-3 conditions. This result also suggests that the effect of aerosol particles on surface solar flux is an integrated column effect, and detailed vertical distributions of aerosol particles are very important for assessing the impacts of aerosol on photochemistry.  相似文献   

15.
Aerosol radiative effects over two environmentally distinct locations, Kanpur (urban site) and Gandhi College (rural location) in the Indo-Gangetic plain (IGP), a regional aerosol hot spot, utilizing the measured optical and physical characteristics of aerosols, an aerosol optical properties model and a radiative transfer model, are examined. Shortwave aerosol radiative forcing (ARF) at the top of the atmosphere (TOA) is 30 W m(?-?2)). Shortwave atmospheric heating due to aerosols is >0.4 K/day over IGP and peaks during premonsoon at >0.6 K/day due to lower single scattering albedo (SSA) and higher surface albedo. TOA forcing is always less negative over Kanpur when compared to Gandhi College due to lower surface albedo except in postmonsoon owing to higher SSA. This happens as TOA forcing depends on SSA and surface albedo in addition to aerosol optical depth. The magnitude of longwave forcing and atmospheric cooling in an absolute sense is significantly small and contributes only about 20% or less to the net (shortwave + longwave) forcing. Aerosol radiative effects over these two locations, despite differences in aerosol characteristics, are similar, thus confirming that aerosols and their radiative influence get transported due to circulation. ARF over Kanpur and Gandhi College is an order of magnitude higher when compared to greenhouse gas forcing. A large reduction in surface reaching solar irradiance accompanied by large atmospheric warming can have implications on precipitation and hydrological cycle, and these aerosol radiative effects should be included while performing regional-scale aerosol climate assessments.  相似文献   

16.
Study of the vertical concentration profile and of the deposition of cosmogenic radionuclides provides information on the vertical transport in the stratosphere and troposphere and the processes of scavenging of aerosol particles by precipitation. Information on the distribution of atmospheric aerosols is important for the understanding of the physical processes relating to the studies in weather climate, air pollution, and aerosol physics. In this work the one-dimensional steady-state model of vertical concentration profile was established and the values of turbulent diffusion coefficient and scavenging coefficient determined by model using experimental data of the 7Be monthly average atmospheric activity concentrations and monthly deposition fluxes in Bratislava are presented. The temporal variations of the vertical distribution profiles of 7Be for each month are also calculated.  相似文献   

17.
Airborne in-situ measurements were analyzed to investigate the effects of biomass burning and regional background aerosols on cloud condensation nuclei (CCN) activity in the Pacific Dust Experiment (PACDEX) during April and May 2007. Airmass trajectories with both horizontal and vertical motions were provided to identify the aerosol sources. In the biomass burning cases, the elevated aerosol layers were clearly observed at dry conditions because of the convection of airmass in the source region. The relative aging of aerosols was supported by the ratios of BC to particles with size ranging from 0.1 to 1.0 μm (N0.1–1.0) and BC to carbon monoxide. Compared to aerosols in the precedent plume of biomass burning, aged particles in the latter plume were more activated to CCN at 0.4% (CCN0.4%) than 0.1% supersaturation (CCN0.1%) due to aerosols chemical modification during the aging process. On the other hand, significant difference of CCN0.4% and CCN0.1% at regional background aerosols over the Pacific Ocean was due to the activated particles below 1 μm in diameter. Although higher concentrations of aged particles were observed over the eastern Pacific Ocean, activated aerosols to cloud droplet was comparatively similar in the western Pacific Ocean because of the similar concentrations of N0.1–1.0 in both cases.  相似文献   

18.
This paper discusses the extent of Black Carbon (BC) radiative forcing in the total aerosol atmospheric radiative forcing over Pune, an urban site in India. Collocated measurements of aerosol optical properties, chemical composition and BC were carried out for a period of six months (during October 2004 to May 2005) over the site. Observed aerosol chemical composition in terms of water soluble, insoluble and BC components were used in Optical Properties of Aerosols and Clouds (OPAC) to derive aerosol optical properties of composite aerosols. The BC fraction alone was used in OPAC to derive optical properties of BC aerosols. The aerosol optical properties for composite and BC aerosols were separately used in SBDART model to derive direct aerosol radiative forcing due to composite and BC aerosols. The atmospheric radiative forcing for composite aerosols were found to be +35.5, +32.9 and +47.6 Wm?2 during post-monsoon, winter and pre-monsoon seasons, respectively. The average BC mass fraction found to be 4.83, 6.33 and 4 μg m?3 during the above seasons contributing around 2.2 to 5.8% to the total aerosol load. The atmospheric radiative forcing estimated due to BC aerosols was +18.8, +23.4 and +17.2 Wm?2, respectively during the above seasons. The study suggests that even though BC contributes only 2.2–6% to the total aerosol load; it is contributing an average of around 55% to the total lower atmospheric aerosol forcing due to strong radiative absorption, and thus enhancing greenhouse warming.  相似文献   

19.
Multi-year records of MODIS, micro-pulse lidar (MPL), and aerosol robotic network (AERONET) Sun/sky radiometer measurements were analyzed to investigate the seasonal, monthly and geographical variations of columnar aerosol optical properties over east Asia. Similar features of monthly and seasonal variations were found among the measurements, though the observational methodology and periods are not coincident. Seasonal and monthly cycles of MODIS-derived aerosol optical depth (AOD) over east Asia showed a maximum in spring and a minimum in autumn and winter. Aerosol vertical extinction profiles measured by MPL also showed elevated aerosol loads in the middle troposphere during the spring season. Seasonal and spatial distributions were related to the dust and anthropogenic emissions in spring, but modified by precipitation in July–August and regional atmospheric dispersion in September–February. All of the AERONET Sun/sky radiometers utilized in this study showed the same seasonal and monthly variations of MODIS-derived AOD. Interestingly, we found a peak of monthly mean AOD over industrialized coastal regions of China and the Yellow Sea, the Korean Peninsula, and Japan, in June from both MODIS and AERONET Sun/sky radiometer measurements. Especially, the maximum monthly mean AOD in June is more evident at the AERONET urban sites (Beijing and Gwangju). This AOD June maximum is attributable to the relative contribution of various processes such as stagnant synoptic meteorological patterns, secondary aerosol formation, hygroscopic growth of hydrophilic aerosols due to enhanced relative humidity, and smoke aerosols by regional biomass burning.  相似文献   

20.
An intensive sampling of aerosol particles from ground level and 100 m was conducted during a strong pollution episode during the winter in Xi'an, China. Concentrations of water-soluble inorganic ions, carbonaceous compounds, and trace elements were determined to compare the composition of particulate matter (PM) at the two heights. PM mass concentrations were high at both stations: PM10 (PM with aerodynamic diameter < or =10 microm) exceeded the China National Air Quality Standard Class II value on three occasions, and PM2.5 (PM with aerodynamic diameter < or =2.5 microm) exceeded the daily U.S. National Ambient Air Quality Standard more than 10 times. The PM10 organic carbon (OC) and elemental carbon (EC) were slightly lower at the ground than at 100 m, both in terms of concentration and percentage of total mass, but OC and EC in PM2.5 exhibited the opposite pattern. Major ionic species, such as sulfate and nitrate, showed vertical variations similar to the carbonaceous aerosols. High sulfate concentrations indicated that coal combustion dominated the PM mass both at the ground and 100 m. Correlations between K+ and OC and EC at 100 m imply a strong influence from suburban biomass burning, whereas coal combustion and motor vehicle exhaust had a greater influence on the ground PM. Stable atmospheric conditions apparently led to the accumulation of PM, especially at 100 m, and these conditions contributed to the similarities in PM at the two elevations. Low coefficient of divergence (CD) values reflect the similarities in the composition of the aerosol between sites, but higher CDs for fine particles compared with coarse ones were consistent with the differences in emission sources between the ground and 100 m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号