首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Measurements are reported of the cloud condensation nucleus spectrum of Arctic haze from which it has been possible to deduce that a large fraction of the cloud active nuclei are soluble salts. On the basis of these findings, maximum supersaturation during the formation of Arctic stratiform clouds is expected to be around a third of a percent (for updrafts of 10 cm s−1). Soluble nuclei down to 3–4 × 10−6 radius would be nucleated under these conditions. These inferences suggest that clouds forming in polluted Arctic air may contain relatively small (i.e. 10–30 cm−3) cloud droplet concentrations.  相似文献   

2.
Number distribution data for 0.1–45 μm diameter aerosol were obtained using optical counting and sizing probes flown over the Alaskan Arctic during the second Arctic Gas and Aerosol Sampling Program (AGASP-II), flights 201–203. Due to noise present in the lowest size channels of the optical probes, estimates of the H2SO4 component of Arctic haze were not attempted. Large particle (> 0.5 μm diameter) results are presented here. Large particle number and volume concentration were determined along with estimated mass, which was generally </ 0.1μg m−3. Lognormal fitting to > 0.3 μg m−3 mass loading sizedistributed aerosol data produced a means for comparing volume geometric median diameters (VGMD) for these higher-mass time intervals. These VGMDs showed that solid crustal particles previously observed during AGASP-II had VGMDs in the 1.2–1.6 μm range and that the shape of these fitted lognormal distributions was essentially constant. This result suggests very-long-range transport from a distant crustal source and, in conjunction with aerosol physical and chemical characterization data, argues against the presence of the Mt. Augustine eruptive particles during AGASP-II Alaskan Arctic sampling.  相似文献   

3.
From December to April, the Arctic air mass is polluted by man-made mid-latitudinal emissions from fossil fuel combustion, smelting and industrial processes. In the rest of the year, pollution levels are much lower. This is the outcome of less efficient pollutant removal processes and better south (S) to north (N) transport during winter. In winter, the Arctic air mass covers much of Eurasia and N. America. Meteorological flow fields and the distribution of anthropogenic SO2 emissions in the northern hemisphere favor northern Eurasia as the main source of visibility reducing haze. Observations of SO42− concentrations in the atmosphere throughout the Arctic yield, depending on location and year, a January–April mean of 1.5–3.9 μg m−3 in the Norwegian Arctic to 1.2–2.2 μg m−3 in the N. American Arctic. An estimate of the mean vertical profile of fine particle aerosol mass during March and April shows that, on average, pollution is concentrated in the lower 5 km of the atmosphere. Not only are anthropogenic particles present in the Arctic atmosphere but also gases such as SO2, perfluorocarbons and pesticides. The acidic nature and seasonal variation of Arctic pollution is reflected in precipitation, the snowpack and glacier snow in the Arctic. A pH of 4.9–5.2 in winter and ~ 5.6 in summer is expected in the absence of calcareous wind blown soil. Glacial records indicate that Arctic air pollution has undergone a marked increase since the mid 1950s paralleling a marked increase in SO2 and NOx emissions in Europe. Effects of Arctic pollution include a reduction in visibility and perturbation of the solar radiation budget in April–June. Potential effects are the acidification and toxification of sensitive ecosystems.  相似文献   

4.
Ten aircraft-collected cascade impactor samples from the North American Arctic were analyzed using analytical electron microscopy. Morphological, mineralogical and elemental information were obtained from individual particles, as well as compositional data and size distribution estimates of the bulk aerosol. Categorization of carbonaceous material into organic-type and combustion-type carbon particles was performed in this study. This was accomplished through the use of a new ultra-thin window X-ray spectrometer, which can directly detect carbon X-rays emitted from particles, and through interpretation of morphological and electron diffraction data. Verification of graphite as a specific carbon mineral phase present in Arctic soot particles was performed in this manner.Several classes of particles were present in most of the aerosol samples and size fractions. These included liquid H2SO4 droplets, which were always present in the highest numbers, and crustal-type and composite SO4−2 particles. A small fraction (0–30%) of a random sampling of SO2−4particles from all impactor stages were found to contain detectable nitrogen, suggesting that partial neutralization by NH3 may have occurred in this minority of the SO2−4 droplets. Particles rich in non-combustion carbon and thought to be composed of organic material were also observed in most samples. Haze samples collected off the coast of Alert, NWT, show moderate loadings of H2SO4 droplets. Judging from these loadings and those from higher-altitude samples, ambient aerosol particle concentrations must have been considerably higher in the haze. The extent to which local activity at Alert has influenced these haze samples is not known, although a major contribution is not expected. Stratospheric samples did not contain several classes of particles thought to have major anthropogenic source inputs to the Arctic, such as black carbon and coal-fired combustion spheres. The lightest particle loadings in any samples were collected in the upper troposphere near the tropopause, where condensation nuclei counts during sampling fell to as low as 10 cm−3.  相似文献   

5.
During the Arctic Gas and Aerosol Sampling Program (AGASP) in March 1983, two distinctly different mechanisms for transporting stratospheric air into the Arctic troposphere were documented. A tropopause folding event, associated with an Arctic front, injected ‘perturbed’ polar stratospheric air into the troposphere. This perturbed polar stratospheric air was characterized by enhanced condensation nuclei concentrations (up to 1800 cm−3), enhanced aerosol light scattering (up to 90 × 10−6m−1), and crustal aerosol particles of probable volcanic origin.The second mechanism, large-scale anticyclonic subsidence, transported relatively ‘clean’ stratospheric air into the Arctic troposphere. This clean stratospheric air was characterized by relatively low condensation nuclei concentrations (maximum of 300 cm−3), low aerosol light scattering ([5–7] × 10−6 m−1), and the absence of detectable crustal particles.  相似文献   

6.
Weekly high-volume air samples have been collected in the Canadian High Arctic (Alert, Nunavut) since 1992. Fifteen polybrominated diphenyl ethers (PBDEs) are quantified in 104 samples over the time period of 2002–2004. To our knowledge, this study reports the first continuous multi-year measurements of PBDEs in Arctic air. Average air concentrations (in pg m−3) were 7.7 (0.40–47) and 1.6 (0.091–9.8) for 14 PBDEs (excluding BDE-209) and BDE-209, respectively, over the entire sampling period. BDE-28/33, 47, 99, 100, 153, 154, and 209 accounted for 90% (72–97%, n=104) of the 15 PBDEs. Occurrence of BDE-47, 99, and 209 suggests that PBDEs in Alert air were likely associated with the usage of “penta-BDE” and “deca-BDE” technical mixtures worldwide. Natural logarithm of concentrations for less brominated PBDEs correlated significantly with ambient temperatures in the summertime, suggesting importance of volatilization emissions in a local and/or regional scale. On the other hand, episodically elevated concentrations of the less brominated PBDEs in the wintertime and lack of seasonality for the non-volatile BDE-209 indicate potential inputs of particle-bound PBDEs through long-range transport (LRT), especially during the Arctic haze season. Inter-annual trend data further show that concentrations of the eight PBDEs increased inter-annually in 2002–2004 with doubling times of 2–6 years, which were similar to growth rates found in Arctic biotic samples. The results of this study and previous measurements suggest that potential sources of PBDEs in Arctic air include both volatilization emissions and LRT inputs.  相似文献   

7.
Regional haze from biomass burning in SE Asia is a recurring air pollution phenomenon with a potential impact on the health of several hundred million people. Air quality data in Brunei Darussalam during the 1998 haze episode revealed that only particulate matter is a significant pollutant. The WHO guideline of 70 μg m−3 for PM10 (24 h average) was exceeded on 54 days during the haze episode which lasted from 1 February to 30 April 1998. Concentrations of SO2, NO2, and O3 were all below WHO guidelines and the 8 h guideline for CO was exceeded on only seven occasions. Average daily PM10 concentrations were below 450 μg m−3 but concentrations greater than 600 μg m−3 persisted for several hours at a time and total exposure to such high concentrations could add up to several days over the course of a haze episode. Airborne particles exhibited diurnal variation, typically rising through the night to very high levels in the early morning and thereafter decreasing due largely to meteorological factors. The pollutant standards index (PSI), widely used to report urban air quality, may not be suitable for haze from forest fires as it does not take into account short-term exposure to extremely high particle concentrations of up to 1 mg m−3.  相似文献   

8.
Soluble fluoride (F), measured using an ion-selective electrode, was monitored during 1982–1983 in monthly bulk (wet and dry) atmospheric deposition samples collected at 17 locations in the lower Tamar Valley, Tasmania, where an aluminium (Al) smelter is located. Glass samplers (funnel-bottle type) were used, with duplications by plastic samplers at five locations later. The spatial and temporal variations in F deposition in relation to wind flow and rainfall are discussed, and its impact on the environment is highlighted. The mean deposition rates of F, as measured from September 1982 to August 1983, ranged from about 90 μg m−2 day−1 at the intended ‘background’ location to 12,568 μg m−2day−1 at a location about 1 km east-southeast from the smelter. The depositional fluxes of F and insoluble Al (another elemental tracer of the smelter) are significantly correlated (P < 0.001). They were much higher within 3 km of the smelter, where vegetation damage by fluoride contamination was most evident. However, air emissions from the smelter could travel at least 10 km up the valley. Wet deposition was the predominant removal process for F during autumn and winter, while dry deposition appeared to be more significant in summer. The plastic samplers collected about 8 and 17% more F and Al, respectively, but with higher standard deviations. Thus the variations observed could be largely due to sampling fluctuations.  相似文献   

9.
As part of an environmental impact assessment for building a new town in Junk Bay, continuous measurement of SO2 and particulate concentrations was carried out from October 1981 to June 1982 at three sites in Junk Bay to study the air quality in the area. Flame photometric SO2 analyzers were used to measure ambient SO2 level, whereas tape monitors were used to measure the ambient suspended particulate level (in terms of soiling index, or coefficient of haze per 1000 feet). It was found that the mean SO2 concentrations at the three monitoring sites ranged from 5μg m−3 to 35μg m−3. Maximum daily values up to about 250 μg m−3 and hourly values up to 800 μg m −3 had been recorded on occasion. Comparison of the hourly meteorological data and the hourly SO2 concentrations in four high-SO2-level days suggested that the ‘sulfur dioxide episodes’ were all associated with very light wind speeds and local sources. The mean coefficient of haze level in Junk Bay was less than one, which corresponded to very slight particulate pollution.  相似文献   

10.
Airborne particles of diameter > 0.4 μm reaching Dye 3, Greenland during April–May 1983 were highly variable in size and concentration from day to day. Five-day backward air mass trajectories suggest the importance of long-range transport from more northerly latitudes on days with high concentrations; particle sizes were larger on these days. Lower concentrations and smaller particle sizes were associated with transport from the south. It is inferred that Dye 3 may receive material emitted from Eurasian sources and transported over the Pole, similar to inferences for more northern Arctic sites.Elemental analysis of individual particles showed an abundance of crustal material, with many particles also containing sulfur. Bulk chemical analyses of airborne particles and fresh snow, collected during three snowstorms where ice nucleation dominated, provided data which were used to estimate mass-basis scavenging ratios. Average scavenging ratios were in the range ~1000–2000 for the crustal elements Al, Fe, K, Mg, Mn, and Na. Similar values were observed for Cd, Cu and NO3. The corresponding ratios for Pb and SO42− averaged less than 200. These ratios were used with precipitation rate data to estimate wet deposition velocities in the order of ~2 cm s−1 for the first nine species, and ~0.2 cm s−1 for Pb and SO42−. Comparing fresh and older surface snow concentrations gave an average dry deposition velocity of roughly 0.2 cm s−1 for the crustal elements, with the small fraction of large particles (~5–10 μm) dominating deposition; much smaller values were associated with the remaining species. When used with other data in the literature, the results of this study suggest that total deposition velocities of Pb and SO42− may be as small as 0.05 cm s−1 in relatively dry regions of the Arctic.  相似文献   

11.
Gas and aerosol measurements were made during the Polar Sunrise Experiment 2000 at Alert, Nunavut (Canada), using two independent denuder/filter systems for sampling and subsequent analysis by ion chromatography. Twelve to forty-eight hour samples were taken during a winter (9–21 February 2000) and a spring (17 April–5 May 2000) campaign. During the spring campaign, samples were taken at two different heights above the snow surface to investigate concentration differences. Total particulate NO3 is the most abundant inorganic nitrogen compound during Arctic springtime (mean 137.4 ng m−3). The NO3 fluxes were calculated above the snow surface to help identify processes that control snow–atmosphere exchange of reactive nitrogen compounds. We suggest that the observed fluxes of coarse particle NO3 via snow deposition may contribute to the nitrogen inventory in the snow surface. Measurements of surface snow provide experimental data that constrain the contribution of dry deposition of coarse particle NO3 to <7%. Wet deposition in falling snow appears to be the major contributor to the nitrate input to the snow.  相似文献   

12.
《Chemosphere》1986,15(4):449-452
Chlordane and nonachlors isomers in the range 0.1 – 1.8 pg/m3 were measured in the Canadian Arctic in June-July 1984. Implications regarding input to Arctic biota are discussed.Long range transport of air pollution to the remotest parts of the globe is no longer surprising to most atmospheric scientists. Pollution from mid-latitudes has been detected in the Arctic for a number of years1. The detection of chlorinated pesticides and hydrocarbons in Arctic fauna2 and Antarctic fauna3 naturally prompted suspicions of long-range transport of airborne pollutants as a possible source. In this paper, we will report the detection of gas phase chlordane isomers at Mould Bay, Northwest Territories, Canada during the summer of 1984.Mould Bay is a isolated 12 person meteorological outpost on Melville Island (76.5°N, 118°W). Arctic haze has been monitored at this site since 19794 5. It is believed that Mould Bay is quite representative of the Canadian Arctic archepelago in general, as little difference in air concentrations of sulphate aerosol is seen between Mould Bay, Alert and Igloolik, N.W.T.5 This wide spatial homogeneity of the Arctic air mass prompted the Atmospheric Environment Service (AES) to decommission two air monitoring stations, Mould Bay and Igloolik, in 1984. At the decommissioning of the Mould Bay sampler, we converted the high-volume sampler for a short study of organics using glass fibre filters and polyurethane foam plugs6.  相似文献   

13.
We determined hourly emissions of isoprene, monoterpenes and sesquiterpenes from Siberian larch, one of the major tree species in Siberian forests. Summer volatile organic compounds (VOCs) emission from Siberian larch consisted mainly of monoterpenes (about 90%). The monoterpene emission spectrum remained constant during the measurement period, almost half was sabinene and other major monoterpenes were Δ3-carene, β- and α-pinene. During spring and summer, about 10% of the VOCs were sesquiterpenes, mainly α-farnesene. The sesquiterpene emissions declined to 3% in the fall. Isoprene, 2-methyl-3-buten-2-ol (MBO) and 1,8-cineole contributed to less than 3% of the VOC emission during the whole period. The diurnal variation of the emissions could be explained using a temperature-dependent parameterization. Emission potentials normalized to 30 °C were 5.2–21 μg gdw−1 h−1 (using β-value of 0.09 °C−1) for monoterpenes and 0.4–1.8 μg gdw−1 h−1 (using β-value of 0.143 °C−1, mean of determined values) for sesquiterpenes. Normalized monoterpene emission potentials were highest in late summer and elevated again in late fall. Sesquiterpene emission potentials were also highest in late summer, but decreased towards fall.  相似文献   

14.
During the 2003 Chinese Arctic Research Expedition from the Bohai Sea to the high Arctic (37–80°N) aboard the icebreaker Xuelong (Snow Dragon), air samples were collected using a modified high-volume sampler that pulls air through a quartz filter and a polyurethane foam plug (PUF). These filters and PUFs were analyzed for particulate phase and gas phase polycyclic aromatic hydrocarbons (PAHs), respectively, in the North Pacific Ocean and adjacent Arctic region. The ∑PAHs (where ∑=15 compounds) ranged from undetectable level to 4380 pg m−3 in the particulate phase and 928–92 600 pg m−3 in the gas phase, respectively. A decreasing latitudinal trend was observed for gas-phase PAHs, probably resulting from temperature effects, dilution and decomposition processes; particulate-phase PAHs, however, showed poor latitudinal trends, because the effects of temperature, dilution and photochemistry played different roles in different regions from middle-latitude source areas to the high latitudes. The ratios of PAH isomer pairs, either conservative or sensitive to degradation during long-range transport, were employed to interpret sources and chemical aging of PAHs in ocean air. In this present study the fluoranthene/pyrene and indeno[123-cd]pyrene/benzo[ghi]pyrene isomer pairs, whose ratios are conservative to photo-degradation, implies that biomass or coal burning might be the major sources of PAHs observed over the North Pacific Ocean and the Arctic region in the summer. The isomer ratios of 1,7/(1,7+2,6)-DMP (dimethylphenanthrene) and anthracene/phenanthrene, which are sensitive to aging of air masses, not only imply chemical evolving of PAHs over the North Pacific Ocean were different from those over the Arctic, but reveal that PAHs over the Arctic were mainly related to coal burning, and biomass burning might have a larger contribution to the PAHs over the North pacific ocean.  相似文献   

15.
Rain samples were collected aseptically, during 1983 and 1984, in Charlottesville, Virginia to determine the ability of bacteria in precipitation to utilize formate and acetate. The total number of bacteria, as counted by Acridine Orange Direct Counts, was one to two orders of magnitude greater from April to September (105 cells ml−1) than during the rest of the year (103−104 cells ml−1). Formate and acetate concentrations ranged between 6–23 and 3–9 μM, respectively and were higher from June to September. Heterotrophic uptake on the day of collection was not different from the controls, but after incubation at room temperature for a minimum of three days, the turnover rate constants were 0.14 and 0.17 h−1 for formate and acetate, respectively. Total bacterial counts increased an order of magnitude during that interval. These turnover rate constants were used to calculate losses of 44 and 24 μmoll−1day−1 of formic and acetic acid, respectively. Turnover times were 1.5 and 34 days for formate and acetate, respectively. This study demonstrated that there are viable microorganisms in the atmosphere capable of utilizing formate and acetate for growth.  相似文献   

16.
It is shown that the 11–18 March 1983 Arctic haze episode observed at Barrow, Alaska, was caused by air pollutants being rapidly transported from Eurasia industrial sources across the Arctic. These sources emitted pollutants into an air mass forming during anticyclonic synoptic conditions. On the basis of potential temperatures observed in the haze layers over Barrow, it is hypothesized that aerosols and gases in the different layers originated from different Eurasian source regions. The Arctic haze episode at Barrow existed as long as there was a meridional large-scale circulation pattern of the Arctic atmosphere and ceased when the circulation became zonal in character.  相似文献   

17.
During the 2003 Chinese Arctic Research Expedition (CHINARE 2003) from Bohai Sea to the high Arctic (37°N–80°N), air samples were collected and analyzed for DDTs. ∑DDTs (sum of six congeners) ranged from 0.52 to 265 pg m?3 with an average of 13.1 pg m?3. Higher DDT concentrations were observed in Bohai Sea and near eastern Russia. The congener patterns were obviously different between the Far East Asia and the higher latitudinal regions that p,p'-DDT and o,p'-DDT were dominated in the former; while o,p'-DDT and o,p'-DDE were dominated in the latter. The source contributions of technical DDT and dicofol type DDT were estimated. Results showed that technical DDT was the dominant source (>94%) which was fresher in the Far East Asia compared to the North Pacific Ocean and the Arctic. For dicofol type DDT, the estimated contribution was minor. The “new” o,p'-DDT observed should have relatively more contribution from dicofol type DDT in the North Pacific Ocean and the Arctic.  相似文献   

18.
n-Alkanes were present in the northern Wisconsin atmosphere in both the particulate and vapor state. Partitioning was operationally defined by a high-volume sampling methodology which used a glass fiber filter to separate particles and vapor. Concentrations, distributions and vapor/particle partitioning were seasonally dependent. Total n-alkane (C11-C32) concentrations in the vapor phase ranged from 25 to 75 ng m−3. Vapor concentrations of n-alkanes within the range C11-C17 were greatest during winter. Total n-alkane (C11-C32) concentrations in the particulate phase varied from 5.1 to 35 ng m−3 while those of the odd-numbered n-alkanes within the range C25-C31 ranged from 3.1 to 31 ng m−3. Highest concentrations of these n-alkanes were observed during spring and early summer. The CPI (20–32) of particulate n-alkanes was highest during spring (13.0) and early fall (8.0). The highest total n-alkane concentration and CPI (20–32) occurred in spring during a period of pine pollen disposal. A high-boiling unresolved complex mixture (UCM) was prominent in particles collected during winter, while a low-boiling UCM was typical of vapor collected during summer.  相似文献   

19.
Total suspended particulate (TSP) samples were collected during dust, haze, and two festival events (Holi and Diwali) from February 2009 to June 2010. Pollutant gases (NO2, SO2, and O3) along with the meteorological parameters were also measured during the four pollution events at Agra. The concentration of pollutant gases decreases during dust events (DEs), but the levels of the gases increase during other pollution events indicating the impact of anthropogenic emissions. The mass concentrations were about two times higher during pollution events than normal days (NDs). High TSP concentrations during Holi and Diwali events may be attributed to anthropogenic activities while increased combustion sources in addition to stagnant meteorological conditions contributed to high TSP mass during haze events. On the other hand, long-range transport of atmospheric particles plays a major role during DEs. In the dust samples, Ca2+, Cl?, NO3 ?, and SO4 2? were the most abundant ions and Ca2+ alone accounted for 22 % of the total ionic mass, while during haze event, the concentrations of secondary aerosols species, viz., NO3 ?, SO4 2?, and NH4 +, were 3.6, 3.3, and 5.1 times higher than the normal days. During Diwali, SO4 2? concentration (17.8 μg?m?3) was highest followed by NO3 ?, K+, and Cl? while the Holi samples were strongly enriched with Cl? and K+ which together made up 32.7 % of the total water-soluble ions. The ion balances indicate that the haze samples were acidic. On the other hand, Holi, Diwali, and DE samples were enriched with cations. The carbonaceous aerosol shows strong variation with the highest concentration during Holi followed by haze, Diwali, DEs, and NDs. However, the secondary organic carbon concentration follows the order haze > DEs > Diwali > Holi > NDs. The scanning electron microscope/EDX results indicate that KCl and carbon-rich particles were more dominant during Holi and haze events while DE samples were enriched with particles of crustal origin.  相似文献   

20.
From 1990 to 1994 at Alert, Nunavut, Canada, weekly snow samples were collected under low wind conditions to avoid contamination by blowing snow. They were analysed for major ions, Br, and the organic ions methylsulphonate, formate, acetate and propionate. In the Arctic, where annual precipitation is low and blowing snow is common, these observations are unique. On an equivalent weight basis, acids and sea salt in snowfall are mixed approximately equally from December to January but from March to May acids dominate. The acidity of snowfall increases progressively throughout the winter to a May peak of ∼16 μeq l−1. SO42−, Br, and the organic acids acetate, and propionate peak in snowfall after polar sunrise indicate the influence of enhanced photochemical reactions. The greater enrichment of halides relative to sea salt Na+ in snow compared to aerosols indicates that gaseous uptake by snowflakes is important in the removal of these substances from the atmosphere and their deposition on to the Earth's surface. There is a marked difference between the seasonal variation of enrichment of Cl and Br in snow. The latter show a marked increase after polar sunrise while the former does not. These results provide valuable baseline information on the ionic content of fresh snowfall to be used in understanding the results of snowpack chemistry and post-depositional process studies conducted in the high Arctic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号