首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 718 毫秒
1.
采用膜生物反应器(Membrane Bioreactor,MBR)处理石化废水,研究曝气强度分别为1.50,3.00 m3/(m2·h)的条件下,MBR对石化废水中主要污染物的去除特征、跨膜压差(Trans Membrane Pressure,TMP)和混合液性质的变化特征。结果表明:在两种曝气强度条件下MBR对COD、NH+4-N及挥发酚等污染物的平均去除率分别为80.74%、80.23%、96.79%和97.55%、99.34%、98.84%,即在不同曝气条件下,曝气强度的变化对MBR的污染物去除性能无显著影响。但随着曝气强度由1.50 m3/(m2·h)增加到3.00 m3/(m2·h),MBR达到设定的最大跨膜压差(TMPMax=25k Pa)的运行时间由11.8 d增加到31.4 d,TMP上升速率降低。通过活性污泥颗粒粒径分析发现:增加曝气强度后,对膜污染影响显著的活性污泥颗粒粒径范围(0~2μm)所占体积比由2.10%减小到1.78%;并且混合液中溶解性微生物产物(soluble microbial product,SMP)和胞外聚合物(extracellular polymeric substance,EPS)质量浓度分别由24.07 mg/L和15.66 mg/g减小到15.14 mg/L和9.81 mg/g,从而降低了膜污染速率。  相似文献   

2.
采用SBR工艺接种成熟的强化生物除磷(EBPR)絮状污泥,研究了不同浓度纳米ZnO(ZnO NPs)对颗粒化EBPR系统性能的影响。结果表明:低浓度(≤1 mg/L)ZnO NPs可促进厌氧释磷和好氧吸磷作用;随着ZnO NPs浓度的增加,磷酸盐及COD去除能力受到明显抑制;在厌氧释磷过程中,PAOs对ZnO NPs的毒性更为敏感;与未受ZnO NPs污染的系统相比,ZnO NPs浓度为15 mg/L条件下的释磷速率与吸磷速率分别下降了0.1 mg/(gVSS·min)和0.15 mg/(gVSS·min)。  相似文献   

3.
为探究磁性载体移动床生物膜反应器(MBBR)系统对不同浓度纳米ZnO胁迫的响应,构建2组MBBR开展纳米ZnO胁迫实验,通过对比普通与磁性载体MBBR中COD、NH4+-N去除性能、生物膜形貌、微生物群落及功能基因,分析磁性载体对纳米ZnO胁迫下MBBR中污染物去除性能及微生物的影响.结果表明:低浓度(5,10mg/L)纳米ZnO对COD、NH4+-N去除无显著影响;高浓度(30,50mg/L)纳米ZnO胁迫后,磁性载体MBBR的NH4+-N去除率分别降低10.57%和12.91%,低于普通载体的14.48%和16.94%.相比于NH4+-N,纳米ZnO胁迫对COD去除影响较小.此外,高浓度(30,50mg/L)纳米ZnO胁迫导致更多纳米ZnO颗粒团聚并吸附于磁性载体生物膜表面,继而改变了生物膜群落结构.在10mg/L的纳米ZnO胁迫下,磁性与普通载体生物膜中微单胞菌属(Micropruina)的相对丰度均有所提...  相似文献   

4.
为探究生物膜处理系统对纳米ZnO的耐受性能,构建序批式生物膜反应器(SBBR)开展纳米ZnO对生物膜的胁迫试验.计算纳米ZnO在生物膜中的累积量,研究其对有机物、氮、磷的去除性能影响,判定SBBR对纳米ZnO的耐受阈值.通过测定生物量、微生物活性及群落结构变化,分析微生物群落对纳米ZnO的响应.结果表明:低浓度(1~10mg/L)纳米ZnO对COD、NH4+-N、溶解性磷(SOP)去除无显著影响,但5mg/L纳米ZnO对微生物代谢速率和生物活性产生促进作用.纳米ZnO浓度逐增至50mg/L,对生物量、微生物活性抑制作用增强,COD、NH4+-N、SOP去除率分别下降26.45%、57.83%和43.50%.纳米ZnO的胁迫对SBBR中COD去除性能影响最小,对NH4+-N影响较大.COD所指示SBBR的纳米ZnO耐受阈值为911.49mg,而NH4+-N、SOP所指示的耐受阈值为579.83mg.纳米ZnO的胁迫降低了系统中微生物群落的多样性,改变了群落结构组成,Proteobacteria和Chlorofiexi相对丰度由21.09%和7.03%分别降至8.00%和2.60%,致使NH4+-N去除受到显著抑制;Patescibacteria丰度由9.33%突增至56.64%,为有机物的去除起到至关重要的作用.污染物去除性能及微生物活性表明,SBBR生物膜系统对纳米ZnO的耐受性强于活性污泥法.  相似文献   

5.
为了考察投加颗粒活性炭(GAC)对膜生物反应器(MBR)运行过程和处理效果的影响,研究了MBR和GAC-MBR透膜压差、膜通量的变化情况和脱氮性能,并采用ASM1模型对2个反应器进行数学模拟.结果表明,MBR和GAC-MBR的运行周期分别为75,150h,说明GAC的加入能够显著减缓MBR膜污染的速度,延长MBR的运行周期.MBR和GAC-MBR氨氮浓度分别为0.5,6mg/L;硝氮浓度分别为4.5,2mg/L;总氮浓度分别为5,10mg/L,出水COD均低于20mg/L,出水能符合《城镇污水处理厂污染物排放标准(GB 18918-2002)》中的一级A标准.采用ASM1进行工艺数学模拟,模拟出水与实际测量值基本吻合,2个反应器中主要微生物为异养菌和氨氧化菌,异养菌在MBR和GAC-MBR中的质量分数分别为95.5%和97.7%;好氧氨氧化菌分别为4.4%和2.3%,说明投加颗粒活性炭能有效的缓解膜污染,并对污染物具有良好的处理效果.  相似文献   

6.
分别采用PVDF膜(第1~219d)和尼龙(Nylon)膜(第220~360d)长期运行膜生物反应器(MBR),分析MBR系统的脱氮性能和膜污染特性.结果表明,反应器最终在进水NH4+-N和NO2--N浓度分别为400~740mg/L和460~790mg/L的条件下稳定运行112d,总氮去除率(TNRE)维持在86%左右,总氮去除负荷(NRR)为0.61~1.08kg N/(m3·d).经过263d的运行,反应器中混合液悬浮固体浓度(MLSS)从4918mg/L增至7230mg/L,混合液挥发性悬浮固体浓度(MLVSS)从2585mg/L增加至4455mg/L,比厌氧氨氧化活性(SAA)最高达0.46g N/(d·gVSS).无论是PVDF膜还是尼龙膜,Anammox-MBR系统在一个膜污染周期结束时,都是泥饼层阻力占主导,但二者的膜污染机制不同.与相同水力停留时间(HRT)下运行的PVDF膜相比,尼龙膜的膜污染发展速度显著减小.结合脱氮性能和膜污染情况,本实验条件下,MBR系统优先采用尼龙膜在HRT=1.5d运行.  相似文献   

7.
为探究高效经济的电镀废水处理工艺,本研究采用悬浮载体复合MBR工艺(HMBR)与普通MBR工艺平行运行,以重金属离子Cu2+、Ni2+、Cr(VI)为代表,重点研究了不同浓度重金属冲击下对两种工艺处理电镀综合废水效能及微生物活性的影响,以及载体的介入对膜污染的控制作用和对微生物种群多样性的影响.实验结果表明:在Cu2+、Ni2+、Cr(VI)浓度5~30mg/L冲击下,HMBR工艺对COD和NH4+-N去除效率分别在60%和40%以上,而普通MBR工艺对COD、NH4+-N的去除率分别为30%和15%以上.随着重金属Cu2+、Ni2+、Cr(VI)浓度的升高,MBR反应器内活性污泥的污泥浓度及SOUR逐步下降,HMBR工艺SOUR受抑制率48.9%远小于普通MBR工艺的73.9%.HMBR系统中EPS分泌显著低于普通MBR工艺,有效减缓膜污染的速率.此外,投加载体增加了反应系统中微生物种群多样性.  相似文献   

8.
对膜生物反应器(MBR)深度处理生活污水的工艺特性进行了研究,其结果表明:膜生物反应器对生活废水中化学需氧量(CODG),氨氮(NH5-N),具有较高的去除率,出水CODG质量浓度为30~50 mg/L去除率高达84%,NH3-N质量浓度为0.3~2.0 mg/L去除率高达98%,满足中水回用的要求;TP质量浓度为0.3-2 mg/L,去除率仅为33%.不同水力停留时间下去除效果的比较表明:MBR处理微污染水时的最佳水力停留时间为8 h.  相似文献   

9.
贫营养条件下膜生物反应器污泥混合液可滤性分析   总被引:2,自引:1,他引:1       下载免费PDF全文
采用膜生物反应器(MBR)运行16d,未向反应器内活性污泥投加营养物质,对溶解性微生物代谢产物(SMP)、污泥颗粒粒径分布(PSD)、胞外聚合物(EPS)、SMP相对分子量分布(MWDs)进行了定期监测.修正的污染指数(MFI)用来考察与SMP和EPS相关的污泥混合液可滤性.结果表明,MFI值由1.8′104迅速增加到7.3′104s/L2,说明长时间的内源代谢过程对MBR内污泥混合液可滤性有负面的影响.污泥混合液上清液中SMP相对分子量>10kDa的大分子有机物和污泥絮体中1~10μm细小颗粒的增加,将严重恶化污泥混合液的可滤性.  相似文献   

10.
膜生物反应器去除废水中阴离子表面活性剂的研究   总被引:5,自引:0,他引:5  
阴离子表面活性剂是环境中分布广泛且具有代表性的一类有机污染物.采用分置式膜生物反应器(MBR)进行去除模拟废水中阴离子表面活性荆(LAS)的实验,结果表明:MBR对阴离子表面活性荆的去除率高于90%.同时考察了阴离子表面活性荆生物降解的影响因素,确定其适宜降解条件为:气体流量为0.3m3/h、活性污泥浓度为6948mg/L.初步探讨了降解动力学和降解机理,研究表明对阴离子表面活性剂的去除符合拟一级反应动力学过程,且生物降解对其去除起主要作用.  相似文献   

11.
膜-生物反应器污泥缺氧反硝化过程中SMP的形成   总被引:2,自引:0,他引:2       下载免费PDF全文
在不同C/N比下,研究了膜-生物反应器在缺氧状态下溶解性微生物产物(SMP)的形成规律.结果表明,不同C/N比的反硝化过程,随着底物的降解,SMP都呈现不同程度的累积,且高C/N比下的合成量(9~10mgCOD/gVSS)高于低C/N比下的合成量(3~4mgCOD/gVSS).从SMP的组分来看,不同C/N比下糖类的代谢规律相似,蛋白质则随着C/N比的升高其含量占SMP总量的比例增加,成为膜污染潜在的主要贡献者.随着反硝化过程的进行,体系中亚硝酸盐的累积对SMP的形成没有影响.  相似文献   

12.
含盐工业废水生化处理耐盐污泥驯化及其机制   总被引:31,自引:0,他引:31       下载免费PDF全文
通过比较在高盐和低盐条件下活性污泥驯化过程,研究了含盐工业废水生化处理耐盐污泥驯化的可行性、特点及其生物学过程.结果表明以盐份作为选择压力可以驯化出具有高降解活性的耐盐污泥,在NaCl浓度为45 000mg/L,容积负荷为1.6kgCODCr/(m3d)时,其CODCr去除率可达到96.6%.对耐盐污泥的驯化过程中的微生物优势生理群变化分析显示,随着进水盐浓度的增加,耐盐苯乙酸降解微生物生理群数量在15d时间内从109cfu/(gVSS)上升到1011cfu/(g.VSS),成为污泥中的优势生理群.  相似文献   

13.
MBR与SMBR脱氮除磷特性及膜污染控制   总被引:1,自引:1,他引:0  
郭小马  赵焱  王开演  赵阳国 《环境科学》2015,36(3):1013-1020
为提高污水深度处理效能和工艺运行的稳定性,研究以序批式膜生物反应器(SMBR)与传统膜生物反应器(MBR)为对象,对比研究其脱氮除磷特性、缺氧时间对工艺效率的影响及膜污染控制策略,同时应用分子生物学技术对两种工艺中微生物群落结构和组成进行分析.结果表明,间歇曝气能强化系统脱氮,使SMBR工艺去除总氮效果优于MBR,而在氨氮、总磷、COD、浊度去除方面两者无明显差异,去除率分别为94%、78%、80%、97%.延长SMBR工艺缺氧时间对COD、氨氮去除无显著影响,降低了总氮、总磷的去除率,总氮去除率由61%下降到46%,总磷由74%下降到52%.采用间歇曝气和投加一定浓度的粉末活性炭(PAC)均有利于减缓膜污染.微生物群落分析发现,两种工艺中微生物群落结构和组成无显著差异,硝化螺菌属(Nitrospira)和脱氯单胞菌属(Dechloromonas)为系统中的高丰度功能菌群,为工艺高效运行提供了生物学基础.  相似文献   

14.
向厌氧氨氧化(anammox)膜生物反应器(MBR)投加悬浮填料,考察其对反应器脱氮性能和膜污染的影响特性,并探究了相关机理.试验结果表明,投加填料后,反应器脱氮性能良好.当进水氨氮(NH4+-N)160mg/L、亚硝态氮(NO2--N)180mg/L时,出水NH4+-N和NO2--N均在15mg/L以下,硝态氮(NO3--N)在30mg/L以下,总氮去除率可达90%.投加填料显著减轻了膜污染,跨膜压差(TMP)稳定在8kPa左右.混合液中溶解性微生物产物(SMP)和胞外聚合物(EPS)成分分析结果表明,在第67~149d,蛋白质总量、多糖总量和总有机碳总量分别下降了49%、43%和61%,它们浓度的下降有利于延缓膜污染;此外,悬浮填料对膜组件的机械碰撞也起到了物理清洗作用.高通量测序结果显示,悬浮填料生物膜在anammox菌相对丰度方面显著高于混合液污泥,说明anammox菌更适宜于附着生长,投加填料可以为其提供更加稳定的生长环境.  相似文献   

15.
利用差压仪测定原理,设计了在差压瓶中密闭投加基质的试验方法,测定了ECOSUNIDE工艺和其它4个不同工艺的污水处理厂曝气池混合液中活性污泥的生物代谢能力,通过内源呼吸速率和投加基质后的外源呼吸速率来表达生物代谢能力,采用各自的比呼吸速率用来比较单位污泥浓度的生物代谢活性能力。研究结果表明,具有高效脱氮除磷能力的ECOSUNIDE工艺中活性污泥在1~2 d时段内的比内源呼吸速率为43 mg O2(/gVSS.d),投加醋酸钠和氨氮后比外源呼吸分别为450和283 mg O2(/gVSS.d),均高于其它不同工艺的普通进水方式污水处理厂混合液相应的呼吸速率。该工艺在提高活性污泥中异养菌和自养菌代谢能力,缩短污染物去除时间上有较明显的优势。  相似文献   

16.
好氧颗粒污泥膜生物反应器的运行特性   总被引:6,自引:0,他引:6  
以人工合成模拟废水对好氧颗粒污泥膜生物反应器(MBR)的运行特性和膜污染进行了研究.结果表明:在HRT为6h,溶氧浓度为4~6mg.L-1,COD的容积负荷为7.24kg·(m3·d)-1的条件下,COD的去除率可达96%以上.当NH3-N的容积负荷为0.17kg·(m3·d)-1时,NH3-N的去除率可达60%.COD/N比的变化,对好氧颗粒污泥MBR的COD及NH3-N去除率基本没有影响.稳定运行过程时,MBR中好氧颗粒污泥浓度(MLSS)基本维持在14~16mg·L-1.较高的污泥浓度和颗粒污泥内部缺氧和厌氧环境的存在,使MBR中硝化和反硝化过程能同时存在.同时,比较了2种不同形态的活性污泥(颗粒污泥和絮状污泥)在MBR运行过程中膜通量的变化趋势,结果表明,颗粒污泥MBR膜通量的下降速度明显比絮状污泥MBR的下降速度慢很多,且通过空气反冲或用水清洗即可使通量基本恢复.  相似文献   

17.
低温时污泥膨胀对MBR中膜污染的影响   总被引:3,自引:3,他引:0  
任南琪  刘娇  王秀蘅 《环境科学》2009,30(1):155-159
通过一体式膜生物反应装置考察了在低温条件下发生污泥膨胀过程中反应器的运行效果和膜污染的情况,并从微生物角度分析了引起膜污染的因素.结果表明,低温时COD上清液和出水平均去除率分别为85%和92%,发生丝状菌污泥膨胀后去除率变化不大.MBR中丝状菌污泥膨胀形成的过程中,污泥沉降性变差,丝状菌丰度(FI)由2增加到5,丝状菌伸出絮体形成网状结构.低温时膜操作压力随时间呈直线变化,膜组件的水力清洗周期为15 d.在丝状菌大量繁殖时缩短到7 d,膜污染严重.通过测定活性污泥的特性,发现膨胀污泥的胞外聚合物(EPS)总量是正常污泥的3倍,污泥絮体相对疏水性(RH)随FI的提高而增大.EPS和RH增大后会引起更多物质沉积到膜表面,使膜污染速率提高,膜的运行周期变短.进一步的分析表明,混合液粘度、Zeta电位、污泥絮体形态也是影响膜污染的因素.  相似文献   

18.
浸没板式MBR处理生活污水造成膜堵塞的关键因素   总被引:3,自引:2,他引:1  
采用浸没板式膜生物反应器对大学学生宿舍与食堂混合排水进行处理,试验系统应用A/O工艺,设置硝化槽与反硝化槽,日处理生活污水4 m3.当进水ρ(BOD5)和ρ(CODCr)分别为90~450和120~900 mg/L时,出水ρ(BOD5)和ρ(CODCr)分别为5~25和8~45 mg/L,去除率均较高.同时对膜污染进行了试验研究,阐述了ρ(MLSS),污泥粒径分布以及原水成分造成膜污染的机理.发现污泥粒径分布随ρ(MLSS)变化而发生改变,当ρ(MLSS)达到20.000 g/L以上时,污泥粒径明显减小,同时可导致膜污染的细微颗粒分布相对增高,这一现象得到ρ(MLSS)超过20.000 g/L时膜污染加剧的试验验证.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号