首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arsenic, Pb and Zn tolerance and accumulation were investigated in six populations of Pteris vittata collected from As-contaminated and uncontaminated sites in southeast China compared with Pteris semipinnata (a non-As hyperaccumulator) in hydroponics and on As-contaminated soils. The results showed that both metallicolous and nonmetallicolous population of P. vittata possessed high-level As tolerance, and that the former exhibited higher As tolerance (but not Pb and Zn tolerance) than the latter. In hydroponic culture, nonmetallicolous population clearly showed significantly higher As concentrations in fronds than those in metallicolous populations. In pot trials, As concentrations in fronds of nonmetallicolous population ranged from 1060 to 1639 mg kg?1, about 2.6- to 5.4-folds as those in metallicolous populations. It was concluded that As tolerance in P. vittata resulted from both constitutive and adaptive traits, Pb and Zn tolerances were constitutive properties, and that nonmetallicolous population possesses more effective As hyperaccumulation than metallicolous populations.  相似文献   

2.
A greenhouse trial was conducted to investigate the role of arbuscular mycorrhizas (AM) in aiding arsenic (As) uptake and tolerance by Pteris vittata (As hyperaccumulator) and Cynodon dactylon (a multi-metal root accumulator). Plants inoculated with lived and killed native mycorrhizas isolated from an As mine site were grown in a sterile and slightly acidic soil. The infectious percentage of mycorrhizas (0 mg/kg As: 26.4%, 50 mg/kg As: 30.3%, 100 mg/kg As: 40.6%) and the average biomass of shoots in infected P. vittata increased (0 mg/kg As: 2.45 g/pot, 50 mg/kg As: 2.48 g/pot, 100 mg/kg As: 10.9 g/pot) according to the increase of As levels when compared to control. The indigenous mycorrhizas enhanced As accumulation (0 mg/kg As: 3.70 mg/kg, 50 mg/kg As: 58.3 mg/kg; 100 mg/kg As: 88.1 mg/kg) in the As mine populations of P. vittata and also sustained its growth by aiding P absorption. For C. dactylon, As was mainly accumulated in mycorrhizal roots and translocation to shoots was inhibited.  相似文献   

3.
Yan X  Zhang M  Liao X  Tu S 《Chemosphere》2012,88(2):240-244
Increasing availability of soil arsenic is of significance for accelerating phytoremediation efficiency of As-polluted sites. The effects of seven amendments, i.e., citrate, oxalate, EDTA, sodium polyacrylate (SPA), phosphate rock (PR), single superphosphate (SSP), and compost on fractionation and phytoavailability of soil As were investigated in lab culture experiment. The results showed that the addition of PR, SPA, EDTA or compost to soils significantly increased the concentration of NaHCO3-extractable As over a 120 d incubation period compared with the control (amendment-free) soil. Then, the four amendments were selected to add to As-contaminated soil growing Pteris vittata. It was concluded that As accumulation by the fern increased significantly under the treatments of PR and SPA by 25% and 31%, respectively. For As fractionation in soil, SPA increased Fe-As significantly by 51% and PR increased Ca-As significantly by 18%, while both the two amendments reduced occluded-As by 16% and 19%, respectively. Adding PR and SPA in soil increased the activities of urease and neutral phosphatase resulting from the improvement the fertility and physical structure of the soil, which benefits plant growth and As absorption of P. vittata. The results of the research revealed that both PR and SPA were effective amendments for improving phytoremediation of As-contaminated sites by P. vittata.  相似文献   

4.
Fluoride (F) contamination is a global environmental problem, as there is no cure of fluorosis available yet. Prosopis juliflora is a leguminous perennial, phreatophyte tree, widely distributed in arid and semi-arid regions of world. It extensively grows in F endemic areas of Rajasthan (India) and has been known as a “green” solution to decontaminate cadmium, chromium and copper contaminated soils. This study aims to check the tolerance potential of P. juliflora to accumulate fluoride. For this work, P. juliflora seedlings were grown for 75 d on soilrite under five different concentrations of F viz., control, 25, 50, 75 and 100 mg NaF kg−1. Organ-wise accumulation of F, bioaccumulation factor (BF), translocation factor (TF), growth ratio (GR) and F tolerance index (TI) were examined. Plant accumulated high amounts of F in roots. The organ-wise distribution showed an accumulation 4.41 mg kg−1dw, 12.97 mg kg−1dw and 16.75 mg kg−1dw F, in stem, leaves and roots respectively. The results indicated significant translocation of F from root into aerial parts. The bioaccumulation and translocation factor values (>1.0) showed high accumulation efficiency and tolerance of P. juliflora to F. It is concluded that P. juliflora is a suitable candidate for phytoremediation purpose and can be explored further for the decontamination of F polluted soils.  相似文献   

5.
The effects of Cd, Ni, Pb, and Zn on arsenic accumulation by the arsenic hyperaccumulator Pteris vittata were investigated in a greenhouse study. P. vittata was grown for 8 weeks in an arsenic-contaminated soil (131 mg As kg(-1)), which was spiked with 50 or 200 mg kg(-1) Cd, Ni, Pb, or Zn (as nitrates). P. vittata was effective in taking up arsenic (up to 4100 mg kg(-1)) and transporting it to the fronds, but little of the metals. Arsenic bioconcentration factors ranged from 14 to 36 and transfer factors ranged from 16 to 56 in the presence of the metals, both of which were reduced with increasing metal concentration. Fern biomass increased as much as 12 times compared to the original dry weight after 8 weeks of growth (up to 19 g per plant). Greater concentrations of Cd, Ni, and Pb resulted in greater catalase activity in the plant. Most of the arsenic in the plant was present as arsenite, the reduced form, indicating little impact of the metals on plant arsenic reduction. This research demonstrates the capability of P. vittata in hyperaccumulating arsenic from soils in the presence of heavy metals.  相似文献   

6.
This greenhouse experiment evaluated the influence of arsenic uptake by arsenic hyperaccumulator Pteris vittata L. and non-arsenic hyperaccumulator Nephrolepis exaltata L. on arsenic chemistry in bulk and rhizosphere soil. The plants were grown for 8 weeks in a rhizopot with a soil containing 105 mg kg(-1) arsenic. The soil arsenic was fractionated into five fractions with decreasing availability: non-specifically bound (N), specifically bound (S), amorphous hydrous-oxide bound (A), crystalline hydrous-oxide bound (C), and residual (R). P. vittata produced larger plant biomass (7.38 vs. 2.32 mg plant(-1)) and removed more arsenic (2.61 vs. 0.09 mg pot(-1) arsenic) than N. exaltata. Plant growth reduced water-soluble arsenic, and increased soil pH (P. vittata only) in the rhizosphere soil. P. vittata was more efficient than N. exaltata to access arsenic from all fractions (39-64% vs. 5-39% reduction). However, most of the arsenic taken up by both plants was from the A fraction (67-77%) in the rhizosphere soil, the most abundant (61.5%) instead of the most available (N fraction).  相似文献   

7.
This study examined the roles of arsenic translocation and reduction, and P distribution in arsenic detoxification of Pteris vittata L. (Chinese Brake fern), an arsenic hyperaccumulator and Pteris ensiformis L. (Slender Brake fern), a non-arsenic hyperaccumulator. After growing in 20% Hoagland solution containing 0, 133 or 267 microM of sodium arsenate for 1, 5 or 10 d, the plants were separated into fronds, rhizomes, and roots. They were analyzed for biomass, and concentrations of arsenate (AsV), arsenite (AsIII) and phosphorus. Arsenic in the fronds of P. vittata was up to 20 times greater than that of P. ensiformis, yet showing no toxicity symptoms as did in P. ensiformis. While arsenic was concentrated primarily in the fronds of P. vittata as arsenite it was mainly concentrated in the roots of P. ensiformis as arsenate. Arsenic reduction in the plants took longer than 1-d. P. vittata maintained greater P in the roots while P. ensiformis in the fronds. The high arsenic tolerance of the hyperaccumulator P. vittata may be attributed to its ability to effectively reduce arsenate to arsenite in the fronds, translocate arsenic from the roots to fronds, and maintain a greater ratio of P/As in the roots.  相似文献   

8.
Chen BD  Zhu YG  Smith FA 《Chemosphere》2006,62(9):1464-1473
A glasshouse experiment was conducted to investigate U and As accumulation by Chinese brake fern, Pteris vittata L., in association with different arbuscular mycorrhizal fungi (AMF) from a U and As contaminated soil. The soil used contains 111 mg U kg(-1) and 106 mg As kg(-1). P. vittata L. was inoculated with each of three AMF, Glomus mosseae, Glomus caledonium and Glomus intraradices. Two harvests were made during plant growth (two and three months after transplanting). Mycorrhizal colonization depressed plant growth particularly at the early stages. TF (transfer factor) values for As from soil to fronds were higher than 1.0, while those for roots were much lower. Despite the growth depressions, AM colonization had no effect on tissue As concentrations. Conversely, TF values for U were much higher for roots than for fronds, indicating that only very small fraction of U was translocated to fronds (less than 2%), regardless of mycorrhizal colonization. Mycorrhizal colonization significantly increased root U concentrations at both harvests. Root colonization with G. mosseae or G. intraradices led to an increase in TF values for U from 7 (non-inoculation control) to 14 at the first harvest. The highest U concentration of 1574 mg kg(-1) was recorded in roots colonized by G. mosseae at the second harvest. The results suggested that P. vittata in combination with appropriate AMF would play very important roles in bioremediation of contaminated environments characterized by a multi-pollution.  相似文献   

9.
The capacity of the Australian native fern Pteris umbrosa to function as an arsenic (As) hyperaccumulator (shoot:soil As concentration >1) was examined by growing plants under glasshouse conditions in an inert medium supplemented with As. Arsenic preferentially accumulated in the fronds, a trait of a hyperaccumulator. The As concentration of fronds decreased with age, being particularly high in the croziers and low in the senesced fronds. Below ground, rhizomes accumulated more As than adventitious roots. Uptake from a range of solution concentrations followed Michaelis Menten kinetics up to a soil solution As concentration of 400mgl(-1). The K(m) for As uptake by roots suggested the operation of a low-affinity carrier. The predicted Nernst membrane potential indicated that uptake was against the electrochemical gradient of As. At 600mgl(-1), the rate of As uptake increased and phytotoxic effects were indicated by a significant decline in biomass. Arsenic uptake and translocation in P. umbrosa and Pteris vittata were similar at low exposure to As. At higher exposure, As uptake and translocation by P. vittata increased more than in P. umbrosa. The growth rate of both ferns was similar, whereas the biomass distribution was not, with P. vittata having a much larger root mass. This suggests that As uptake by P. umbrosa roots was very efficient and may be improved by stimulating root growth to enhance its potential.  相似文献   

10.
The frequent co-existence of arsenic (As) and lead (Pb) necessitates the investigation of clean-up technologies for multi-metal(loid)s. Field survey and hydroponic experiments were conducted to elucidate the co-accumulation of As and Pb in Pteris vittata L. The P. vittata population isolated from a Pb–Zn mine in Yunnan province, China is a potential extractor of As and Pb co-contamination. Hydroponic experiment found that the highest frond As and Pb concentrations in mining population of P. vittata reached 12.2 and 0.99 g kg?1, respectively. The interaction between As and Pb in P. vittata was further more disclosed. Pb (2 mg L?1) improved the frond As concentration by 60 to 150 % in mining populations of P. vittata. Micro-X-ray absorption spectroscopy indicated that under the combined exposure of As and Pb, the As content in the rhizoid epidermis increased by about 10-fold, and the As(V) percentage increased in each rhizoid tissue, as compared with that under As exposure alone. The co-absorption of As and Pb on the epidermis and the enhanced transportation of As(V) from epidermis into the rhizoid were suggested to contribute to the increased As accumulation.  相似文献   

11.
The effects of timing in phosphate application on plant growth and arsenic removal by arsenic hyperaccumulator Pteris vittata L. of different ages were evaluated. The hydroponic experiment consisted of three plant ages (A45d, A90d and A180d) and three P feeding regimens (P200+0, P134+66 and P66+134) growing for 45 d in 0.2-strength Hoagland-Arnon solution containing 145 microg L(-1) As. While all plants received 200 microM P, P was added in two phases: during acclimation and after arsenic exposure. High initial P-supply (P200+0) favored frond biomass production and plant P uptake, while split-P application (P134+66 and P66+134) favored plant root production. Single P addition favored arsenic accumulation in the roots while split-P addition increased frond arsenic accumulation. Young ferns (A45d) in treatment P134+66 were the most efficient in arsenic removal, reducing arsenic concentration to below 10 microg L(-1) in 35 d. The results indicated that the use of young ferns, coupled with feeding of low initial P or split-P application, increased the efficiency of arsenic removal by P. vittata.  相似文献   

12.
The interactions of arsenic and phenanthrene on plant uptake and antioxidative response of Pteris vitatta L. were studied hydroponically. The combination of arsenic and phenanthrene decreased arsenic contents in fronds by 30-51%, whereas increased arsenic concentrations 1.2-1.6 times in roots, demonstrating the suppression of arsenic translocation compared to the corresponding treatment without phenanthrene. Under the co-exposure, As(III) concentrations in fronds deceased by 12-73%, and at higher arsenic exposure level (≥10 mg/L), As(V) in fronds and As(III) in roots increased compared to the single arsenic treatment. Arsenic exposure elevated phenanthrene concentrations in root by 39-164%. The co-existence of arsenic and phenanthrene had little impact on plant arsenic accumulation, although synergistic effect on antioxidants was observed, suggesting the special physiological process of P. vitatta in the co-exposure and application potential of P. vitatta in phytoremediation of arsenic and PAHs co-contamination.  相似文献   

13.
Li WX  Chen TB  Huang ZC  Lei M  Liao XY 《Chemosphere》2006,62(5):803-809
This study investigated the impacts of arsenic (As) on the chloroplast ultrastructure and calcium (Ca) distribution in Chinese brake (Pteris vittata L.) mainly by histochemical methods, with an emphasis on the possible function of Ca in As detoxification and accumulation in P. vittata. P. vittata was grown in an artificially contaminated soil added with different concentrations of Na(2)HAsO(4) (0, 100, 300 and 800 mg kg(-1) As dry soil) for 24 weeks in a greenhouse. The addition of As did not affect the chloroplast ultrastructure of young pinna, meanwhile most of the membrane systems of chloroplasts in mature pinna were severely damaged under high As condition. Calcium concentration in the fronds of P. vittata was not significantly affected by the addition of As, but Ca concentration in the mature pinna significantly increased by As addition, consistent with the position appearing As toxicity. When no As was added, most of calcium precipitates distributed around the inner membrane of vacuole. But when the pinna appeared plasmolysis, more calcium precipitates resided outside the cell membrane and bigger particles evenly distributed in the cytoplasm. All the results indicated that Ca had a close relation with As toxicity in P. vittata.  相似文献   

14.
抗砷菌对蜈蚣草生长及其砷吸收能力的影响   总被引:2,自引:0,他引:2  
从湖南某砷污染地区挖取蜈蚣草,在蜈蚣草根系与根系新鲜土中筛选出11组抗砷菌单菌落(依次编号为A、B、C、D…K),并将其接种到蜈蚣草盆栽试验中,研究抗砷菌对蜈蚣草生长以及对砷吸收能力的影响。结果表明,抗砷菌在一定程度上能够刺激蜈蚣草的生长,尤其是根内筛选抗砷菌明显提高了蜈蚣草的生物量。其中,E、G抗砷菌可以增强蜈蚣草对砷的吸收能力,促进砷由蜈蚣草地下部分向地上部分转移。测定接种E、G抗砷菌的蜈蚣草各部位抗逆性指标的含量,得出E、G抗砷菌能减轻蜈蚣草根系质膜的损伤,提高蜈蚣草根系抗砷胁迫的能力。对E抗砷菌进行鉴定,该菌属于半知菌纲,丛梗胞目,丝核菌属(Rhizoctoniasp.),为内生菌根菌,该菌可产生类似赤霉素的活性物质,从而促进植物生长。  相似文献   

15.
AsIII uptake in living cells is through aquaglyceroporin transporters, but it is unknown in arsenic-hyperaccumulator Pteris vittata. We investigated the effects of AsIII analogs glycerol and antimonite (SbIII) at 0-100 mM and aquaporin inhibitor AgNO3 at 0-0.1 mM on the uptake of 0.1 mM AsIII or AsV by P. vittata over 1-2 h. Glycerol or SbIII didn’t impact AsIII or AsV uptake by P. vittata (p < 0.05), with As concentrations in the fronds and roots being 4.4-6.3 and 3.9-6.2 mg/kg. However, 0.01 mM AgNO3 reduced As concentrations in the fronds and roots by 64% and 58%. Hence, AsIII uptake in P. vittata might be via an aquaporin transporter different from glycerol and SbIII transporters. Further as AsIII analogs and aquaporin inhibitor had no impact on AsV uptake, AsIII and AsV were likely taken up by different transporters in P. vittata. Our results imply a different AsIII transporter in P. vittata from other plants.  相似文献   

16.
Environmental Science and Pollution Research - This study aims to find the interaction between ionome and metabolome profiles of Pteris vittata L., an arsenic hyperaccumulator plant, to reveal its...  相似文献   

17.
Sesuvium portulacastrum (L.) L., a facultative halophyte, is considered a suitable candidate for the phytoremediation of metals. An investigation of As accumulation and tolerance was conducted in Sesuvium plants upon exposure to As(V) (100-1000 μM) for 30 d. Plants demonstrated a good growth even after prolonged exposure (30 d) to high As(V) concentrations (1000 μM) and a significant As accumulation (155 μg g−1 dry weight) with a bioaccumulation factor of more than ten at each concentration. The results of shoot and root dry weight, malondialdehyde accumulation, photosynthetic pigments, and total soluble proteins demonstrated that plants did not experience significant toxicity even at 1000 μM As(V) after 30 d. However, metabolites (total non-protein thiols and cysteine) and enzymes (serine acetyltransferase, cysteine synthase and γ-glutamylcysteine synthetase) of thiol metabolism, in general, remained either unaffected or showed slight decline. Hence, plants tolerated high As(V) concentrations without an involvement of thiol metabolism as a major component. Taken together, the results indicate that plants are potential As accumulator and may find application in the re-vegetation of As contaminated sites.  相似文献   

18.
This greenhouse experiment evaluated arsenic removal by Pteris vittata and its effects on arsenic redistribution in soils. P. vittata grew in six arsenic-contaminated soils and its fronds were harvested and analyzed for arsenic in October, 2003, April, 2004, and October, 2004. The soil arsenic was separated into five fractions via sequential extraction. The ferns grew well and took up arsenic from all soils. Fern biomass ranged from 24.8 to 33.5 g plant(-1) after 4 months of growth but was reduced in the subsequent harvests. The frond arsenic concentrations ranged from 66 to 6,151 mg kg(-1), 110 to 3,056 mg kg(-1), and 162 to 2,139 mg kg(-1) from the first, second and third harvest, respectively. P. vittata reduced soil arsenic by 6.4-13% after three harvests. Arsenic in the soils was primarily associated with amorphous hydrous oxides (40-59%), which contributed the most to arsenic taken up by P. vittata (45-72%). It is possible to use P. vittata to remediate arsenic-contaminated soils by repeatedly harvesting its fronds.  相似文献   

19.
This field study investigated the phytoremediation potential of two arsenic (As) hyperaccumulating fern species, Pityrogramma calomelanos var. austroamericana and Pteris vittata over 27-month duration at a disused As-contaminated cattle-dip site located at Wollongbar, NSW, Australia. Ferns planted in January 2009 were harvested following 10, 22 and 27 months of growth. A detailed soil sampling was undertaken in June 2009 (initial, n?=?42 per plot) and limited sampling in April 2011 (after 27 months, n?=?15 per plot) to measure total and phosphate-extractable As concentrations in soil at 0?-?20-, 20?-?40- and 40?-?60-cm depths. The choice of the limited number of samples was considered sufficient to estimate the changes in soil As concentration following phytoremediation based on a geostatistical model. The average frond dry biomass, As concentration and As uptake were significantly (P??0.05), respectively, by P. vittata. Our results show that phytoremediation time based on observed changes in soil As based on limited sampling is not reliable; hence, it is recommended that the frond As uptake should be considered in order to evaluate the phytoremediation efficiency of the two fern species at the experimental site. Using As uptake of the two fern species, we estimate that with P. calomelanos var. austroamericana it would take 55?-?125 years to decrease mean total As content below the ecological investigation level (20 mg kg(-1)) in the surface and subsurface soils, whereas with P. vittata 143?-?412 years would be required to achieve this target.  相似文献   

20.
Arsenic speciation is important not only for understanding the mechanisms of arsenic accumulation and detoxification by hyperaccumulators, but also for designing disposal options of arsenic-rich biomass. The primary objective of this research was to understand the speciation and leachability of arsenic in the fronds of Chinese brake (Pteris vittata L.), an arsenic hyperaccumulator, with an emphasis on the implications for arsenic-rich biomass disposal. Chinese brake was grown for 18 weeks in a soil spiked with 50 mg As kg(-1) as arsenate (AsO4(3-)), arsenite (AsO3(3-)), dimethylarsinic acid (DMA), or methylarsonic acid (MMA). Plant samples were extracted with methanol/water (1:1) and arsenic speciation was performed using high performance liquid chromatography coupled with atomic fluorescence spectrometry. The impacts of air-drying on arsenic species and leachability in the fronds were examined in the laboratory. After 18 weeks, water-soluble arsenic in soil was mainly present as arsenate with little detectable organic species or arsenite regardless of arsenic species added to the soil. However, arsenic in the fronds was primarily present as inorganic arsenite with an average of 94%. Arsenite re-oxidation occurred in the old fronds and the excised dried tissues. Arsenic species in the fronds were slightly influenced by arsenic forms added to the soil. Air-drying of the fronds resulted in leaching of substantial amounts of arsenic. These findings can be of significance when looking at disposal options of arsenic-rich biomass from the point of view of secondary contamination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号