首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 859 毫秒
1.
为了研究地层条件下瓦斯流动特点,通过建立瓦斯吸附-解吸、扩散和渗流综合流动数学模型,分析不同埋深条件下瓦斯流动机制,并模拟吸附层和滑脱效应对瓦斯流动的影响。结果表明:随煤层埋深增加,部分纳米孔隙内瓦斯流动机制由扩散过渡到渗流,这有利于瓦斯运移;在煤层深部,瓦斯吸附层和滑脱效应对瓦斯渗流作用影响不大;随埋深增加,瓦斯吸附层对瓦斯运移影响逐步增大,而滑脱效应则逐步弱化;在埋深相同时,两者对瓦斯运移的影响都随孔隙直径增大而减小。研究有助于深入了解瓦斯在深部煤层流动的机制,提高深部煤层瓦斯抽采效果。  相似文献   

2.
在研究煤层瓦斯抽采时,假定煤岩为具有孔隙裂隙的双重介质,在运动方程、连续性方程和辅助方程基础上,以煤岩体应变为耦合媒介建立了考虑裂隙瓦斯渗流、微孔隙吸附瓦斯解吸扩散和煤岩变形的渗流模型.借助多物理场分析软件COMSOL Multiphysics,将模型转化为偏微分方程组,结合沙曲矿24305工作面瓦斯赋存条件进行分析求解.结果表明,进行煤层瓦斯预抽时,抽采初期瓦斯压力下降较快,抽采孔间距对抽采效果影响比较显著,距离抽采孔越远瓦斯压力下降越慢,抽采时瓦斯渗流速度变化可分3个阶段.参考模拟结果现场布置孔距为6m的顺层钻孔,抽采稳定时瓦斯纯量达5~7 m3/min,抽采效果比较理想.  相似文献   

3.
瓦斯气体在煤层中的扩散机理及模式   总被引:10,自引:2,他引:8  
根据气体在多孔介质中的扩散模式 ,结合煤结构的实际特点 ,分析了瓦斯气体在煤孔隙中的扩散机理 ,得出瓦斯在煤体中几种扩散模式 :菲克型扩散、诺森扩散、过渡型扩散、表面扩散和晶体扩散。从微观上看 ,影响瓦斯气体在煤层中扩散的主要因素是瓦斯气体的平均自由程和煤不同尺寸微孔隙的分布情况。根据不同孔隙分布的煤层 ,探讨了各种扩散模式的适用条件  相似文献   

4.
研究煤层中瓦斯流动规律对于预防瓦斯突出,改善煤层瓦斯抽放率和煤层气开发利用具有现实意义。根据基本假设,对煤层瓦斯流动规律进行了研究,运用瓦斯运动方程—达西定律(DarcyLaw)、煤层瓦斯含量方程—抛物线方程、理想气体状态方程以及气体流动的连续性方程,建立了煤层单向瓦斯流动的动力学模型,并根据边界条件和初始条件,对动力学模型进行了求解,推导出煤壁单位面积的瓦斯涌出量的计算公式,分析了瓦斯涌出量的影响因素,利用测得的数据,进行了实例计算,并用vc编制了计算机程序。  相似文献   

5.
为更准确反映抽采过程中的煤层瓦斯(甲烷)运移过程,将煤岩视为孔隙-裂隙双重结构、双渗透率非均匀弹性介质,考虑基质瓦斯渗流作用,结合地下水、瓦斯吸附/解吸特性、煤岩变形和渗透率演化等因素的耦合作用,建立考虑基质瓦斯渗流的煤层流固耦合模型;数值模拟地面瓦斯抽采过程,分析煤层瓦斯运移规律和基质渗流作用对瓦斯抽采的影响。研究表明:基质瓦斯和裂隙瓦斯的压力均随时间的增加而降低,两者差值先增大后减小;在模拟工况下,单位时间内基质瓦斯渗流量仅占流入裂隙瓦斯量的0.5%。基质渗流对瓦斯抽采的产能及储层压力有影响;考虑基质瓦斯渗流的双孔隙双渗透率模型预测的产气速率和储层压力下降幅度均小于双孔隙单渗透率模型。  相似文献   

6.
为研究井下卸压抽采时瓦斯流动规律,建立煤层渗透率演化模型。为建该模型将煤体简化为有2组相互垂直节理发育的等效连续介质,假定瓦斯在煤体裂隙中的流动符合立方定律,考虑煤基质对吸附性气体的吸附膨胀作用和外荷载对煤的压缩变形作用,不考虑孔隙压力对裂隙张开的影响。从应力条件和孔隙压力2个方面,结合煤样渗透率试验,对该模型进行有效性验证。结果表明,渗透率模型能反映应力和低孔隙压力对煤样渗透率的影响,但不能体现高孔隙压力对煤样损伤导致的渗透率增大作用。  相似文献   

7.
为使瓦斯抽采效果在技术、经济方面达到最佳,研究了瓦斯抽采过程中煤层瓦斯的运移规律和钻孔的合理布孔间距。将煤层视为双孔隙双渗透率弹性介质,推导了煤基质、裂隙渗透率演化方程,综合考虑了瓦斯吸附/解吸特性、煤岩变形等因素的影响,建立了煤层双重介质流固耦合模型,并进行了钻孔瓦斯抽采模拟,分析了钻孔间距对瓦斯抽采的影响。结果表明:不同钻孔间距的瓦斯压力随抽采时间的增加先快速下降再趋于平缓,且钻孔间距越小,瓦斯压力下降越快;随着钻孔间距的增大,O点消突时间逐渐增加,与钻孔间距呈二次方关系;现场试验与模拟结果基本吻合,钻孔间距5 m时瓦斯抽采效果最佳。  相似文献   

8.
针对采用胶囊粘液封孔器在测定煤层高瓦斯压力过程中,容易出现胶囊被顶出或密封失效等情况,根据多次实践经验,建立了封孔器与瓦斯室、岩石孔壁间整个密封系统的力学平衡方程,分析了胶囊被顶出的原因;通过假设建立了高压瓦斯气体侵入微孔隙模型,给出了泄漏气体侵入时的流量微分方程,并从能量角度分析了气体侵入和逸出微孔隙过程;建立了封孔系统内高压瓦斯在粘液中的扩散、溶解、析出物理模型,从理论上分析这种装置密封高压气体失效机制。通过多次对比现场实验,给出了采用该装置测压时的安全可信值范围,当煤层瓦斯压力超过3MPa时,最好采用传统封孔工艺进行测定。  相似文献   

9.
通过分析温度和地应力对深部煤体瓦斯运移规律的影响,建立了瓦斯渗流热流固耦合模型,以贵州省松和煤矿15#煤层12150采煤工作面为例,利用ComsolMultiphysics软件对深部煤层工作面前方瓦斯渗流进行数值模拟。研究结果表明:受采动影响,在工作面前方“三带”中,卸压区存在大量新裂隙和通道,瓦斯压力梯度最大;在应力集中区至卸压区过渡段瓦斯压力下降速度最快,解释了在该区容易导致瓦斯突出的原因;在应力集中区,瓦斯压力和有效应力较高,压缩煤体,导致煤颗粒排列紧密,渗透率降低;在卸压区,煤体体积形变逐渐变大,产生了很多新裂隙,发生扩容,渗流通道贯通,导致渗透率急剧增加,因此在应力最大处形成了煤层渗透率最低点,随着时间的推移,渗透率最低点逐步远离工作面;在采煤工作面前方,虽然温度升高后瓦斯热运动加剧,有促进瓦斯渗透率的趋势,但由于工作面前方有效应力较大,煤体受热膨胀应力小于有效应力,导致煤体内膨胀,渗流空间减小,造成渗透率降低。  相似文献   

10.
易自燃煤层采空区瓦斯和火灾综合防治是煤矿亟待解决的难题,基于多孔介质渗流理论,把采空区渗透系数以及瓦斯涌出源项看成随采空区位置变化的量。建立采空区气体流动的质量方程、动量方程、组分传输方程以及能量守恒方程,应用fluent软件模拟采空区在不同工作面供风量、不同抽放情况下采空区流场分布,得出工作面风量与氧化带宽度的拟合关系式。指出瓦斯抽放对采空区瓦斯浓度分布以及氧化带宽度影响比较显著;结合现场观测数据,表明数值模拟的可靠性。通过数值模拟,可以得出采空区不同瓦斯治理参数与氧化带宽度的对应关系,为煤矿采空区瓦斯和火灾合理防治提供依据。  相似文献   

11.
煤岩中的孔隙结构特征对瓦斯运移和富集有着至关重要的影响。为了研究CO2致裂对煤岩孔隙的影响,利用低温氮吸附试验与压汞试验相结合的方法对致裂前后的煤岩孔隙变化进行定量表征,并使用扫描电镜、现场致裂后煤岩瓦斯抽采分别从定性和宏观上反映CO2致裂对煤岩孔径分布和孔隙结构特征的影响。结果表明,CO2致裂会迫使煤岩中微孔、小孔孔隙结构改变,从墨水瓶形孔转变为开放型孔隙,各孔径段孔容有所增长扩张,致裂主要迫使孔径在10 000~100 000 nm的孔隙有较为明显的发育扩张。煤岩中存在渗流孔隙和扩散孔隙,致裂后渗流孔体积和百分比呈现先增长后逐步降低的现象,扩散孔体积变化趋势与渗流孔一致,但其百分比先降低后逐步回升。通过扫描电镜、现场测定及计算等辅助手段从宏观方面反映出CO2致裂对孔隙有明显作用,对消除煤与瓦斯突出有积极效果。  相似文献   

12.
煤与瓦斯突出过程中煤体瓦斯的作用研究   总被引:4,自引:1,他引:3  
为了研究煤与瓦斯突出过程中煤体瓦斯的作用,采用煤体中瓦斯总量守恒的原理研究瓦斯含量与瓦斯积聚内能的基本方程和影响因素;分析煤与瓦斯突出产生的力学条件和机理,建立了煤与瓦斯突出危险程度的矩阵图。结果表明:瓦斯含量是煤体瓦斯内能最直接的反应,其值大小决定瓦斯内能的大小;瓦斯压力梯度、煤体的断裂韧性及煤体内的裂隙发育程度决定着瓦斯突出的危险性,低渗透性构造煤对瓦斯运移阻力较大,容易形成较大的瓦斯压力梯度,从而更容易发生煤与瓦斯突出。煤层中的瓦斯含量、瓦斯压力、地应力越大,煤体的强度、渗透率越小,越容易发生突出。煤层瓦斯情况、力学性能、地质构造和煤层的应力状态是决定煤与瓦斯突出的主要因素。  相似文献   

13.
研究聚氨酯硬泡材料的渗透性能和粘结性能,旨在为煤矿瓦斯抽放和煤层注水工艺提供本质安全型的封孔材料,从而提高瓦斯抽放和煤层注水的效果,做好瓦斯、煤尘灾害的预防工作。根据达西定律设计材料渗流量的测试实验,将测定的数据进行线性拟合后,得出聚氨酯硬泡材料的渗透系数为1.00546×10-6cm/s;通过材料的抗压剪切力测试,得出聚氨酯硬泡与煤的粘结强度为387.95kPa;根据封孔模拟实验结果,选择压注药液法作为封孔方法,并根据钻孔受力平衡原则,计算得出由聚氨酯硬泡作为封孔材料的封孔长度至少为0.967m。  相似文献   

14.
深孔预裂爆破在低透性高突煤层中的应用与分析   总被引:2,自引:1,他引:1  
为提高低透气性高突出煤层瓦斯抽放率,达到预防瓦斯突出的效果,将深孔预裂爆破技术运用于某煤矿低透性高突煤层,考察了这种爆破对煤层透气性系数、百米钻孔瓦斯流量、瓦斯抽放量、抽放浓度、瓦斯抽放率以及突出预测敏感指标的影响。试验结果表明:采用深孔预裂爆破技术后,煤层透气性增强,瓦斯抽放率提高,各项预测指标在回采期间没有出现超标情况,同时也没有发生过瓦斯动力现象和煤与瓦斯突出。  相似文献   

15.
为研究水渗流作用对顺层钻孔抽采的影响,为抽采工艺参数优化提供理论依据,建立了考虑水渗流场的气水两相流固耦合方程,并利用COMSOL Multiphysics软件对赵庄矿1309工作面顺层钻孔的抽采负压与钻孔间距进行参数优化。研究结果表明:随着抽采时间增加,煤层水压与水相相对渗透率均快速下降后趋于稳定不变,气相相对渗透率先升高后不变,煤层瓦斯压力在抽采过程中逐步降低;抽采负压改变对煤层相对渗透率几乎无影响;在相同预抽时间里,抽采影响半径与抽采负压呈指数函数关系,抽采负压由15 kPa提高到27 kPa,可降低煤层瓦斯压力,有效影响半径扩散明显,超过27 kPa变化不再明显;钻孔间距设置为4.5 m可在预抽期内满足抽采要求且节约施工成本。  相似文献   

16.
Gas emission rate from borehole is one of the most important indexes for the coal and gas outburst prediction. The mathematical model of gas flow in the coal seam, gas flow into the measuring chamber, gas pressure change in the measuring chamber, and gas flow out of the chamber through the pipe is established. Gas migration in the coal seam, gas pressure in borehole chamber and gas flow in pipe is simulated using the finite difference method. Gas emission rate is obtained under dynamic boundary conditions. The influence of gas storage parameters on gas emission rate from borehole is analyzed. Results show that: the gas pressure and the permeability coefficient have great impacts on the value of gas flow quantity in borehole. The larger the original gas pressure of coal seam and the permeability coefficient of coal seam are, the greater the maximum value of gas emission rate form borehole and the later the maximum appears.  相似文献   

17.
The high-gas and low-permeability are the common problems of China coal mine, which restrain the mining of coal-seam gas resources safely and efficiently. Hence, to solve the problem of low permeability of coal seam, an experimental system was set up and experimental research was conducted to investigate the effect of the displacement of methane by injecting supercritical CO2 into coal samples. The experimental results indicated that, the extraction effect of supercritical CO2 changes the coal’s porosity, and broadens the seepage channel for methane. Thus, the methane could be desorbed effectively from the coal matrix, and flow through more cracks at higher speed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号