首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 46 毫秒
1.
为分析含硫天然气气田井口笼套式节流阀的硫沉积问题,基于雷诺应力模型、组分输运模型及离散相模型,建立硫沉积数值模拟模型,分析笼套式节流阀的硫沉积规律及影响因素.研究结果表明:硫沉积主要出现在正对来流的节流孔外侧下缘、阀套边缘以及阀芯内侧,其中节流孔外侧下缘的沉积最严重,对于该位置,随着气流进口速度的增大,硫沉积速率先增大...  相似文献   

2.
元素硫在集输管道中沉积会引起堵塞和腐蚀问题,而弯管是集输管道中较易出现硫沉积的部位之一。为此,采用数值模拟的方法研究水平弯管内的硫沉积问题,首先利用雷诺应力模型对流场进行模拟,其次采用Lagrange颗粒轨道模型对硫颗粒进行模拟追踪,研究不同因素对硫颗粒在弯管中沉积率的影响。结果表明:弯管内壁会出现负压区和低速区,气流速度和弯曲比会对流场产生影响;硫颗粒在弯管中的沉积率随流速、粒径和弯曲比的增大而增大;硫颗粒沉积是重力和离心力共同作用的结果,其中离心力是导致弯管中沉积率增大的重要原因。  相似文献   

3.
针对萘在人工煤气管道中沉积会造成管道堵塞,影响管道的安全运行的这一问题,以昆明人工煤气管道为例,运用计算流体动力学软件Fluent,选用离散相模型和雷诺应力模型,对水平直管、水平弯管和三通管进行萘颗粒沉积的数值模拟,对于不同的管径、弯曲比、管径比,分别分析萘颗粒直径、入口速度、温度及压力对萘颗粒沉积的影响。研究结果表明:水平直管、水平弯管、三通管中的萘颗粒沉积率与颗粒粒径成正相关关系,而与气流入口速度、压力成负相关关系;萘颗粒在人工煤气管道中的沉积率主要受颗粒直径、气流入口速度的影响;萘颗粒的沉积率随着水平直管的管径增大而增大,随着水平弯管的弯曲比增大而增大,随着三通管的管径比增大而先增大后减小;可通过适当增大管内煤气输送速度、压力,降低温度来降低萘颗粒在人工煤气管道中的沉积速度,进而减少萘颗粒沉积的发生。  相似文献   

4.
为进一步改善快速接头受连续相作用易失效、内壁冲蚀磨损严重的问题,采用CFD软件中的Realizable k-ε湍流模型,对不同入口速度下的快速接头冲蚀磨损情况运用数值模拟方法分析,得到快速接头内部的流场分布及其冲蚀磨损情况.结果表明:快速接头的冲蚀主要集中在管径缩小段的大小管道交界处,且在管径突变处流体的压力、速度会发...  相似文献   

5.
为了综合描述高海拔矿井掘进工程中内燃机尾气污染的影响范围和扩散规律,为高原矿井掘进工程施工过程中的通风方案设计提供需风量等关键数据,在对高原作业条件下内燃机械的工况与排放规律进行测定分析的基础上,采用Fluent软件对工作面的尾气运移规律进行了数值模拟,得出了掘进工作面需风量与内燃机工作功率之间的量化关系。结果表明:高海拔矿山掘进工作面的主要污染源为内燃机燃烧不充分所造成的CO排放,且其排放量在内燃机额定工况范围内随转速增大而增加;通过数值模拟过程可以得出巷道中风筒出口需风量与内燃机功率呈正相关性,因而高海拔地区矿山的掘进工程中,可以通过增大压入式通风量的方法解决巷道内尾气污染问题。  相似文献   

6.
针对巷道内皮带输煤过程中粉尘污染的问题,通过巷道内粉尘质量沿程分布测试,并利用数值模拟的方法,分别对不同风速下的粉尘颗粒运移、巷道底板沉积单个粉尘粒子扬尘、输煤皮带粉尘粒子运移进行了模拟.通过对以上3种模拟结果进行分析,得出了不同风速下巷道内皮带输煤系统粉尘运移规律,并与现场实测结果对比基本一致.  相似文献   

7.
采场爆破粉尘运移规律的Fluent数值模拟   总被引:2,自引:0,他引:2  
在对爆破烟尘源及其特征分析的基础上,以西石门铁矿南二采区为研究背景,运用Fluent软件通过气固两相流数值模拟方法对爆破后粉尘的分布及扩散规律进行研究,得出在现有条件下爆破粉尘的运移规律.采场爆破后很快产生大量粉尘且浓度较高,粉尘的运移受风流流场影响较为明显.在现有通风条件下,粉尘的净化主要靠重力沉降,而难以沉降的呼吸性粉尘的排出则需要较长时间.这不利于生产,亟须改善通风条件或采取其他措施较快速降低爆破粉尘浓度.数值模拟结果与现场测量结果基本一致,爆破产尘量大,排尘耗时久.  相似文献   

8.
为研究颗粒黏性对过滤除尘性能的影响,分析了颗粒沉积过程的受力情况,应用颗粒流计算软件PFC2D对颗粒在滤料表面的沉积行为进行了数值模拟。结果表明:颗粒形成粉尘层的过程中主要受到风流力、惯性力等压缩力和范德华力、滚动摩擦力偶矩等压缩阻力的作用,颗粒黏性的增加,会使颗粒间滚阻系数和摩擦系数显著增加;PFC可实现粉尘颗粒在滤料表面沉积过程的可视化,得到不同黏性颗粒在滤料表面的沉积形态,滚阻系数或摩擦系数越大,粉尘层孔隙率越大,过滤阻力越小,其中,摩擦系数的影响作用弱于滚阻系数。  相似文献   

9.
采用二维非定常流体动力学差分方法(隐式TVD格式),以轴对称和平面问题对半球顶圆柱筒身爆炸塔内,中心和偏心爆炸的流场进行了数值模拟。本简要介绍了方法与结果。  相似文献   

10.
为了提高钻爆法施工隧道炮烟排烟效率,改善隧道施工环境,以平顶山隧道某一段爆破施工过程为原型,基于质量守恒定律、Fick定律及Boussineg假设,运用计算流体力学软件FLUENT建立压入式通风条件下组分运输模型,分析风筒口至掌子面的距离及风筒入口风速对隧道内风流流场及炮烟浓度分布规律的影响。结果表明:风筒口至掌子面40 m,入口风速为20 m/s,通风时长为18.5 min时,隧道内风流分布稳定,且炮烟浓度均降至最高允许浓度值以下。将模拟结果与现场实测的炮烟浓度分布情况进行对比分析,数据基本吻合,验证了模拟的有效性。  相似文献   

11.
旋塞球阀是钻柱内防喷系统中的关键设备,在气固两相流下球阀易受磨损而失效,并造成严重的井喷事故。为此,将计算流体动力学理论与冲蚀磨损理论相结合,运用FLUENT软件对球阀壁面在气固两相流下的磨损分布情况进行研究,并进一步分析了球阀结构参数对于球阀壁面磨损的影响规律。结果表明:当气固两相流流经球阀时,固体颗粒会与气流分离,并在壁面上产生三处磨损集中区;随着球阀开度的减小,球阀壁面磨损量会急剧增大,且阀球内通道壁面上的磨损集中区由块状逐步转化为带状,而球阀出口处的磨损集中区则会逐渐向下移动;球阀流道直径的减小也会使得壁面磨损量增加,但磨损集中区的分布基本不变。研究结果可为进一步优化球阀流道结构以减轻其壁面磨损提供理论依据。  相似文献   

12.
选用基于k-ε湍流闭合方法的城市冠层流场模式,用内部建筑物实际大小和布局来表示下垫面,从动力学和热力学两方面模拟了西安市的一个城市冠层,并将模拟结果与该区域内3个高度收集的数据进行了比较.结果表明:计算得出的流场分布与观测拟合值之间有较好的一致性,该模式可以用于具有复杂下垫面的城市冠层流场的模拟.  相似文献   

13.
传统的U型通风工作面上隅角瓦斯积聚现象经常出现,严重制约着矿井正常生产能力的有效发挥,对矿井安全生产造成重大威胁。基于前人对采空区非均质多孔介质气体运移理论的研究,采用Fluent软件数值模拟研究了U型和上隅角埋管条件下U型通风系统的静压力场和瓦斯浓度场。研究结果表明:在相同的模型参数条件下,U型通风容易造成上隅角瓦斯积聚,上隅角瓦斯超限问题十分严重;采空区5m处埋管,治理上隅角瓦斯积聚的效果欠佳,达不到安全开采的条件;15m处埋管可以较好的解决上隅角瓦斯超限问题,工作面没有出现瓦斯积聚现象,工作面和回风巷的瓦斯浓度始终处于1%以下;25m处埋管的效果与15m基本相同,没有表现出更好的瓦斯治理效果。综合数值模拟的结果,确定了上隅角埋管抽放采空区瓦斯的理想抽放位置为距离地板垂高1.2m、沿走向深入采空区15m处。  相似文献   

14.
为解决煤层露头自燃所引起的资源浪费和环境污染,以新疆台勒维丘克煤层露头为研究对象,采用数值模拟方法研究煤层露头在火风压、火风压及外部风压作用下的自燃演化规律,为治理火区和保护环境提供依据。研究表明:火风压作用下,风流最大流动速度0.729 m/s,火风压最大达到170.2 Pa;火风压与外部风压联合作用下,煤层露头动力系统是负压通风系统,在漏风速度为0.2 m/s时,研究5个典型位置的温度、氧浓度、速度及压力的变化规律;并分析孔隙率、漏风速度对煤层露头自燃火灾的影响,说明大孔隙和漏风供氧为火灾大规模发展提供有利条件。研究成果对治理火区及保护生态环境奠定坚实基础。  相似文献   

15.
为研究室内可燃装修材料的耐高温及燃烧特性,该文用火灾动力学模拟软件Fire DynamicSimulator(FDS)对火灾实际场景的温度场进行数值模拟分析。对热释放速率曲线进行拟合分析,发现火灾发展初期是由一个慢速增长火和一个超快速增长火两个阶段组成。比较温度场的模拟结果与实际场景的燃烧图痕,得出火场温度的快速升高源于可燃材料的热释放速率和燃料消耗速率快速增加。同时分析了火场中一氧化碳、二氧化碳等有害气体的浓度与燃烧温度场的变化规律,为选择合适的室内装饰材料提供有效的数值参考。  相似文献   

16.
单室燃气火灾后果模拟研究   总被引:1,自引:0,他引:1  
燃气泄漏着火是引发火灾的一个重要原因,其发展过程包括多相湍流流动、燃烧、传热多个分过程。本文将理想单室燃气泄漏火灾的传热传质过程采用CFD(Compulational Fluid Dynamics)方法进行了计算机模拟,对其发展规律及危害性进行了深入研究,得出了火场中的流场、泻度场及有害气体浓度场的分布,为定量研究火灾烟气流动过程以及建立不同危险等级的危险区域提出了依据和研究方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号