首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 164 毫秒
1.
为了减少采空塌陷区输气管道危险性评价中对主观判断的依赖,提出以突变理论为基础的危险性评价模型。首先,从采矿因素、岩体物理力学参数、环境与地质因素和埋地管道因素等4个方面分析采空塌陷区输气管道危险性影响因素;其次,建立采空塌陷区输气管道危险性指标体系;然后,对指标体系中的底层指标进行无量纲化和归一化处理;最后,计算得到输气管道危险性突变数值,进而实现对采空塌陷区输气管道危险性等级的综合评判。将以上评价模型进行实例应用,应用结果表明,基于突变理论的采空塌陷区输气管道综合评价模型可以用于采空塌陷区输气管道的危险性评价。  相似文献   

2.
为研究穿越公路埋地天然气管道在车辆载荷下的力学性状,运用ABAQUS有限元软件建立了输气管道-覆盖土壤的三维接触模型,模拟了不同管径、管道壁厚、管道内压、管道埋深以及交通载荷工况下,管道的应力应变情况,得到了不同变量条件下埋地天然气管道的应力应变规律。研究结果表明:交通载荷下输气管道穿越公路时,从经济性考虑,其埋深应控制在2m范围内;结合管道内压,对不同超载程度下重载车辆对埋地管道的力学性能影响进行分析,从安全性考虑,管道宜采用套管敷设穿越形式。所得结论可为输气管道穿越公路段的设计提供参考。  相似文献   

3.
为研究穿越公路埋地天然气管道在车辆载荷下的力学性状,运用ABAQUS有限元软件建立了输气管道-覆盖土壤的三维接触模型,模拟了不同管径、管道壁厚、管道内压、管道埋深以及交通载荷工况下,管道的应力应变情况,得到了不同变量条件下埋地天然气管道的应力应变规律。研究结果表明:交通载荷下输气管道穿越公路时,从经济性考虑,其埋深应控制在2m范围内;结合管道内压,对不同超载程度下重载车辆对埋地管道的力学性能影响进行分析,从安全性考虑,管道宜采用套管敷设穿越形式。所得结论可为输气管道穿越公路段的设计提供参考。  相似文献   

4.
为研究横向滑坡作用下埋地管道的力学响应,采用自主搭建的埋地管道滑坡试验装置开展不同滑坡范围下的横向滑坡埋地管道力学特性试验,并建立工程尺度的埋地管道滑坡模型,通过改变相关参数开展数值模拟。研究结果表明:大范围横向滑坡下,管道最大应力位于管道中部附近,随滑坡范围增加,管道最大应力位置逐渐远离管道中部;通过BP神经网络预测模型得到横向滑坡下埋地管道最大位移、最大轴向拉应变和最大轴向压应变。研究结果可为快速评估横向滑坡下埋地管道安全提供指导。  相似文献   

5.
为研究地面爆炸载荷作用下埋地管道的动力响应问题,建立了爆炸载荷下的埋地管道数值计算模型,对地面爆炸后埋地管道的应力、变形过程进行了仿真,并研究了炸药量、管道壁厚和管顶覆土厚度对管道应力应变的影响规律。结果表明:地面爆炸发生后,管道应力和变形在短时间内迅速增大,较短作用时间后开始稳定,随后主要往轴向扩展,高应力区和塑性应变区出现在管道上半部分,管道回弹前高应力区局部出现应力衰减;越靠近迎爆点,管道应力波动越大;炸药量越大、管顶覆土厚度越小,埋地管道截面的应力波动越大;炸药量越大、管道壁厚和管顶覆土厚度越小,埋地管道变形越大。  相似文献   

6.
为探究不同影响因素对埋地管道运行安全的影响,基于改进的一次二阶矩计算方法,综合考虑埋地管道环向受力和纵向受力的特性,依据应力-强度理论和钢制管道结构设计规范建立了埋地管道失效结构功能函数;通过对ABAQUS软件中的UVARM模块进行二次开发,建立了腐蚀、温度和不均匀沉降耦合作用下的三维管道-地层整体模型,模拟不同管道参数下的管道状况.运用该方法对工程实例进行了计算,分析可靠指标和失效概率的分布情况.结果表明:埋地管道工作内压与管道失效概率呈正相关关系,管道壁厚和管径与失效概率呈负相关关系;在影响参数变化相同的条件下,管道中部失效概率变化最快,两端的失效概率变化较慢.该模型计算结果体现了管道不同部位失效概率的特点,在管道设计、维护和风险评估方面有一定的借鉴意义.  相似文献   

7.
为研究地表载荷对硬岩区埋地管道力学性能的影响,建立了管-土耦合三维数值模型,分析了地表载荷大小、作用面积、管道压力、管道径厚比及回填土弹性模量对管道应力分布、塑性应变、椭圆度的影响。结果表明:地表压载作用下,高应力区首先出现在管道顶部且呈椭圆形;随着地表载荷及其作用面积的增大,管道高应力区逐渐扩大,管道截面左右两侧也出现应力集中;随着回填土弹性模量、管道壁厚及内压的增加,管道顶部高应力区及最大等效应力均减小。塑性应变首先出现在管顶,且塑性区随地表载荷、载荷作用长度增加而增大,随回填土体弹性模量及管道壁厚增大而逐渐减小;当内压为0~4MPa时,管道塑性应变及塑性区随内压的增大而减小。管道椭圆度随回填土体弹性模量、管道内压、壁厚增加而逐渐减小,随地表压载增大而增大。  相似文献   

8.
为研究地基强夯作业中夯击载荷对埋地管道力学性能的影响,基于有限元原理建立了夯锤-管道-围土耦合三维模型,分析了夯击过程中管道截面变形及所受冲击力变化规律,研究了管道壁厚、夯击速度、夯锤体积对管道应力、应变及变形的影响规律。结果表明:夯击载荷下的管道所受冲击力为脉冲型,且随时间推移逐渐降低为0,最大冲击力随管道壁厚、夯击速度、夯锤体积增大而增大;管道最大等效应力、高应力范围及最大等效塑性应变随壁厚增加而减小,但随夯击速度或夯锤体积增大而增大;随着夯击速度、夯锤体积增大,管道截面变形率(椭圆度或凹陷率)逐渐增大,但其随壁厚增加而减小。  相似文献   

9.
建立了埋地含缺陷聚乙烯管道模型,应用有限元方法计算管道的应力和变形量,分别考虑管道内压、地面载荷和管道缺陷深度变化对管道应力和变形的影响。研究结果表明,管道最大应力随管道内压的增大而增大;随地面载荷的增加呈先减小后增大趋势;随管道缺陷深度增大而增大。管道变形量随内压增大而增大,但增长较小;随地面载荷增大而增大,增长较大;管道缺陷深度只对管道缺陷处变形量有影响。研究结果为确定城镇燃气聚乙烯管道工作能力提供了理论依据。  相似文献   

10.
针对影响长输埋地管道安全运行的山体滑坡问题,基于深层圆弧形滑坡理论和有限元方法,建立了在深层圆弧形滑坡作用下的管道计算 模型,对管道的受力进行了数值模拟。对土壤密度、管道壁厚、管道内压以及土抗剪强度进行了参数敏感性分析,研究了各参数对发生滑坡时 管道所受最大应力的影响规律。结果表明:当滑坡规模、滑坡角度增大时,管道所受Von Mises值会随之增大;随土壤密度的增加,管道所受的 应力也会增加;在滑坡多发区,应设计大壁厚的管道,以增加管道安全性;应确保管道内压小于10MPa,当内压突增时应有紧急预案;土抗剪强 度对在深层圆弧形滑坡作用下管道所受应力的影响明显小于其他3个敏感参数。该研究工作为山体滑坡区的安全管道设计提供了一定的参考,对 确保滑坡区埋地管道的安全运营有重要意义。  相似文献   

11.
为准确描述横向滑坡作用下管道非线性响应特征,采用非线性自适应网格技术建立横向穿越滑坡段埋地管道三维有限元模型,利用非线性接触模型表征管土之间、滑坡体与非滑坡体之间的相互作用,探究滑坡位移、埋深及壁厚对管道应变响应特性的影响规律。研究结果表明:随着滑坡位移增大,滑坡体与非滑坡体交界区域和管道位移最大区域两侧管道应变显著增大,易发生失效;结合应变失效判定准则分析,管道不发生失效的最大滑坡位移、最小管道壁厚及最大埋深,在本文算例中分别是0.36 m、9.50 mm、0.97 m。因此管道经过滑坡区时,可适当增大壁厚、减小埋深;滑坡发生后,应重点关注滑坡体与非滑坡体交界区域及管道位移最大区域两侧的变形情况。研究结果可为穿越横向滑坡管道的设计及安全运营提供一定参考。  相似文献   

12.
One of threatening buried steel pipeline in bad geological regions is collapsed rock. Buckling behavior of a buried pipeline impacted by a perilous rock with spherical shape was investigated by numerical simulation. Effects of pipeline parameters (internal pressure, wall thickness, diameter, buried depth) and perilous rock parameters (impact velocity, radius, eccentric distance) on deformation, stress and strain of the buried pipeline were discussed. Buckling behaviors of the buried pipeline under transverse and longitudinal inclined impacts also were studied. The results show that cross section shape of the buried pipeline becomes to an oval, then to a peach shape, and finally to a crescent shape or gourd shape in the process of rock’s impact. The deformation process of a buried pipeline can be divided into four stages. They are elastic deformation stage, buckling stage, elastic recovery stage and final deformation stage. Buckling mode of no-pressure pipeline is more serious than the pressure pipeline. The impact dent’s length and depth increase with the decreasing of buried depth, wall thickness and internal pressure. But they increase with the increasing of impact velocity, perilous rock’s radius and pipeline’s diameter. The maximum stress and plastic strain decrease with the increasing of buried depth and wall thickness. Under rock’s eccentric impact, impact dent trends to one side. Stress and plastic deformation decrease with the eccentric distance increases. Under rock’s transverse and longitudinal inclined impacts, cross section shape of the buried pipeline is an oval shape when the incidence angle α ≤ 45°, and there is no plastic deformation. When α > 45°, impact dent appears. Buckling is more serious with the incidence angle increases. Destructive powers of transverse and longitudinal inclined impacts are smaller than the vertical impact.  相似文献   

13.
针对大口径埋地输气管道发生物理爆炸对并行含体积缺陷邻管的冲击行为,利用LS-DYNA和LS-PREPOST有限元软件建立基于光滑粒子流体动力学-有限单元法的管-土-炸药耦合模型,分析不同缺陷深度、不同缺陷表面积、不同缺陷位置和不同爆心距下邻管的动力响应;基于爆腔预估公式和峰值振速经验公式,验证了所建耦合模型的可靠性,并通过设计算例开展多工况分析。研究结果表明:迎爆面上的缺陷处为动力响应的热点区域,最大响应特征值(应力、位移与振速)位于缺陷中心处,随缺陷深度的增加或管间距的减小特征值增速由平缓到急剧;相比缺陷位置和表面尺寸对管道的扰动程度,缺陷深度和爆心距对管道的动力响应影响较大;在本研究的条件下,建议埋地并行输气管道的安全间距不应小于5.16 m,且腐蚀深度不大于管道壁厚的0.633 6倍。研究结果可为埋地输气管道极端灾害下的风险评估提供技术支撑,为并行管道可能的抗爆隔爆设计提供模拟数据支持。  相似文献   

14.
滚石冲击作用下埋地高压输气管道的可靠性分析   总被引:1,自引:0,他引:1  
地质灾害往往会对高压输气管线造成安全隐患,岩体崩塌引起的滚石冲击是导致埋地输气管道第三方破坏的主要破坏形式之一。通过概率分布求出滚石产生的偶然性载荷对管道的冲击频率,根据可靠性理论,用管线钢自身的强度和撞击产生的工作应力,建立强度应力的安全裕度方程。然后利用LS-DYNA有限元软件,建立滚石冲击管道模型,计算不同条件下埋地输气管道的最大应力Sm,确定Sm的分布规律。最后,根据应力和强度的分布求得管道可靠度指标和失效概率。本研究提供的方法和结论对埋地输气管道的风险评估、管道的设计及施工具有重要的参考价值。  相似文献   

15.
为了研究腐蚀及地面运动对埋地天然气管线安全性的协同影响,以X80管道为研 究对象,模拟腐蚀缺陷及土壤力作用于管道之上,利用有限元方法对有腐蚀缺陷与预应 变情况下的管道局部等效应力及塑性变形进行评估,结果表明腐蚀缺陷的深度对局部应 力和应力分布影响非常明显,在失效压力预测中起着决定性作用。随着腐蚀深度的增加 ,应力集中增强,导致内表面和外表面的等效应力大小进一步分化,腐蚀深度的增加对 管道内表面的等效应力的影响很大,但对有效塑性应变的影响却不大。模拟管道上施加 有纵向应变的土壤力,不论拉伸与压缩的情况下,都会降低管道的失效压力,在施加拉 伸预应变下的管道失效压力小于压缩预应变下的。塑性变形首先发生在外表面处,并扩 展到腐蚀缺陷相邻区域,管道内表面也具有一定的塑性变形,但强度低。  相似文献   

16.
为探究地面堆载导致埋地油气管道失效的事故影响因素,通过对管道在堆载作用下的工程案例进行概化,以X70管道为研究对象,采用有限元软件建立管道在堆载作用下的三维模型,采用理论计算验证模型的可行性,开展管道应力与变形分析,探讨不同的堆载强度、管道埋设深度、下卧层土体杨氏模量、管道内压与堆载偏移距离对管道应力的影响,同时开展多因素耦合研究。研究结果表明:深埋管道会促进附加应力向两端扩散,管道中心部位以外的应力值呈现为深埋>浅埋;当下卧层杨氏模量大于20 MPa后,管道偏于安全;内压在0~2 MPa时,可以抵消部分堆载对管道的影响,内压大于2 MPa后,管道应力整体增大,此时管道应力由内压主导;得到不同管道埋深与不同下卧层土体杨氏模量耦合工况下X70管道失效时的堆载强度。研究结果可为埋地管道在堆载作用下的安全防护问题提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号