首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Cattle overwintering areas common in central Europe may represent significant point sources of the important greenhouse gases, nitrous oxide (N2O) and carbon dioxide (CO2). A 2-year field study was carried out in order to estimate the emissions of N2O and CO2 from soil in a cattle overwintering area located in the southwest of the Czech Republic. The measurements were performed at three sampling locations along a gradient of animal impact (severe, moderate, slight) to test the hypothesis that emissions of CO2 and N2O are positively related to the degree of impact. In addition to CO2 and N2O fluxes determined by using non-vented manual closed chambers, soil mineral nitrogen (NH4+ and NO3), pH and temperature were determined to assess their regulatory role and impact on gas fluxes. The overwintering area was about 4 ha and it had been used for overwintering of about 90 cows since 1995. Deposition of animal excreta resulted in a significant accumulation of nitrogen in the soil during winter, but most of the N2O was emitted during a few short periods in spring and/or in late autumn. Maximum N2O fluxes of up to 2.5 mg N2O-N m−2 h−1 were recorded at the most impacted location near the animal house, where the highest concentrations of soil mineral nitrogen also occurred. The emissions of CO2 showed a completely different pattern to those of N2O, being correlated with soil temperature; the highest emissions thus occurred in June–July, while very low fluxes were found in winter. Emission values ranged from about 0 to 700 mg C-CO2 m−2 h−1. Furthermore, the effect of animal impact on CO2 emissions was opposite to that on N2O fluxes, as the highest CO2 fluxes were mostly recorded at the least impacted location, where respiration of plants most likely increased overall CO2 production. The results show that cattle overwintering areas are important sources of greenhouse gases, including N2O and CO2. Fluxes of these two gases are, however, differently distributed over the year, which also suggests that they are controlled by different environmental and soil factors.  相似文献   

2.
Direct and indirect nitrous oxide (N2O) emissions and leaching losses from an intensively managed grazed pasture in the Ythan catchment, Aberdeenshire, UK, were measured and compared over a 17-month period. Simultaneous measurements of farm-wide leaching losses of N2O were also made and catchment-wide fluxes were estimated from existing N leaching data. The relative importance of direct and indirect N2O fluxes at the field, farm and catchment scale was then assessed. At the field scale we found that direct N2O emissions were low (1.2 kg N ha−1 year−1, 0.6% of N input) with indirect N2O emissions via drainage waters comprising a significant proportion (25%) of total N2O emissions. At the whole-farm scale, the N2O-N emission factor (0.003) for leached NO3-N (EF5-g) was in line with the IPCC's recent downward revision. At the catchment scale, a direct N2O flux of 1.9 kg N ha−1 year−1 and an indirect flux of 0.06 kg N2O-N ha−1 year−1 were estimated. This study lends further support to the recent downward revision of the IPCC emission factor for N2O arising from leached N in surface and ground waters (EF5-g) and highlights the need for multiple point sampling to ensure that the importance of indirect N2O losses via drainage waters is not misrepresented at the farm and catchment scales.  相似文献   

3.
Gaseous emissions from weaned pigs raised on different floor systems   总被引:1,自引:0,他引:1  
Gaseous emissions from agriculture contribute to a number of environmental effects. Carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) are greenhouse gases taking part to the global problem of climate change. Ammonia (NH3) emissions are responsible of soil acidification and eutrophication and contribute also to indirect emissions of N2O. This work evaluated the influence of the type of floor on the emissions of these gases in the raising of weaned pigs. Two trials were carried out. In the first trial, the animals were kept either on fully slatted floor or on straw-based deep litter and, in the second one, either on fully slatted floor or on sawdust-based deep litter. For each trial and on each type of floor, 2 successive batches of weaned pigs were raised without changing the litter or emptying the slurry pit between the 2 batches. The rooms were automatically ventilated to maintain a constant ambient temperature.The performance of the animals was not significantly different according to the floor type. In trial 1, the nitrogen contents of the straw deep litter (including the substrate) and slurry were respectively 276 and 389 g pig−1. In trial 2, the sawdust deep litter and slurry nitrogen contents were respectively 122 and 318 g pig−1.Raising pigs on straw deep litter produced proportionately around 100% more NH3 than raising pigs on slatted floor (0.61 g NH3-N d−1 pig−1 vs. 0.31 g NH3-N d−1 pig−1; P < 0.05). Differences in CO2, H2O and CH4 emissions were not significant between systems. Raising pigs on sawdust deep litter produced also proportionately more NH3 (+52%; 0.55 g NH3-N d−1 pig−1 vs. 0.36 g NH3-N d−1 pig−1; P < 0.01) but also more CO2 (+25%; 427 g d−1 pig−1 vs. 341 g d−1 pig−1; P < 0.001) and H2O (+65%; 981 g d−1 pig−1 vs. 593 g d−1 pig−1; P < 0.001) and less CH4 (−40%; 0.52 g d−1 pig−1 vs. 0.86 g d−1 pig−1; P < 0.001) than raising pigs on slatted floor. Practically no N2O emission was observed from rooms with slatted floor while the N2O emissions were 0.03 and 0.32 g N2O-N d−1 pig−1 for the straw and sawdust deep litter respectively. The warming potential of the greenhouse gases (N2O + CH4), were about 22, 34 and 168 g CO2 equivalents per day and per pig on fully slatted floor, straw or sawdust deep litter respectively.In conclusion, pollutant gas emissions from rearing of weaned pig seem lower with fully slatted plastic floor system than with deep litter systems.  相似文献   

4.
Tropical peatland is a vast potential land source for biological production, but peatland is a major natural source of greenhouse gases, especially methane (CH4). It is important to evaluate the changes in greenhouse gas emissions induced by cultivation practices for sustainable agricultural use of tropical peatland. We investigated the effects of fertilizer application and the groundwater level on CH4 and carbon dioxide (CO2) fluxes in an Indonesian peat soil. The crop cultivated was sago palm (Metroxylon sagu Rottb.), which can grow on tropical peat soil without drainage and yield great amounts of starch. CH4 emission through sago palm plants was first estimated by collecting gas samples immediately after cutting sago suckers using the closed chamber method. The CH4 fluxes ranged from negative values to 1.0 mg C m−2 h−1. The mean CH4 flux from treatment with macroelements (N, P, and K) and microelements (B, Cu, Fe, and Zn) applied at normal rates did not differ significantly from that of the No fertilizer treatment, although increasing the application rates of macroelements or microelements by 10-fold increased the CH4 flux by a factor of two or three. The relationship between CH4 flux and the groundwater table was regressed to a logarithmic equation, which indicated that to maintain a small CH4 flux, the groundwater table should be maintained at <−45 cm. The CO2 fluxes ranged between 24 and 150 mg C m−2 h−1, and were not significantly affected by either fertilizer treatments or the groundwater level. The inclusion of sago palm suckers in a chamber increased CH4 emission from the peat soil significantly. Thus, gas emissions mediated by certain kinds of palm plants should not be disregarded.  相似文献   

5.
Dietary modifications in dairy cattle have been reported as a useful strategy to alter the composition of manure. Many reports have been published on how changes in dietary crude protein content and forage-to-concentrate ratio reduces animal nitrogen (N) excretion, but little information exists about the effect of diet modification on nitrous oxide (N2O) and nitric oxide (NO) emission when the subsequent slurry is applied on grassland. Two diets differing in forage:concentrate ratio (high forage or HF diet, 75:25; low forage or LF diet, 55:45) were tested to detect the improvement of N use efficiency in milk and the reduction of urinary and fecal N excretion. Triticale silage and barley grain were used as the main forage and concentrate sources in the diets. The subsequent slurries were characterized for N and ammonium-N content (NH4+-N) and applied on grassland in order to study total and pattern of emission of N2O and NO.The HF diet reduced the voluntary dry matter intake of the cows, N intake and urinary and fecal N excretion. However, the reduction of N intake did not improve the N use efficiency in milk (NUE) (21.0%) and did not reduce N excretion per unit of milk produced (15 g N l−1) due to the lower milk yield. Slurries were similar in N content but differed in NH4+ content, being lower in HF. Therefore, different slurry amounts were needed to be applied on grassland to reach the correct fertilisation rate (120 kg NH4+-N ha−1). Total emissions of N2O (5.8 and 5.0 kg N2O-N ha−1) and NO (507.2 and 568.6 g NO-N ha−1), and the pattern of emissions were not affected by dietary treatments. When fertilisation management depends on the collected volume to empty the slurry pit, higher N2O and NO emissions per kg of slurry could be expected from LF slurry. Nevertheless, if slurry is applied following recommendation rates, N2O and NO emission per unit of milk produced might be slightly lower from LF slurry. Grass yield (1.5 t dry matter ha−1) and N uptake (50 kg N ha−1) did not vary due to the applications of different slurries, and was attributed to low rainfalls. The correct management of the slurries on grasslands may justify an adequate nutritional strategy of dairy herds from an environmental and productive point of view.  相似文献   

6.
Urea is an important source of ammonia (NH3) emissions to the atmosphere from agricultural soils. Abatement strategies are necessary in order to achieve NH3 emission targets by reducing those emissions. In this context, a field experiment was carried out on a sunflower crop in spring 2006 with the aim of evaluating the effect of the N-(n-butyl) thiophosphoric triamide (NBPT) in the mitigation of volatilized NH3 from a urea-fertilised soil. Ammonia emission was quantified, using the integrated horizontal flux (IHF) method, following application of urea with and without the urease inhibitor NBPT. Urea and a mixture of urea and NBPT (0.14%, w/w) were surface-applied at a rate of 170 kg N ha−1 to circular plots (diameter 40 m). The soil was irrigated with 10 mm of water just after the application of urea to dissolve and incorporate it into the upper layer of soil. Over the duration of the measurement period (36 days) three peaks of NH3 were observed. The first peak was associated with hydrolysis of urea after irrigation and the others with the increase of ammonia in soil solution after changes in atmospheric variables such as wind speed and rainfall. The total NH3 emission during the whole experiment was 17.3 ± 0.5 kg NH3–N ha−1 in the case of urea treated soils and 10.0 ± 2.2 kg NH3–N ha−1 where NBPT was included with the urea (10.1 and 5.9%, respectively, of the applied urea–N). The lower NH3 emissions from plots fertilised with urea + NBPT, compared with urea alone, were associated with a reduction in urease activity during the first 9 days after inhibitor application. This reduction in enzymatic activity promoted a decrease in the exchangeable NH4+ pool.  相似文献   

7.
The paper describes a model designed for analysing interrelated nitrogen (N) fluxes in farming systems. It combines the partial N balance, farm gate balance, barn balance and soil surface balance, in order to analyse all relevant N fluxes between the subsystems soil–plant–animal–environment and to reflect conclusive and consistent management systems. Such a system approach allows identifying the causes of varying N surplus and N utilisation.The REPRO model has been applied in the experimental farm Scheyern in southern Germany, which had been subdivided into an organic (org) and a conventional (con) farming system in 1992. Detailed series of long-term measuring data are available for the experimental farm, which have been used for evaluating the software for its efficiency and applicability under very different management, yet nearly equal site conditions.The organic farm is multi-structured with a legume-based crop rotation (N2 fixation: 83 kg ha−1 yr−1). The livestock density is 1.4 LSU ha−1. The farm is oriented on closed mass cycles.The conventional farm is a simple-structured cash crop system based on mineral N (N input 145 kg ha−1 yr−1). Averaging the years 1999–2002, the organic crop rotation reached, with regard to the harvested products, about 81% (6.9 Mg ha−1 yr−1) of the DM yield and about 93% (140 kg ha−1 yr−1) of the N removal of the conventional rotation. Related to the cropped area, the N surplus calculated for the organic rotation was 38 kg ha−1 yr−1 versus 44 kg ha−1 yr−1 for the conventional rotation. The N utilisation reached 0.77 (org) and 0.79 (con), respectively. The different structure of the farms favoured an enhancement of the soil organic nitrogen stock (35 kg ha−1 yr−1) in the organic crop rotation and caused a decline in the conventional system (−24 kg ha−1 yr−1). Taking account of these changes, which were substantiated by measurements, N surplus in the organic rotation decreased to 3 kg ha−1 yr−1, while it increased to 68 kg ha−1 yr−1 in the conventional system. The adjusted N utilisation value amounted to 0.98 (org) and 0.69 (con), respectively.  相似文献   

8.
农田土壤是大气光化学活性气体一氧化氮(NO)的主要人为源之一.为定量研究有机物料还田对NO排放的影响,利用静态暗箱法对关中平原26 a长期定位施肥夏玉米-冬小麦轮作农田NO排放通量进行周年(2016年6月至2017年6月)观测.除对照(CK)处理全年不施肥外,田间设3个施肥处理,冬小麦季分别为全化肥(NPK,165 kg·hm~(-2))、化肥加秸秆[NPKS,(165+40)kg·hm~(-2)]和化肥加牛粪[NPKM,(50+115)kg·hm~(-2)];夏玉米季均施等量化肥(188 kg·hm~(-2)).观测期内,CK处理NO排放通量较小[12.2 g·(hm~2·d)~(-1)];各施肥处理均在夏玉米播种、施肥和冬小麦施肥后出现排放峰,其中NPK处理峰值最高[112.0 g·(hm~2·d)~(-1)].各处理NO年排放总量和排放系数分别为0.13~0.57 kg·hm~(-2)和0.04%~0.12%.NPKS和NPKM处理年排放总量较NPK分别减少17.6%和增加68.0%(P0.05).与NPK处理相比,NPKS和NPKM冬小麦季排放总量降低41.1%~60.0%(P0.05);但夏玉米季增加25.2%~292.1%(P0.05).冬小麦季添加有机物料有效降低NO排放,而夏玉米季NO排放增加则与土壤有机质含量有关.  相似文献   

9.
Sub-Saharan Africa is large and diverse with regions of food insecurity and high vulnerability to climate change. This project quantifies carbon stocks and fluxes in the humid forest zone of Ghana, as a part of an assessment in West Africa. The General Ensemble biogeochemical Modeling System (GEMS) was used to simulate the responses of natural and managed systems to projected scenarios of changes in climate, land use and cover, and nitrogen fertilization in the Assin district of Ghana. Model inputs included historical land use and cover data, historical climate records and projected climate changes, and national management inventories. Our results show that deforestation for crop production led to a loss of soil organic carbon (SOC) by 33% from 1900 to 2000. The results also show that the trend of carbon emissions from cropland in the 20th century will continue through the 21st century and will be increased under the projected warming and drying scenarios. Nitrogen (N) fertilization in agricultural systems could offset SOC loss by 6% with 30 kg N ha−1 year−1 and by 11% with 60 kg N ha−1 year−1. To increase N fertilizer input would be one of the vital adaptive measures to ensure food security and maintain agricultural sustainability through the 21st century.  相似文献   

10.
Elevated atmospheric NH3 levels near intensive livestock operations can add significant N to local agroecosystems. In this study, the potential atmospheric NH3 sorbed by soil and water was assessed over a 2-year period starting October 2000 in an intensive livestock production area in southern Alberta, Canada. Fifty-two uneven grid sampling sites were selected in the 53,905 ha study area. The sorption rate of atmospheric NH3 was estimated weekly by exposing distilled water and air-dried soil samples to the atmosphere at the sampling sites. The increases in NH4–N content in the samples after 1-week exposure was regarded as an index of the atmospheric NH3 sorbed for that week. The NH3 sorption rates were highly variable across the 52 sites, with water ranging from 4 to 125 kg ha−1 year−1 with a mean of 22 kg N ha−1 year−1 and soil from 5 to 84 kg N ha−1 year−1 with a mean of 20 kg N ha−1 year−1. Considerable variation in NH3–N sorption across the study area reflects the effects of size, direction (upwind or downwind) and proximity of nearby livestock operations or other NH3 sources and operators’ activities around the sampling sites. The NH3 sorption rate at each site also varied considerably in response to weather conditions. The high rate of NH3 input poses a direct risk of surface water eutrophication in intensive livestock operation areas. If fertilizer recommendations are not reduced to account for NH3 sorption by soil, excess N may also contribute to eutrophication through runoff and leaching.  相似文献   

11.
Lowland rice fields constitute a semi aquatic environment, which is potentially suitable for fish production. Little is known about the effect of fish on greenhouse gas emissions from integrated rice–fish systems. An experiment was carried out at the Bangladesh Agricultural University to assess the effect of the stocking of fish on methane emissions from rice fields. Common carp, Cyprinus carpio L., and Nile Tilapia, Oreochromis niloticus (L.) were stocked in a mixed culture and subjected to three different input regimes: (1) urea fertilization according to the recommendation of the Bangladesh Rice Research Institute (BRRI), (2) supplementary feeding at 2 × maintenance level and (3) an elevated feeding schedule where 4 × maintenance level was fed initially and 2 × maintenance level towards the end of the growth period. Rice only with urea fertilization according to BRRI-recommendation was included as the control. The presence of fish increased methane emissions in all three rice–fish treatments. Average emission over the cropping season was 34, 37, and 32 mg m−2 h−1 in the rice–fish treatments, respectively, and 20 mg m−2 h−1 in rice only. Apart from an increase in methane emission, a significant drop (p < 0.05) in floodwater pH and dissolved oxygen concentration was observed in the rice–fish plots. Both parameters were the lowest in the treatment where a higher feeding rate was provided. Due to the fish activity, floodwater in the rice–fish treatments was more turbid, as reflected in higher particulate inorganic matter (PIOM). An elevated level of dissolved methane was observed in the floodwater of the feed supplemented rice–fish plots. Methane emissions showed negative correlation with morning and afternoon pH of the floodwater (r = −0.46; r = −0.56, p < 0.001) and morning and afternoon dissolved oxygen level (r = −0.53; r = −0.46, p < 0.001). Positive correlations were recorded between morning and afternoon floodwater temperature (r = 0.49; r = 0.44, p < 0.001) and with air temperature (r = 0.54, p < 0.001). The results suggest that the stocking of fish has an increasing effect on methane emissions from rice fields.  相似文献   

12.
We measured denitrification at 15 sites during 1 year in a agricultural catchment in Brittany, France. Our objective was to assess the relative importance of heterotrophic denitrification on the fate of excess nitrogen at the catchment scale, and to quantify the relative importance of riparian areas on the N2O emissions. Using the C2H2 inhibition technique, denitrification rate on soil core and denitrifying enzyme activity (DEA) were each determined, for samples taken from two soil layers: 0–20 and 20–40 cm. Denitrification rates, ranging from 0 to 417 mg N m−2 d−1, were significantly higher in riparian areas than for hillslopes (median of 24.87 against 10.38 mg N m−2 d−1). However, since denitrification rates are significant in the hillslope and given that hillslope surface area is much greater (79% of catchment surface), this domain could be responsible for half of the overall denitrified nitrogen (N). Also, the 20–40 cm deep soil layer was found to account for more than 46% of the denitrification. The DEA indicates the potential for denitrifying activity by the soil under non-limiting conditions, measured values ranged from 76.48 to 530.63 ng N g−1 dry soil h−1. The ratio N2O/(N2O + N2) was about 60% with no clear spatial or temporal trends. Soil moisture appeared to be the main limiting factor for denitrification at the field scale. The results suggest that, for this catchment, denitrification is a major route for nitrogen removal, but a significant proportion of this removal occurs as N2O.  相似文献   

13.
The plant can be a source or a sink of ammonia (NH3) depending on its nitrogen (N) supply, metabolism and on the background atmospheric concentrations. Thus plants play a major role in regulating atmospheric NH3 concentrations. For a better understanding of the factors influencing the NH3 stomatal compensation point, it is important to analyse the dynamics of leaf NH3 fluxes. The relationship between the leaf NH3 fluxes and the leaf apoplast ammonium and nitrate concentrations, N nutrition and the light and dark periods was studied here.We designed an experiment to quantitatively assess leaf-atmosphere NH3 exchange and the stomatal compensation point and to identify the main factors affecting the variation of NH3 fluxes in oilseed rape. We tested day and night dynamics as well as the effect of five different N treatments. Two experimental methods were used: a dynamic open flux chamber and extraction of the apoplastic solution.Chamber measurements showed that there was a good correlation between plant NH3 fluxes and water fluxes. Compensation points were calculated by two different methods and ranged between 0.8 and 12.2 μg m−3 NH3 (at 20 °C) for the different N treatments. Apoplastic solution measurements showed that there was no significant differences in the apoplastic NH4+ concentrations ([NH4+]apo) extracted in dark and light periods for the same N treatment. Statistical analysis also showed that [NH4+]apo was correlated with [NH4+] in the nutrient solution and weakly correlated with [NO3]. Apoplast NH4+ concentrations ranged between 0.1 and 2.1 mM, bulk tissue NH4+ concentrations between 3.9 and 6.6 mM and xylem concentrations between 2.4 and 6.1 mM depending on the N supply.Calculated NH3 emission potential from the extraction measurements were over-estimated when compared with the value calculated from chamber measurements. Errors related to chamber measurements included separation of the cuticular and stomatal fluxes and the calculation of total resistance to NH3 exchange. Errors related to the extraction measurements included assessing the amount of cytoplasmic contamination. We do not have another method to assess the NH3 stomatal compensation point and the choice between these two measurement techniques should depend on the scales to which the measurements apply and the processes to be studied.  相似文献   

14.
Crop derived biofuels such as (bio)ethanol are increasingly applied for automotive purposes. They have, however, a relatively low efficiency in converting solar energy into automotive power. The outcome of life cycle studies concerning ethanol as to fossil fuel inputs and greenhouse gas emissions associated with such inputs depend strongly on the assumptions made regarding e.g. allocation, inclusion of upstream processes and estimates of environmentally relevant in- and outputs. Peer reviewed studies suggest that CO2 emissions linked to life cycle fossil fuel input are typically about 2.1–3.0 kg CO2 kg−1 starch-derived ethanol. When biofuel production involves agricultural practices that are common in Europe there are net losses of carbon from soil and emissions of the greenhouse gas N2O. Dependent on choices regarding allocation, they may, for wheat (starch) be in the order of 0.6–2.5 kg CO2 equivalent kg−1 of ethanol. This makes ethanol derived from starch, or sugar crops, in Europe still less attractive for mitigating climate change. In case of wheat, changes in agricultural practice may reduce or reverse carbon loss from soils. When biofuel production from crops leads to expansion of cropland while reducing forested areas or grassland, added impetus will be given to climate change.  相似文献   

15.
本研究以我国东南部地区淡水养殖鱼塘为研究对象,于2017年9月到2018年8月采用漂浮箱法和扩散模型法同步原位观测其CH_4排放通量,旨在明确运用两种不同方法观测CH_4的排放特征、排放强度及其驱动因子,综合比较两种方法观测结果的差异性,其中扩散模型法能够进一步量化扩散传输对CH_4排放通量的贡献.结果表明,两种方法观测的CH_4排放通量有相似的季节变化特征,即夏秋季排放高,冬春季排放低.通过漂浮箱法观测淡水养殖鱼塘CH_4排放通量的变化范围为0. 14~3. 13 mg·(m~2·h)~(-1),其年平均排放通量为(0. 86±0. 30) mg·(m~2·h)~(-1),而由扩散模型法估算出鱼塘CH_4排放通量变化范围为0. 04~1. 41 mg·(m~2·h)~(-1),其年平均排放通量为(0. 45±0. 08) mg·(m~2·h)~(-1).基于两种方法观测的CH_4排放通量具有相同的环境驱动因子,CH_4排放通量与水温、底泥可溶性有机碳(DOC)和水体化学需氧量(COD)呈现显著的正相关关系,与水体溶解氧(DO)呈现出极显著的负相关关系.综合比较两种方法观测结果,发现由扩散模型法估算出的淡水养殖鱼塘CH_4排放通量约为漂浮箱法测定结果的45%左右(P 0. 01),扩散模型法可能低估淡水养殖系统CH_4排放通量.综上所述,漂浮箱法更适合用于观测我国东南部内陆地区淡水养殖生态系统CH_4排放.  相似文献   

16.
One-year winter wheat–summer maize rotation is the most popular double cropping system in north-central China, and this highly productive system is an important source of nitrous oxide (N2O) and nitric oxide (NO) emissions due to the high fertilizer N and irrigation water inputs. To sustain the high crop production and mitigate the detrimental impacts of N2O and NO emissions, improved management practices are extensively applied. The aim of this study is therefore to evaluate the effects of an improved management practice of irrigation, fertilization and crop straw on grain yield and N2O and NO emissions for a wheat–maize rotation field in northern China. Using automated and manual chamber measuring systems, we monitored N2O and NO fluxes for the conventional (CT, 2007–2008), improved (IT, 2007–2008), straw-amended (WS, 2008–2009), straw-not-amended (NS, 2008–2009), and no N-fertilizer treatments (WS–NN, 2008–2009), respectively, for one rotation-year. The grain yields were determined for CT and IT for three rotation-years (2005–2008) and for WS, NS and WS–NN for one rotation-year (2008–2009). The improved management of irrigation and fertilization reduced the annual N fertilization rate and irrigation amount by 17% and 30%, respectively; increased the maize yield by 7–14%; and significantly decreased the N2O and NO emissions by 7% (p < 0.05) and 29% (p < 0.01), respectively. The incorporation of wheat straw increased the cumulative N2O and NO emissions in the following maize season by 58% (p < 0.01) and 13%, respectively, whereas the effects of maize straw application were not remarkable. The N2O and NO emission factors of applied N were 2.32 ± 2.32% and 0.42 ± 1.69% for wheat straw and 0.67 ± 0.23% and 0.54 ± 0.15% for chemical N-fertilizers, respectively. Compared to conventional management practices using high application rates of irrigation water and chemical N-fertilizer as well as the field burning of crop straw, the improved management strategy presented here has obvious environmentally positive effects on grain yield and mitigation of N2O and NO emissions.  相似文献   

17.
生物炭和有机肥对华北农田盐碱土N2O排放的影响   总被引:3,自引:0,他引:3  
基于山东滨州地区冬小麦-夏玉米轮作大田试验,探究了施用生物炭和有机肥对夏玉米季土壤氧化亚氮(N_2O)排放的影响,为盐碱土壤N_2O增汇减排提供理论依据.试验按照不同处理氮、磷、钾含量相同原则,设置对照CK[N:0.2t·(hm~2·a)~(-1),P_2O_5:0.12 t·(hm~2·a)~(-1),K_2O:0.2 t·(hm~2·a)~(-1)]、C1[5 t·(hm~2·a)~(-1)生物炭]、C2[10 t·(hm~2·a)~(-1)生物炭]、C3[20 t·(hm~2·a)~(-1)生物炭]、M1[7.5 t·(hm~2·a)~(-1)有机肥]、M2[10 t·(hm~2·a)~(-1)有机肥]这6个处理.结果表明,施加生物炭和有机肥对土壤N_2O排放影响趋势基本一致,排放高峰均出现在施肥(基肥和追肥)后,累积排放量占整个生育期排放量的近一半;与CK相比,C1、C2分别降低N_2O排放的45.3%、31.6%,而C3、M1、M2分别增加了17.3%、37.4%、27.6%.施加生物炭和有机肥均会对土壤N_2O排放产生影响,施加生物炭可以降低N_2O排放,而施加有机肥则促进了N_2O排放.因此,生物炭对减少农田N_2O排放具有巨大潜力.  相似文献   

18.
Large scale dairy operations are common. In many cases the manure is deposited on a paved surface and then removed with a flushing system, after which the solids are separated, the liquid stored in ponds, and eventually the liquid applied on adjacent crop land. Management of liquid manure to maximize the fertilizer value and minimize water quality degradation requires knowledge of the interactive effects of mineralization of organic N (ON) to NH4+, crop uptake of mineral N, and leaching of NO3 on a temporal basis. The purpose of the research was to use the ENVIRO-GRO model to simulate how the amount of applied N, timing of N application, ON mineralization rates, chemical form of N applied, and irrigation uniformity affected (1) yields of corn (Zea mays) in summer and a forage grass in winter in a Mediterranean climate and (2) the amount of NO3 leached below the root zone. This management practice is typical for dairies in the San Joaquin Valley of California. The simulations were conducted for a 10-year period. Steady state conditions, whereby an equivalent amount of N applied in the organic form will be mineralized in a given year, are achieved more rapidly for materials with high mineralization rates. Both timing and total quantity of N application are important in affecting crop yield and potential N leaching. Major conclusions from the simulations are as follows. Frequent low applications are preferred to less frequent higher applications. Increasing the amount of N application increased both the crop yield and the amount of NO3 leached. Increasing irrigation uniformity increased crop yields but had variable effects on the amount of NO3 leached. A winter forage crop following a summer corn crop effectively reduced the leaching of residual soil N following the corn crop.  相似文献   

19.
Greenhouse gas budgets as well as the productivity of grassland systems are closely related to the carbon (C) and nitrogen (N) cycles. Within the framework of the CarboEurope and NitroEurope projects we have measured C and N exchange on the field scale at the grassland site Oensingen previously converted from arable rotation. The site is located on the Swiss Central Plateau and consists of two parallel fields of equal size. One field was subjected to intensive management with average nitrogen input of 230 kg-N ha−1 year−1 and 4–5 cuts per year, and the other to an extensive management with no fertilisation and less frequent cutting. The total C budget of the fields was assessed by measuring the CO2 exchange by eddy covariance and analysing the carbon import by manure application and export by harvest. The N budget of the managed grassland is more complex. Besides the management related import and export, it includes gaseous exchange in many different forms (NO, NO2, HNO3, N2O, NH3, N2) needing different analytical techniques, as well as input by rain and leaching of N-compounds with the soil water. The main (“level-3”) field sites in the NitroEurope project are supposed to measure 95% of the N fluxes at the field scale. For several of the N fluxes specific measurements have been performed for 1 year or longer at the site. Some of the remaining N budget components (dry and wet deposition) could be estimated from results of a national deposition network, while other components (NH3 and N2 emission) were estimated based on literature parameterisations. However, we found indications that the (systematic) uncertainties of these estimated N-fluxes are large and that it is important to make site-specific measurement for all relevant budget components. The suitability of corresponding experimental methods is discussed.Analysis of the C budget over a 6-year period (2002–2007) showed a significant mean difference between the two newly established grassland fields with a likely net carbon loss for the extensive management and a net sequestration for the intensive management. Since the C/N ratio of the soil organic matter of the grassland is constrained in a rather narrow range around 9.3, the change in the soil carbon pool is supposed to be accompanied by a corresponding change in the N storage. This approach provided an alternative method to check the N budget of the two grassland fields derived from the individual N fluxes.  相似文献   

20.
快速城市化区河流温室气体排放的时空特征及驱动因素   总被引:4,自引:3,他引:1  
河流是大气温室气体重要的排放源,近十多年来全球城市化导致河流生态系统各要素发生改变,对河流水体温室气体排放产生影响.为研究快速城市化区不同土地利用方式下河流温室气体排放的时空特征及其影响因素,采用薄边界层模型法,于2014年9月(秋季)和12月(冬季)及2015年3月(春季)和6月(夏季)的晴天对重庆市区内梁滩河干、支流水体pCO_2、CH_4、N_2O溶存浓度进行监测.结果表明,梁滩河干、支流水体pCO_2范围为(23. 38±34. 89)~(1395. 33±55. 45) Pa、CH_4溶存浓度范围(65. 09±28. 09)~(6 021. 36±94. 36) nmol·L~(-1)、N_2O溶存浓度范围为(29. 47±5. 16)~(510. 28±18. 34)nmol·L~(-1); CO_2、CH_4和N_2O排放通量分别为-6. 1~786. 9、0. 31~27. 62和0. 06~1. 08 mmol·(m~2·d)~(-1);流域水体温室气体浓度空间格局与快速城市化带来的污染负荷空间梯度吻合,干流温室气体浓度与通量从上游向下游均呈先增加后降低,在城市化速度最快的中游出现峰值,其中城市河段CO_2和CH_4浓度约为非城市河段的2倍,同时支流水体自上游农业区向下游城市区呈显著增加;由于受到降雨、温度、外源输入的综合影响,河流CO_2排放通量呈秋季冬季夏季春季的季节模式,CH_4排放通量春季最高夏季最低,N_2O排放通量季节差异不显著.流域水体碳、氮含量均较高,水体CO_2的产生和排放不受生源要素限制,但受水温、pH、DO、叶绿素a等生物代谢因子影响; CH_4的产生和排放受水体碳、氮、磷含量和外源污水输入的共同驱动; N_2O的产生和排放主要受高N_2O浓度的城市污水排放影响.本研究认为流域快速城市化加快了河流水体温室气体排放,形成排放热源,因此城市河流温室气体排放对全球河流排放通量的贡献可能被忽视,在未来研究中应受到更多关注.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号