首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The relationship between various experimental concentrations of CO2 and calcification in Bossiella orbigniana (Decaisne) was studied by measuring Ca-45 incorporation into the crystalline matrix. Air containing CO2 at partial pressures (PCO 2) of 0.04 to 5.5% was bubbled through synthetic seawater in incubation vessels. The resultant pH values in the presence of plants ranged from 6.5 to 8.7. The maximum calcification rate appears to lie between 0.11 and 1.05% PCO 2. The data suggest that calcification is controlled by a biological process that may be sensitive to pH and/or to the relative bicarbonate concentration. The data also suggest that a severalfold increase in CO2 over the present atmospheric level might lead to increased calcification in this marine alga.  相似文献   

2.
Changes in seawater carbonate chemistry that accompany ongoing ocean acidification have been found to affect calcification processes in many marine invertebrates. In contrast to the response of most invertebrates, calcification rates increase in the cephalopod Sepia officinalis during long-term exposure to elevated seawater pCO2. The present trial investigated structural changes in the cuttlebones of S. officinalis calcified during 6 weeks of exposure to 615 Pa CO2. Cuttlebone mass increased sevenfold over the course of the growth trail, reaching a mean value of 0.71 ± 0.15 g. Depending on cuttlefish size (mantle lengths 44–56 mm), cuttlebones of CO2-incubated individuals accreted 22–55% more CaCO3 compared to controls at 64 Pa CO2. However, the height of the CO2-exposed cuttlebones was reduced. A decrease in spacing of the cuttlebone lamellae, from 384 ± 26 to 195 ± 38 μm, accounted for the height reduction The greater CaCO3 content of the CO2-incubated cuttlebones can be attributed to an increase in thickness of the lamellar and pillar walls. Particularly, pillar thickness increased from 2.6 ± 0.6 to 4.9 ± 2.2 μm. Interestingly, the incorporation of non-acid-soluble organic matrix (chitin) in the cuttlebones of CO2-exposed individuals was reduced by 30% on average. The apparent robustness of calcification processes in S. officinalis, and other powerful ion regulators such as decapod cructaceans, during exposure to elevated pCO2 is predicated to be closely connected to the increased extracellular [HCO3 ] maintained by these organisms to compensate extracellular pH. The potential negative impact of increased calcification in the cuttlebone of S. officinalis is discussed with regard to its function as a lightweight and highly porous buoyancy regulation device. Further studies working with lower seawater pCO2 values are necessary to evaluate if the observed phenomenon is of ecological relevance.  相似文献   

3.
4.
We present the first study of the effects of ocean acidification on settlement of benthic invertebrates and microfauna. Artificial collectors were placed for 1 month along pH gradients at CO2 vents off Ischia (Tyrrhenian Sea, Italy). Seventy-nine taxa were identified from six main taxonomic groups (foraminiferans, nematodes, polychaetes, molluscs, crustaceans and chaetognaths). Calcareous foraminiferans, serpulid polychaetes, gastropods and bivalves showed highly significant reductions in recruitment to the collectors as pCO2 rose from normal (336–341 ppm, pH 8.09–8.15) to high levels (886–5,148 ppm) causing acidified conditions near the vents (pH 7.08–7.79). Only the syllid polychaete Syllis prolifera had higher abundances at the most acidified station, although a wide range of polychaetes and small crustaceans was able to settle and survive under these conditions. A few taxa (Amphiglena mediterranea, Leptochelia dubia, Caprella acanthifera) were particularly abundant at stations acidified by intermediate amounts of CO2 (pH 7.41–7.99). These results show that increased levels of CO2 can profoundly affect the settlement of a wide range of benthic organisms.  相似文献   

5.
Respiration and calcification were investigated in the ectocochleate cephalopod Nautilus macromphalus Sowerby. Specimens were collected off New Caledonia, in October 1991, and kept at the Nouméa Aquarium until December 1991. The respiratory quotient and calcification rate of 5 individuals were measured during 14 short term incubations (63 to 363 min). Oxygen uptake was recorded with a polarographic oxygen sensor. CO2 flux and calcification were calculated from changes in pH and alkalinity (alkalinity-anomaly technique). Several methods were used to compute the respiratory quotient (RQ); a functional regression indicated an RQ of 0.74. CaCO3 exchange rates were linearly related to respiratory quotient, calcification occurring in individuals with a low RQ. CaCO3 uptake from the surrounding water was noncontinuous. From the highest CaCO3 uptake, maximum growth rate was estimated as 7.1 mg shell wt h- (=61 g yr-1).  相似文献   

6.
Although recent studies have demonstrated that calcification in a wide range of marine organisms is profoundly affected by CO2-induced ocean acidification, the mechanism of this phenomenon is still unclear. To clarify the effects of ocean acidification on the calcification process at the molecular level, we evaluated the expression of three biomineralization-related genes in the sea urchin Hemicentrotus pulcherrimus exposed under control, 1,000, and 2,000?ppm CO2 from egg to pluteus larval stage. We found that the expression of the gene msp130, which is proposed to transport Ca2+ to the calcification site, is suppressed by increased CO2 at pluteus larval stage. Meanwhile, expression of the spicule protein matrix genes SM30 and SM50 was apparently not affected. The results suggest that the combined effects of ocean acidification on the expression of skeletogenesis-related genes as well as the change in seawater carbonate chemistry affect the biomineralization ability of sea urchins.  相似文献   

7.
Coralline algae (Corallinales, Rhodophyta) are predicted to be negatively impacted by near-future ocean acidification. The effect of low pH/high pCO2 on early life stages of Phymatolithon lenormandii (Areschoug) Adey was studied in a perturbation experiment. Several parameters including mortality, calcification (calcein staining) and development (growth and abnormalities) have been monitored for a month under experimental conditions ranging from pHT = 8.00 (pCO2 = 398 μatm) and pHT = 7.55 (pCO2 = 1,261 μatm). Our results demonstrate that survival and development of P. lenormandii early life stages can be impacted by small pH changes (ΔpH < ?0.1 pH unit). A negative impact of decreasing pH was observed including an increased mortality and a higher rate of abnormalities. Growth and calcification were still observed at the lowest pH (ΔpH = ?0.45). Growth rate was similar at all tested pH, but the maintenance of the skeleton under low pH was only possible through a persistent dynamic dissolution/calcification process, an energetically costly mechanism potentially draining resources from other vital processes.  相似文献   

8.
Ocean acidification (OA) and the biological consequences of altered seawater chemistry have emerged as a significant environmental threat to healthy marine ecosystems. Because a more acidic ocean interferes with fixation of calcium carbonate to form shells or calcified skeletons, future ocean chemistry may significantly alter the physiology of calcifying marine organisms. These alterations may manifest themselves directly in the calcification process, or have synergistic effects with other environmental factors such as elevated temperatures. New tools permit us to explore subtle changes in gene expression patterns in response to environmental conditions. We raised sea urchins (Strongylocentrotus franciscanus) under conditions simulating future atmospheric CO2 levels of 540 and 970 ppm. When larvae raised under elevated CO2 conditions were subjected to 1-h acute temperature stress, their ability to mount a physiological response (as measured by expression of the molecular chaperone hsp70) was reduced relative to those raised under ambient CO2 conditions. These results represent the first use of gene expression assays to study the effects of OA on sea urchin development. They highlight the importance of looking at multiple environmental factors simultaneously as this approach may reveal previously unsuspected biological impacts of atmospheric changes.  相似文献   

9.
Marine organisms are exposed to increasingly acidic oceans, as a result of equilibration of surface ocean water with rising atmospheric CO2 concentrations. In this study, we examined the physiological response of Mytilus edulis from the Baltic Sea, grown for 2 months at 4 seawater pCO2 levels (39, 113, 243 and 405 Pa/385, 1,120, 2,400 and 4,000 μatm). Shell and somatic growth, calcification, oxygen consumption and \textNH4 + {\text{NH}}_{4}^{ + } excretion rates were measured in order to test the hypothesis whether exposure to elevated seawater pCO2 is causally related to metabolic depression. During the experimental period, mussel shell mass and shell-free dry mass (SFDM) increased at least by a factor of two and three, respectively. However, shell length and shell mass growth decreased linearly with increasing pCO2 by 6–20 and 10–34%, while SFDM growth was not significantly affected by hypercapnia. We observed a parabolic change in routine metabolic rates with increasing pCO2 and the highest rates (+60%) at 243 Pa. \textNH4 + {\text{NH}}_{4}^{ + } excretion rose linearly with increasing pCO2. Decreased O:N ratios at the highest seawater pCO2 indicate enhanced protein metabolism which may contribute to intracellular pH regulation. We suggest that reduced shell growth under severe acidification is not caused by (global) metabolic depression but is potentially due to synergistic effects of increased cellular energy demand and nitrogen loss.  相似文献   

10.
The combined effects of ocean warming and acidification were compared in larvae from two populations of the cold-eurythermal spider crab Hyas araneus, from one of its southernmost populations (around Helgoland, southern North Sea, 54°N, habitat temperature 3–18°C; collection: January 2008, hatch: January–February 2008) and from one of its northernmost populations (Svalbard, North Atlantic, 79°N, habitat temperature 0–6°C; collection: July 2008, hatch: February–April 2009). Larvae were exposed to temperatures of 3, 9 and 15°C combined with present-day normocapnic (380 ppm CO2) and projected future CO2 concentrations (710 and 3,000 ppm CO2). Calcium content of whole larvae was measured in freshly hatched Zoea I and after 3, 7 and 14 days during the Megalopa stage. Significant differences between Helgoland and Svalbard Megalopae were observed at all investigated temperatures and CO2 conditions. Under 380 ppm CO2, the calcium content increased with rising temperature and age of the larvae. At 3 and 9°C, Helgoland Megalopae accumulated more calcium than Svalbard Megalopae. Elevated CO2 levels, especially 3,000 ppm, caused a reduction in larval calcium contents at 3 and 9°C in both populations. This effect set in early, at 710 ppm CO2 only in Svalbard Megalopae at 9°C. Furthermore, at 3 and 9°C Megalopae from Helgoland replenished their calcium content to normocapnic levels and more rapidly than Svalbard Megalopae. However, Svalbard Megalopae displayed higher calcium contents under 3,000 ppm CO2 at 15°C. The findings of a lower capacity for calcium incorporation in crab larvae living at the cold end of their distribution range suggests that they might be more sensitive to ocean acidification than those in temperate regions.  相似文献   

11.
The effect of elevated pCO2/low pH on marine invertebrate benthic biodiversity, community structure and selected functional responses which underpin ecosystem services (such as community production and calcification) was tested in a medium-term (30 days) mesocosm experiment in June 2010. Standardised intertidal macrobenthic communities, collected (50.3567°N, 4.1277°W) using artificial substrate units (ASUs), were exposed to one of seven pH treatments (8.05, 7.8. 7.6, 7.4, 7.2, 6.8 and 6.0). Community net calcification/dissolution rates, as well as changes in biomass, community structure and diversity, were measured at the end of the experimental period. Communities showed significant changes in structure and reduced diversity in response to reduced pH: shifting from a community dominated by calcareous organisms to one dominated by non-calcareous organisms around either pH 7.2 (number of individuals and species) or pH 7.8 (biomass). These results were supported by a reduced total weight of CaCO3 structures in all major taxa at lowered pH and a switch from net calcification to net dissolution around pH 7.4 (Ωcalc = 0.78, Ωara = 0.5). Overall community soft tissue biomass did not change with pH and high mortality was observed only at pH 6.0, although molluscs and arthropods showed significant decreases in soft tissue. This study supports and refines previous findings on how elevated pCO2 can induce changes in marine biodiversity, underlined by differential vulnerability of different phyla. In addition, it shows significant elevated pCO2-/low pH-dependent changes in fundamental community functional responses underpinning changes in ecosystem services.  相似文献   

12.
A. Israel  S. Beer 《Marine Biology》1992,112(4):697-700
In this continuing study on photosynthesis of the marine red alga Gracilaria conferta, it was found that ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in crude extracts had a K m (CO2) of 85 M. Since seawater contains only ca. 10 M CO2, it appears that this alga must possess a CO2 concetrating system in order to supply sufficient CO2 to the vicinity of the enzyme. Because this species is a C3 plant (and thus lacks the C4 system for concentrating CO2), but can utilize HCO3 - as an exogenous carbon source, we examined whether HCO3 - uptake could be the initial step of such a CO2 concetrating system. The surface pH of G. conferta thalli was 9.4 during photosynthesis. At this pH, estimated maximal uncatalyzed HCO3 - dehydration (CO2 formation) within the unstirred layer was too slow to account for measured phostosynthetic rates, even in the presence of an external carbonic anhydrase inhibitor. This observation, and the marked pH increase in the unstirred layer following the onset of light, suggests that a HCO3 - transport system (probably coupled to transmembrane H+/OH- fluxes) operates at the plasmalemma level. The involvement of surface-bound carbonic anhydrase in such a system remains, however, obscure. The apparent need of marine macroalgae such as G. conferta for CO2 concentrating mechanisms is discussed with regard to their low affinity of Rubisco to CO2 and the low rate of CO2 supply in water. The close similarity between rates of Rubisco carboxylation and measured photosynthesis further suggests that the carboxylase activity, rather than inorganic carbon transport and intercoversion events, could be an internal limiting factor for photosynthetic rates of G. conferta.  相似文献   

13.
This study investigated the effects of seawater pH (i.e., 8.10, 7.85 and 7.60) and temperature (16 and 19 °C) on (a) the abiotic conditions in the fluid surrounding the embryo (viz. the perivitelline fluid), (b) growth, development and (c) cuttlebone calcification of embryonic and juvenile stages of the cephalopod Sepia officinalis. Egg swelling increased in response to acidification or warming, leading to an increase in egg surface while the interactive effects suggested a limited plasticity of the swelling modulation. Embryos experienced elevated pCO2 conditions in the perivitelline fluid (>3-fold higher pCO2 than that of ambient seawater), rendering the medium under-saturated even under ambient conditions. The growth of both embryos and juveniles was unaffected by pH, whereas 45Ca incorporation in cuttlebone increased significantly with decreasing pH at both temperatures. This phenomenon of hypercalcification is limited to only a number of animals but does not guarantee functional performance and calls for better mechanistic understanding of calcification processes.  相似文献   

14.
Net photosynthetic oxygen evolution in Amphiroa anceps (Lamarck) Decaisne is inhibited at high oxygen concentrations. Photosynthesis is highest between pH 6.5 and 7.5. At pH 9 to 10 there is still a significant photosynthetic rate, suggesting that this alga can use HCO - 3 as a substrate for photosynthesis. At pH 7.0 to 8.5, the photosynthetic rate saturates at a total inorganic carbon concentration (Ci) greater than 3 mM. At pH 8.5 and 8.8, calcification rate continues to increase with increasing concentration of Ci. Between pH 7 and 9, the calcification rate in the light in A. foliacea Lamouroux is proportional to the photosynthetic rate, whereas at higher pH where the photosynthetic rate is very low, the calcification rate is stimulated by the higher concentration of CO 2- 3 ion. At all pH values examined, the calcification rate of living plants in the dark and of dead plants is directly proportional to the CO 2- 3 ion concentration, suggesting little metabolic involvement in calcification processes in the dark, whereas calcification in live A. foliacea in the light is influenced both by the photosynthetic rate and the CO 2- 3 ion concentration in the medium.  相似文献   

15.
Ocean acidification, as a result of increased atmospheric CO2, is predicted to lower the pH of seawater to between pH 7.6 and 7.8 over the next 100 years. The greatest changes are expected in polar waters. Our research aimed to examine how echinoid larvae are affected by lower pH, and if effects are more pronounced in polar species. We examined the effects of lowered pH on larvae from tropical (Tripneustes gratilla), temperate (Pseudechinus huttoni, Evechinus chloroticus), and a polar species (Sterechinus neumayeri) in a series of laboratory experiments. Larvae were reared in a range of lower pH seawater (pH 6.0, 6.5, 7.0, 7.5, 7.7, 7.8 and ambient), adjusted by bubbling CO2 gas. The effect of pH on somatic and skeletal growth, calcification index, development and survival were quantified, while SEM examination of the larval skeleton provided information on the effects of seawater pH on the fine-scale skeletal morphology. Lowering pH resulted in a decrease in survival in all species, but only below pH 7.0. The size of larvae were reduced at lowered pH, but the external morphology (shape) was unaffected. Calcification of the larval skeleton was significantly reduced (13.8–36.9% lower) under lowered pH, with the exception of the Antarctic species, which showed no significant difference. SEM examination revealed a degradation of the larval skeletons of Pseudechinus and Evechinus when grown in reduced pH. Sterechinus and Tripneustes showed no apparent difference in the skeletal fine structure under lowered pH. The study confirms the need to look beyond mortality as a single endpoint when considering the effects of ocean acidification that may occur through the 21st century, and instead, look for a suite of more subtle changes, which may indirectly affect the functioning of larval stages.  相似文献   

16.
The mechanisms for uptake of inorganic carbon (Ci) for photosynthesis and calcification of a perforate foraminifer, Amphistegina lobifera Larsen, and an imperforate species, Amphisorus hemprichii Ehrenberg, from the Gulf of Eilat, Red Sea were studied in 1986–1987 using 14C tracer techniques. Total Ci uptake of A. lobifera and photosynthetic carbon uptake of A. hemprichii fit the Hill-Whittingham equation that describes the overall rate of enzymatic reactions that are provided with their substrate through a diffusion barrier. This suggests that diffusion is the rate limiting step for total Ci uptake in A. lobifera. Photosynthesis by the isolated symbionts and uptake of CO3 2- for calcification obey Michaelis-Menten kinetics indicating that enzymatic reactions determine the rate of the separate processes. Both photosynthesis and calcification can be inhibited without affecting each other. Calcification rates in A. lobifera were optimal at Ca levels around normal seawater concentration and were sensitive to inhibitors of respiratory adenosine triphosphate (ATP) generation and Ca-ATP-ase. This indicates that Ca uptake is also active. Calcification rates of A. hemprichii increased linearly as a function of external Ci concentration over the entire experimental range (0 to 4 mM Ci). In contrast, photosynthetic rates showed Hill-Whittingham type kinetics. The dependence of calcification on the CO3 2- concentration was also linear, suggesting that its diffusion is the rate limiting step for calcification in A. hemprichii. Increasing Ca concentrations yielded higher calcification rates over the entire range measured (0 to 40 mM Ca). Calcification in A. hemprichii was less sensitive to inhibitors of ATP generation than in A. lobifera, suggesting that in A. hemprichii energy supply is less important for this process.  相似文献   

17.
Carbon capture and storage has become a new mitigation option to reduce anthropogenic CO2 emissions. The effects of the CO2-related acidification, associated with unpredictable leaks of CO2 during the operational phases were studied using the Paracentrotus lividus sea urchin-liquid-phase-assays (fertilisation and embryo-larval development tests). Besides to the direct effects of the CO2-associated pH decrease, the possible effects on marine sediment toxicity were studied by exposing the urchin larvae to elutriate of sediments with different metals concentration, which were subjected to various pH treatments. The resulted median toxic effect pH ranged from 6.33?±?0.02 and 6.91?±?0.01 for the egg fertilisation, and between 6.66?±?0.03 and 7.16?±?0.01 for the larval development assays. Concentrations of Co, Zn, As, Cu, and Fe were detected in the sediment elutriates. For all the sediment elutriates tested the amount of the dissolved Zn increased in parallel with the pH reductions. Correlated effects of acidification, biological response, and the presence of dissolved metals were observed in this work evidencing that the most important factor controlling the reduction of egg fertilisation and larval development success was the combined effects of the reduction of pH and the presence of the contaminants (mainly Zn, Co, and As).  相似文献   

18.
Using CO2 perturbation experiments, we examined the pre- and post-settlement growth responses of a dominant biofouling tubeworm (Hydroides elegans) to a range of pH. In three different experiments, embryos were reared to, or past, metamorphosis in seawater equilibrated to CO2 values of about 480 (control), 980, 1,480, and 2,300 μatm resulting in pH values of around 8.1 (control), 7.9, 7.7, and 7.5, respectively. These three decreased pH conditions did not affect either embryo or larval development, but both larval calcification at the time of metamorphosis and early juvenile growth were adversely affected. During the 24-h settlement assay experiment, half of the metamorphosed larvae were unable to calcify tubes at pH 7.9 while almost no tubes were calcified at pH 7.7. Decreased ability to calcify at decreased pH may indicate that these calcifying tubeworms may be one of the highly threatened species in the future ocean.  相似文献   

19.
The impact of elevated CO2 and temperature on photosynthesis and calcification in the symbiont-bearing benthic foraminifer Marginopora vertebralis was studied. Individual specimens of M. vertebralis were collected from Heron Island on the southern Great Barrier Reef (Australia). They were maintained for 5 weeks at different temperatures (28, 32 °C) and pCO2 (400, 1,000 µatm) levels spanning a range of current and future climate-change scenarios. The photosynthetic capacity of M. vertebralis was measured with O2 microsensors and a pulse-amplitude-modulated chlorophyll (Chl) fluorometer, in combination with estimates of Chl a and Chl c 2 concentrations and calcification rates. After 5 weeks, control specimens remained unaltered for all parameters. Chlorophyll a concentrations significantly decreased in the specimens at 1,000 µatm CO2 for both temperatures, while no change in Chl c 2 concentration was observed. Photoinhibition was observed under elevated CO2 and temperature, with a 70–80 % decrease in the maximum quantum yield of PSII. There was no net O2 production at elevated temperatures in both CO2 treatments as compared to the control temperature, supporting that temperature has more impact on photosynthesis and O2 flux than changes in ambient CO2. Photosynthetic pigment loss and a decrease in photochemical efficiency are thus likely to occur with increased temperature. The elevated CO2 and high temperature treatment also lead to a reduction in calcification rate (from +0.1 to >?0.1 % day?1). Thus, both calcification and photosynthesis of the major sediment-producing foraminifer M. vertebralis appears highly vulnerable to elevated temperature and ocean acidification scenarios predicted in climate-change models.  相似文献   

20.
The acid-base status of two sea urchins, Psammechinus miliaris (Gmelin) and Echinus esculentus (L.) during experimental emersion has been investigated. Sea urchins were collected from the Firth of Clyde between August and September 1987. The carbon dioxide capacity of the coelomic fluid of P. miliaris was greater than that of E. esculentus, although both were low and only marginally greater than that of sea water. The pH of the coelonic fluid was also low (7.05 to 7.17) and was influenced mainly by the internal partial pressure of CO2 (PCO 2). Acid-base disturbance in the coelomic fluid of both species during emersion, although minimal, was more pronounced in E. esculentus than in P. miliaris and was due primarily to an increase in the internal PCO 2, although there was an increase in the concentration of L-lactate in the coelomic fluid of E. esculentus. The coelomic fluid of both species was in a state of perfectly compensated respiratory acidosis. An increase in the concentration of divalent ions (Ca2+ and Mg2+) may be related to the dissolution of the test as a source of carbonate buffer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号