首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
为比较冬季城市和农村大气颗粒物浓度及化学组分等特征,本文分别采集分析了西安市区、安康农村冬季大气PM2.5颗粒物与PM0.1颗粒物。分析结果表明:两地大气中PM2.5日均浓度均超过国家二级标准(75μg·m~(-3)),空气质量不容乐观;其中农村样品中PM0.1颗粒物约占PM2.5颗粒物浓度的36.8%左右;所有颗粒物中有机碳远高于无机碳组分,而市区大气颗粒物中多环芳烃浓度显著高于农村浓度,说明城市空气中来源于机动车尾气的污染较为严重;从颗粒物粒径分布特征来看,粒径为0.300~0.374μm颗粒物具有最高数浓度和比表面积浓度,粒径为0.374~0.465μm的颗粒物具有最高质量浓度;由于农村污染源较为单一,安康样品颗粒物浓度受燃煤和油烟的影响较大。此外,由于受燃煤机动车排放影响,西安大气中PM0.1颗粒物中水溶性离子主要为NO_3~-与SO24,而安康大气PM0.1颗粒物中水溶性离子主要以SO_4~(2-)与Ca2+为主,PM2.5颗粒物中水溶性离子以NO_3~-、SO_4~(2-)和NH_4~+为主,这与农村环境中使用燃煤、农田灌溉、家畜喂养以及有机质降解等有关。  相似文献   

2.
大气颗粒物(particulate matter,PM)中的生物成分会严重引起组织炎症,并且有传播给人类、植物和家畜病原菌等危害。通过FDA(荧光素二乙酸酯)水解法定义石河子市微生物气溶胶的酶活性水平,采用Pearson双变量分析方法分析其影响因素。结果表明,石河子市的细颗粒物中微生物酶活性最高的是夏季,最低的是冬季。酶活性水平与温度(R=0.587,n=75,P 0.01)、细颗粒物浓度(R=-0.704,n=75,P 0.01)和风速(R=0.605,n=75,P 0.05)存在显著相关性。通过逐步多元线性回归方程可知温度是最显著的影响因素。研究为城市重点区域环境规划和总体环境改善方案提供基础科学数据,对石河子的大气环境研究有重要的参考价值。  相似文献   

3.
南京市大气气溶胶中颗粒物和正构烷烃特征及来源分析   总被引:10,自引:2,他引:10  
于2002年夏季(7月)和冬季(12月)采集南京市5个功能区的大气气溶胶(PM2.5和PM10)样品,对两个季节不同功能区颗粒物及其颗粒物中正构烷烃的分布特征和污染来源进行了分析。结果表明,南京市大气颗粒物含量冬季高于夏季,细颗粒高于粗颗粒。正构烷烃的变化规律同颗粒物一致,且主要分布在细颗粒物上。根据各个功能区正构烷烃(C15-C32)的CPI(CPI1、CPI2和CPI3)结果,可知南京市大气气溶胶中正构烷烃由生物源和人为源共同排放产生。%waxCn的结果表明生物源对气溶胶中正构烷烃的贡献率为20%~43%,对南京市大气颗粒物的贡献率为1.66%~4.76%。  相似文献   

4.
地铁是人们出行的重要交通方式,车厢内颗粒物污染可影响人体健康。2016年春、秋、冬季对北京地铁1号、2号、4号、10号线进行现场监测,探讨北京地铁车厢内颗粒物污染特征。研究结果表明,北京地铁车厢内PM_(2.5)平均浓度超标率为83.8%~98.7%,地铁1号线PM_(10)平均浓度超标率为59.6%。地铁车厢内PM_(2.5)和PM_(10)浓度存在工作日和周末组间显著性差异,表明客运量对车厢内颗粒物浓度有较大影响。地铁车厢内PM_(2.5)和PM_(10)浓度存在季节性差异,冬季车厢内颗粒物平均浓度最高。不同线路车厢内PM_(2.5)和PM_(10)浓度存在组间差异,地铁通风空调系统、门系统和客运量是造成其差异的主要原因。  相似文献   

5.
为了解杭州市大气细颗粒物中多环芳烃(PAHs)的粒径分布特征和主要来源,于2015年12月至2016年5月在杭州市某商住区采集了不同粒径的大气细颗粒物样品,利用气相色谱质谱联用仪对其中的PAHs进行分析,并进行了细胞毒性试验。结果表明,不同粒径大气细颗粒物中PAHs的总浓度冬季均明显高于春季。冬春两季的PAHs环数粒径分布基本呈现出4环5环3环6环2环。通过特征比值法判定,杭州市大气细颗粒物中的PAHs主要来源于燃烧源和机动车尾气排放。细胞毒性试验结果表明,粒径越小的大气细颗粒物对细胞的毒性作用越强,对细胞膜损伤程度越大。  相似文献   

6.
河道滞留塘系统是以颗粒物沉降为污染物主要净化机理的污染河流净化技术.通过1年的现场试验研究,考察了悬浮颗粒物SS在滞留塘中的沉降和沉积特性.在本试验条件下,随水力停留时间(HRT)延长(HRT为1.5~7 h),SS平均去除率逐渐增加,介于20%~40%之间,而SS去除速率则快速降低,SS去除速率与进水SS浓度成正比关系;不同季节河水中SS的沉降性能有较大差异,冬季河水中有机物含量较低的易沉降颗粒物比例较春秋季河水的为高,滞留塘HRT的选择应以去除易沉降颗粒物为标准,本研究条件下5 h以内是适宜的HRT选择范围.在滞留塘动态运行中,SS的沿程沉积量呈指数规律下降.  相似文献   

7.
为研究成都市降水对大气颗粒物(以下简称颗粒物)的湿清除作用,对2014—2016年成都市的颗粒物(PM_(2.5)、PM_(10))和气象观测数据进行分析。结果表明:月、季尺度下,降水对PM_(2.5)、PM_(10)均有削减作用。降水时段的PM_(2.5)、PM_(10)浓度较非降水时段分别降低17.1%和15.8%,且冬季降幅最为明显。考察472次降水过程对颗粒物的湿清除作用,发现单次降水过程后PM_(2.5)、PM_(10)浓度增长频次(243、234次)和削减频次(229、238次)接近,但颗粒物浓度总体呈削减趋势。对于单次降水过程,颗粒物的初始浓度与降水对颗粒物的湿清除作用关系密切,特别是降水持续时间超过8h后,颗粒物初始浓度越高,削减效果越好。  相似文献   

8.
辽宁省区域性空气污染的天气分型   总被引:2,自引:0,他引:2  
应用2003-2004年主要污染物浓度和气象资料,对辽宁省全年的PM10产生的区域性3级空气污染进行环流分型,按污染源划分为冬季煤烟型、春季沙尘型和夏秋大雾型.其中冬季煤烟型又分为长白山高压地形槽型、高压内部均压场型、东北高压脊,西部倒槽型、蒙古高压前均压场、蒙古低压前均压场、高压内部小范围均压场型6个型;春季沙尘型分为东北低压型、南大风型和干冷锋北大风型;夏秋大雾型分为低压槽型和低压前均压场.上述类型几乎概括了近两年PM10 3级污染的所有个例,为大气环境质量预报、总量控制等提供依据.  相似文献   

9.
悬浮颗粒物在河道滞留塘系统中的沉降与沉积特性   总被引:2,自引:0,他引:2  
河道滞留塘系统是以颗粒物沉降为污染物主要净化机理的污染河流净化技术。通过1年的现场试验研究,考察了悬浮颗粒物SS在滞留塘中的沉降和沉积特性。在本试验条件下,随水力停留时间(HRT)延长(HRT为1.5-7h),SS平均去除率逐渐增加,介于20%-40%之间,而SS去除速率则快速降低,SS去除速率与进水SS浓度成正比关系;不同季节河水中SS的沉降性能有较大差异,冬季河水中有机物含量较低的易沉降颗粒物比例较春秋季河水的为高,滞留塘HRT的选择应以去除易沉降颗粒物为标准,本研究条件下5h以内是适宜的HRT选择范围。在滞留塘动态运行中,SS的沿程沉积量呈指数规律下降。  相似文献   

10.
针对冬季北京密云水库水低温、低浊的水质特征,分别进行了实验室烧杯实验和现场中试研究,并对原水及处理后的水质进行了物理分级和化学分级研究.实验结果表明,预臭氧氧化能降低原水中消毒副产物的前体物(如三卤甲烷生成势),并能显著减少原水中颗粒物的含量;预臭氧氧化工艺与常规工艺相比,能提高砂滤出水的UV254和颗粒物的去除率,有效降低砂滤水头损失率.  相似文献   

11.
长沙地区雾霾特征及影响因子分析   总被引:2,自引:0,他引:2  
根据长沙地区1970—2012年气象观测资料及环境监测数据,对近43年长沙雾霾特征及影响因子进行了分析。结果表明,长沙地区雾的年际变化具有显著的倒"U"型特征,霾整体上呈上升趋势;雾霾天气主要集中在秋冬季节,春夏季节较少;从空间分布来看,望城区(县)和宁乡县雾霾天气最多,浏阳市次之,长沙市区最少。在一次持续性雾霾天气过程中(10.2~10.12),相对湿度、PM2.5质量浓度与能见度呈现显著负相关,说明PM2.5质量浓度和相对湿度是雾霾天气形成的首要影响因子。  相似文献   

12.
A radiation fog physics, gas- and aqueous-phase chemistry model is evaluated against measurements in three sites in the San Joaquin Valley of California (SJV) during the winter of 1995. The measurements include for the first time vertically resolved fog chemical composition measurements. Overall the model is successful in reproducing the fog dynamics as well as the temporal and spatial variability of the fog composition (pH, sulfate, nitrate, and ammonium concentrations) in the area. Sulfate production in the fog layer is relatively slow (1–4 μg m−3 per fog episode) compared to the episodes in the early 1980s because of the low SO2 concentrations in the area and the lack of oxidants inside the fog layer. Sulfate production inside the fog layer is limited by the availability of oxidants in the urban areas of the valley and by SO2 in the more remote areas. Nitrate is produced in the rural areas of the valley by the heterogeneous reaction of N2O5 on fog droplets, but this reaction is of secondary importance for the more polluted urban areas. The gas-phase production of HNO3 during the daytime is sufficient to balance the nitrate removed during the nighttime fog episodes. Entrainment of air from the layer above the fog provides another source of reactants for the fog layer. Wet removal is one of most important processes inside the fog layer in SJV. We estimate based on the three episodes investigated during IMS95 that a typical fog episode removes 500–2000 μg m−2 of sulfate, 2500–6500 μg m−2 of nitrate, and 2000–3500 μg m−2 of ammonium. For the winter SJV valley the net fog effect corresponds to reductions in ground ambient concentrations of 0.05–0.2 μg m−3 for sulfate, 3–6 μg m−3 for total nitrate, and 1–3 μg m−3 for total ammonium.  相似文献   

13.
Large quantities of atmospheric aerosols with compositions SO4 =, NO3 ? and NH4 + have been detected in highly industrialized areas. The major portions of aerosol products are the results of energyrelated fuel combustion. Both microphysical and macrophysical processes are considered in investigating the time dependent evolution of the saturation spectra of condensation nuclei associated with both polluted and clean atmospheres during the time periods of advection fog formation. The results show that the condensation nuclei associated with a polluted atmosphere provide more favorable conditions than condensation nuclei associated with a clean atmosphere to produce dense advection fog, and that attaining a certain degree of supersaturation is not necessarily required for the formation of advection fog with condensation nuclei associated with a polluted atmosphere for monodisperse distribution.  相似文献   

14.
Polycyclic aromatic hydrocarbons (PAHs) in PM2.5 and cloud/fog water samples were collected at Mount Taishan in an autumn–winter period, and were analyzed by GS-MS. Higher molecular weight PAHs (4–6 rings) predominated in PM2.5 samples, whereas lighter PAH compounds contributed 61.71% of the total PAH concentration in cloud/fog samples. Particles tended to contain more PAHs and have a more intensive influence on the atmospheric environment on colder days. During cloud/fog events, the scavenging ratio based on PAHs associated with particles was estimated to be about 13.45%. PAHs in PM2.5 samples had a significant positive relationship with CO and SO2, suggesting that PAHs, SO2, and CO may originated from the same sources, such as residential coal combustion activities. Diagnostic ratio analysis and factor analysis indicated that the sources of PAHs were mainly from coal combustion during this period.  相似文献   

15.
Six radiation fog episodes were sampled in the Central Valley of California during winter 1998/1999. Drop size-resolved fog samples were sampled using a size-fractionating Caltech active strand cloudwater collector (sf-CASCC). The sf-CASCC collects a large fog drop sample, comprised mainly of drops larger than 17 μm diameter, and a small fog drop sample, comprised mainly of drops with diameters between 4 and 17 μm. The fog pH was found to vary between approximately pH 5.3 and 6.8, with the pH of the large fog drop sample typically several tenths of a pH unit higher than the simultaneously collected small fog drop sample. At these high pH values, dissolved sulfur dioxide can be rapidly oxidized by a variety of chemical pathways and also can react quickly with dissolved formaldehyde to form hydroxymethanesulfonate. The amount of sulfate produced by aqueous-phase oxidation during each fog episode was determined by application of a tracer technique. The ratio of large : small drop S(IV) oxidation was compared with theoretically predicted ratios of large : small drop S(IV) oxidation rates. Although the higher pH of the large fog drops should promote more rapid S(IV) oxidation by ozone, finite rates of mass transport into the large drops and an increasing rate of complexation of S(IV) by formaldehyde at high pH combine to depress theoretically predicted rates of aqueous sulfate production in large fog drops below rates expected for small fog drops. This prediction is supported by the tracer results that indicate the concentration of sulfate resulting from aqueous-phase S(IV) oxidation in small drops generally exceeded the concentration formed in large drops. These findings stand in sharp contrast to observations in acidic clouds at Whiteface Mountain, New York, where hydrogen peroxide was determined to be the dominant S(IV) oxidant and the rate of S(IV) oxidation was found to be independent of drop size.  相似文献   

16.
The collection of fog water is a simple and sustainable technology to obtain fresh water for afforestation, gardening, and as a drinking water source for human and animal consumption. In regions where fresh water is sparse and fog frequently occurs, it is feasible to set up a passive mesh system for fog water collection. The mesh is directly exposed to the atmosphere, and the foggy air is pushed through the mesh by the wind. Fog droplets are deposited on the mesh, combine to form larger droplets, and run down passing into a storage tank. Fog water collection rates vary dramatically from site to site but yearly averages from 3 to 10 l m−2 of mesh per day are typical of operational projects. The scope of this article is to review fog collection projects worldwide, to analyze factors of success, and to evaluate the prospects of this technology.  相似文献   

17.

Background, aim, and scope  

The blue swallow (Hirundo atrocaerulea) is one of the most threatened bird species in southern Africa. Among terrestrial birds, its plumage is known to be the most water repellent, an adaptation to foraging on the wing in dense fog. Despite this unique adaptation, the nesting success of the blue swallow at the Blue Swallow Natural Heritage Site (BSNHS) is lower during years with high incidence of fog. As the phenomenon is not observed at other nesting sites, we hypothesized that this is due to changes in the air chemistry at the BSNHS. In the immediate proximity of the BSNHS, plantations of exotic trees (e.g., pines and eucalypts), rich in volatile organic compounds (VOCs), are dominant features. In addition, air pollution from the Johannesburg area is transported with the surface winds and mix with VOCs released from exotic trees. Together with the high humidity and high elevation, these conditions may result in the formation of sulphonates. Sulphonates are strong detergents, and the presence of these in the fog could lead to decreased water repellence of the plumage. This study was performed in order to determine the occurrence and distribution of sulphonates in the BSNHS and to compare these with sulphonates formed in other locations in South Africa. Because the blue swallow is endangered, pine needles were used as proxy to detect formation of sulphonates.  相似文献   

18.
A one-dimensional radiation fog model is presented. It is coupled with a second model to include the effects of tall vegetation. The fog model describes in detail the dynamics, thermodynamics, and microphysical structure of a fog, as well as the interactions with the atmospheric radiative transfer. A two-dimensional joint size distribution for the aerosol particles and activated fog droplets is used, the activation of aerosol particles is explicitly modeled.The implications of the presence of tall vegetation on the state of the atmosphere and on the evolution of radiation fog are stated. It is shown that the existence of tall vegetation impedes the evolution of radiation fog. The life cycle of radiation fog is discussed. The input of fog water and associated aerosol particles onto the vegetation surfaces via fog water interception processes is assessed.  相似文献   

19.
Seasonal trend of fog water chemical composition in the Po Valley   总被引:1,自引:0,他引:1  
Fog frequency in the Po Valley, Northern Italy, can be as high as 30% of the time in the fall-winter season. High pollutant concentrations have been measured in fog water samples collected in this area over the past few years. The combined effects of high fog occurrence and high pollutant loading of the fog droplets can determine, in this area, appreciable chemical deposition rates. An automated station for fog water collection was developed, and deployed at the field station of S. Pietro Capofiume, in the eastern part of the Po Valley for an extended period: from the beginning of November 1989 to the end of April 1990. Time-resolved sampling of fog droplets was carried out during all fog events occurring in this period, and chemical analyses were performed on the collected samples. Statistical information on fog occurrence and fog water chemical composition is reported in this paper, and a tentative seasonal deposition budget is calculated for H+, NH4+, NO3- and SO4(2-) ions. The problems connected with fog droplet sampling in sub-freezing conditions are also addressed in the paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号