首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To obtain robust data on the toxicity of LAS, tests with the collembolan Folsomia candida L., the oligochaetes Aporrectodea caliginosa Savigny (earthworm) and Enchytraeus crypticus Westheide and Graefe (enchytraeid) were performed in a sandy loam soil. Additionally limited tests with LAS spiked to sewage sludge, and subsequently mixed into soil, were performed. For the endpoint of interest, reproduction in soil, we found an EC10 of 205 mg LAS kg(-1) soil [8.6-401] [95% confidence limits] for F. candida and an EC10 of 46 mg LAS kg(-1) soil [13-80] for A. caliginosa after 28 days. E. crypticus was not affected by concentrations up to 120 mg LAS kg(-1) soil. When adding (low contaminated) non-spiked sludge to soil, high stimulation of reproduction was observed for E. crypticus and A. caliginosa but not for F. candida. We argue that this difference in stimulative response between the tested species is related to the difference in feeding behaviour. Sludge spiked with LAS did not significantly affect the reproduction of F. candida (fertility: number of juvenile offspring) and A. caliginosa (fecundity: number of cocoons) (dose equivalent to 181 g and 91 g LAS kg(-1) sludge, respectively). Significantly reduced reproduction was observed for E. crypticus (at 120 mg LAS kg(-1) soil+sludge corresponding to 72 g LAS kg(-1) sludge) compared to non-spiked sludge. The reproduction by E. crypticus was, however, comparable to the reproduction observed in the control soil without sludge. Compared to LAS directly spiked to soil, the reproductive output of organisms exposed to spiked sludge was either not significantly different (F. candida, E. crypticus) or significantly improved (A. caliginosa). More studies are needed in order to make firm conclusions on the potential effect of artificially contaminated sludge in soil systems.  相似文献   

2.
A continuous supply of water with defined stable concentrations of hydrophobic chemicals is a requirement in a range of laboratory tests such as the OECD 305 protocol for determining the bioconcentration factor in fish. Satisfying this requirement continues to be a challenge, particularly for hydrophobic chemicals. Here we present a novel solution based on equilibrium passive dosing. It employs a commercially available unit consisting of ∼16 000 polydimethylsiloxane (PDMS) tubes connected to two manifolds. The chemicals are loaded into the unit by repeatedly perfusing it with a methanol solution of the substances that is progressively diluted with water. Thereafter the unit is perfused with water and the chemicals partition from the unit into the water. The system was tested with nine chemicals with log KOW ranging from 4.1 to 6.3. The aqueous concentrations generated were shown to be largely independent of the water flow rate, and the unit to unit reproducibility was within a factor of ∼2. In continuous flow experiments the aqueous concentrations of most of the study chemicals remained constant over 8 d. A model was assembled that allows prediction of the operating characteristics of the system from the log KOW or PDMS/water partition coefficient of the chemical. The system is a simple, safe, predictable and flexible tool that generates stable aqueous concentrations of hydrophobic chemicals.  相似文献   

3.
Bioaccumulation and elimination of 14C-lindane in Enchytraeus albidus was studied in artificial OECD soil and a silty loam from an agricultural field in Central West Portugal. Results showed that enchytraeids were able to bioaccumulate the chemical with a kinetic pattern similar to that of earthworms: fast uptake within a few days and a biphasic elimination pattern. A 10 day period to study uptake was sufficient, but a few more days were probably necessary for elimination. Bioaccumulation was influenced by soil type. The authors suggest that higher organic matter (OM) content and also the higher content on sand particles in the OECD soil may have led to a faster elimination: hydrophobic chemicals tend to adsorb to OM being in this way less bioavailable and therefore less bioaccumulated having bioaccumulation factor value around 6 while in natural soil is 10; the sand could act as abrasive particles (helpers) in the elimination process leading to an elimination of 90% of the chemical in two days while in natural soil 67% was eliminated in the same period of time.  相似文献   

4.
To verify a theoretical mass balance and multiple compartment partitioning model developed to predict freely dissolved concentrations (FDCs) of hydrophobic organic chemicals (HOCs) using negligible depletion-solid phase microextraction (nd-SPME), a series of sediment slurry experiments were performed using disposable poly(dimethyl)siloxane (PDMS) coated-SPME fibers and (14)C-radiolabeled HOC analogs. First, pre-calibration of disposable PDMS coated fibers for four model compounds (phenanthrene, PCB 52, PCB 153 and p,p'-DDE) with good precision (PCB 52>PCB 153, and the measured and predicted C(pw) values were not substantially different from empirically determined values except for p,p'-DDE.  相似文献   

5.
Jahnke A  McLachlan MS  Mayer P 《Chemosphere》2008,73(10):1575-1581
Polydimethylsiloxane (PDMS) can be used for equilibrium sampling of environmental pollutants in a large variety of matrices including biota. For comparison with lipid-normalized concentrations e.g. from biota monitoring programmes, reliable lipid to PDMS partition ratios (K(Lipid,PDMS)) are required. Additionally, K(Lipid,PDMS) facilitate comparison of equilibrium sampling data obtained in various environmental media and can be helpful to convert equilibrium sampling data into a more informative form. This work investigated the equilibrium partitioning of polychlorinated biphenyls (PCBs) and selected organochlorine pesticides (OCPs) between lipids from biota of different trophic levels and PDMS. One vegetable oil, a fish oil and seal oil were investigated. The lipid to PDMS partition ratios were compound-specific and ranged from 14.5 to 62.9 g/g with correction for lipid uptake into the PDMS and from 13.0 to 54.8 g/g without correction. Additionally, PDMS served as a reference partitioning phase for the accurate determination of lipid to lipid partition ratios, which for all analytes were close to unity. Evaluating the results in a bioaccumulation context, they indicate that the equilibrium partitioning of neutral lipophilic environmental contaminants into the lipids of the three investigated species will be very similar, although they represent three distinct trophic levels.  相似文献   

6.
This study aimed at assessing the quality of urban soils by integrating chemical and ecotoxicological approaches. Soils from five sites in downtown Naples, Italy, were sampled and characterized for physical-chemical properties and total and water-extractable metal concentrations. Bioassays with Eisenia andrei, Enchytraeus crypticus and Folsomia candida were performed to assess toxicity of the soils, using survival, reproduction and growth as the endpoints. Metal bioaccumulation in the animals was also measured. The properties and metal concentrations of the soils strongly differed. Metal bioaccumulation was related with total metal concentrations in soil and was highest in E. crypticus, which was more sensitive than E. andrei and F. candida. Responses of the three species to the investigated soils seemed due to both metal contamination and soil properties.  相似文献   

7.
A study was conducted in the southeastern region of Buenos Aires province, Argentina, to assess an agricultural soil as a potential source of organochlorine (OC) pesticides for the aquatic biota of a nearby pond. We analyzed gamma-HCH (lindane), still in use, and the following banned compounds: DDT, DDE, DDD heptachlor, heptachlor epoxide, aldrin, dieldrin and endrin in soil, bulrush, grass shrimp and fish using gas chromatography with electron capture detection (GC-ECD). Among the OC pesticides, lindane was most dominant in the soil (32.6 ng/g dry wt in the upper and 173.9 ng/g dry wt in the lower horizon) and bulrush (1.9 pg/g lipid). Macrophyte also accumulated high levels of heptachlor epoxide (1.5 pg/g lipid). Heptachlor, although present in the soil, was below the detection limit in all aquatic biota studied. Its primary degradation product, heptachlor epoxide, was found in both soil and biota samples. DDT was found at low levels in the surface soil (6.8 ng/g dry wt), but at higher concentrations in fish (3.6 pg/g lipid), although levels were still below permissible levels for human consumption. Since most of the compounds were found in both soil and aquatic biota, our study suggests that agricultural soil could be an important source for OC pesticides in the nearby pond.  相似文献   

8.
MacLeod M  Mackay D 《Chemosphere》1999,38(8):1777-1796
Systematic modelling of the fate of benzene and the chlorobenzenes is presented which follows a four-stage process of chemical classification, quantifying discharge rates and environmental concentrations, evaluative assessment of fate and regional mass balance modelling has been carried out for the southern Ontario region. The EQC model was applied to determine the principal transport and transformation processes experienced by this group of chemicals, which vary considerably in volatility and hydrophobicity. Observed environmental concentrations are in satisfactory agreement with the predictions of the steady state Level III ChemCAN model of chemical fate. A multiple pathway human exposure model which estimates intake of contaminants by residents of southern Ontario has been developed and applied to these chemicals. A novel method of deducing maximum tolerable environmental concentrations is presented. Results suggest that benzene and 1,4-dichlorobenzene are present in the environment at levels sufficient to cause exposures near allowable daily intake (ADI) levels for the general population, but the other substances are present at levels which result in exposure ranging from 1/10 to 1/1000 of the ADI.  相似文献   

9.
This is the second of a two-part series describing the sorption kinetics of hydrophobic organic chemicals. Part I “The Use of First-Order Kinetic Multi-Compartment Models” is published in issue 1 of this journal, pp. 21–28. Sorption kinetics of chlorinated benzenes from a natural lake sediment have been investigated in gas-purge desorption experiments. Biphasic desorption curves, with an initial “fast” part and a subsequent “slow” part, were found for all tested chlorobenzenes. From these results first-order sorption uptake and desorption rate constants were calculated with a two-sediment compartment model, which is presented in the first paper. In three sets of experiments the sorption uptake period and sediment/water ratio were varied. Rate constants are not influenced by these experimental conditions, which supports the partitioning concept for the sorption of hydrophobic organic chemicals in sediments.  相似文献   

10.
The dissolution potency of hydrophobic resin acids (RAs), retene and wood sterols from sediments was studied. These wood extractives and their metabolites are sorbed from pulp and paper mill effluents to downstream sediments. With harmful components like these, sediments can pose a hazard to the aquatic environment. Therefore, sediment elutriates with water were produced under variable conditions (agitation rate and efficiency, time), and concentrations of the dissoluted compounds were analyzed. Both naturally contaminated field sediments and artificially spiked sediments were studied. By vigorous agitation RAs can be released fast from the sediment matrix and equilibrium reached within 3 days. Compared to RAs, desorption of retene from lake sediment was slower and did not completely reach equilibrium in 23 days. Sterols spiked to pristine sediment with a 33-day contact time desorbed faster than those associated authentically with industrial sediment of from a contaminated lake. Simulating the water turbulence adjacent to a sediment surface by low and high rate of agitation in the laboratory, an increase in the mixing rate after 43-day elutriation suddenly released a high amount of wood sterols. The results indicate wide variation between hazardous chemicals in their tendency to dissolution from sediment solids. Erosion and hydrology adjacent to the sediment surface, as well as risks from dredging activities of sediments, may expose lake biota to bioactive chemicals.  相似文献   

11.
Halogenated flame retardants have a high sorption affinity to particles, making soils and sediments important sinks. Here, three of the most commonly used flame retardants have been tested for sub-lethal toxicity towards soil nitrifying bacteria, a terrestrial plant (seed emergence and growth of the red clover, Trifolium pratense), and a soil invertebrate (survival and reproduction of Enchytraeus crypticus). Tetrabromobisphenol A (TBBPA) was quite toxic to enchytraeids, with significant effects on reproduction detected already at the 10 mgkg(-1) exposure level (EC(10)=2.7 mgkg(-1)). In contrast, decabromodiphenyl ether (DeBDE) was not toxic at all, and short-chain chloroparaffins (CP(10-13)) only affected soil nitrifying bacteria at the highest test concentration (EC(10)=570 mgkg(-1)). Exposure concentrations were verified by chemical analysis for TBBPA and DeBDE, but not for CP(10-13), as a reliable method was not available. Based on the generated data, a PNEC for soil organisms can be estimated at 0.3 mgkg(-1) for TBBPA and 57 mgkg(-1) for short-chain chloroparaffins. No PNEC could be estimated for DeBDE. Measurements of TBBPA in soil are not available, but measured concentrations in Swedish sludge are all lower than the estimated threshold value for biological effects in soil.  相似文献   

12.
Wilson SC  Meharg AA 《Chemosphere》2003,53(5):583-591
A microcosm system was used to investigate and compare transfers of 14C labeled-1,2-dichlorobenzene (DCB), 1,2,4-trichlorobenzene (TCB) and hexachlorobenzene (HCB) in an air-soil-plant system using single grass tillers planted into spiked soil. This study was the second phase of a development investigation for eventual study of a range of xenobiotic pollutants. Recoveries from the system were excellent at >90%. The predominant loss pathway for 14C labeled-1,2-DCB and 1,2,4-TCB was volatilisation with 85% and 76% volatilisation of parent compound and volatile metabolites over 5 weeks respectively. Most of the added label in the hexachlorobenzene spiked system remained in soil. Mineralisation was <1% for all compounds. 14C plant burdens expressed as microg parent compound/g plant fresh weight were significant and suggest that plant uptake of chlorobenzenes from soil may be an important exposure pathway for grazing herbivores. Both shoot and root uptake of 14C was detected, with foliar uptake of volatilised compounds dominating shoot uptake, and being greatest in TCB spiked systems. The microcosm is shown as potentially an ideal system with which to investigate organic xenobiotic partitioning in air-soil-plant systems to improve understanding of the equilibria and kinetics of exchanges. However, limitations imposed by the lab based conditions must be recognized and data should be compared with field based data sets as a consequence.  相似文献   

13.
Uegaki R  Seike N  Otani T 《Chemosphere》2006,65(9):1537-1543
Uptake of dioxins was confirmed in rice plants. We determined (i) dioxin concentrations and isomer profiles in leaf+stem samples of rice plants grown in three soils with different dioxin concentrations and isomer profiles and (ii) temporal changes in dioxin concentrations and isomer profiles in rice grown in a paddy field on which agricultural chemicals containing dioxin impurities had been used in previous years. Principal-component and chemical mass-balance analyses of the data showed that dioxin concentrations and isomer profiles in the rice grown in the different soils were similar, even though the dioxin concentrations and isomer profiles of the soils were different. However, the dioxin concentrations in the rice were influenced by dioxin levels in the atmospheric gas phase. Changes in dioxin levels during the growing period of the rice were also strongly influenced by adhesion of the soil to plant components during the early stage of growth, but gradually the influence of the atmospheric gas phase became predominant. Calculated dietary uptake estimates indicated that, even in rice grown in Japan on soil contaminated with high concentrations of dioxins, the amount of dioxins ingested by humans from rice is extremely small, and the amount of dioxins ingested by livestock from forage rice is similar to that for other forage crops.  相似文献   

14.
We compared root responses of the Ni-hyperaccumulator plant Berkheya coddii Rossler with the non-accumulator plant Cicer arietinum L. to Ni heterogeneity in soil. We grew plants in growth containers filled with control soil, homogeneously spiked, and heterogeneously spiked soil with Ni concentrations of 62 and 125 mg kg?1. Neutron radiography (NR) was used to observe the root distribution and the obtained images were analysed to reveal the root volumes in the spiked and unspiked segments of the growth container. There was no significant difference in root distribution pattern of B. coddii among different concentrations of Ni. Unlike B. coddii, the roots of C. arietinum initially grew into the spiked segments. However, the later developing roots did not penetrate the spiked segment suggesting an avoidance strategy. Our results indicate that, B. coddii does not forage towards the Ni-rich patches, although presence of Ni in soil changes its root morphology.  相似文献   

15.
Silicone polymers (PDMS = polydimethylsiloxane) are used in numerous consumer and industrial products. Our previous work showed that they will degrade in soil under laboratory conditions. This paper investigates PDMS degradation in the field. Four soil plots (each 2.44 m x 2.44 m) in Michigan were sprayed in May, 1997, with aqueous emulsion to achieve nominal soil PDMS concentrations of 0 (control), 215 (low), 430 (medium), and 860 (high) microg/g. Over the following summer, soil cores (0-5 and 5-10 cm) were collected every two weeks and analyzed for decrease in-total soil PDMS, and decrease in molecular weight of remaining PDMS. PDMS concentrations decreased 50% in 4.5, 5.3, and 9.6 weeks for the low, medium, and high treatments, respectively. Degradation rates were 0.26 (low), 0.44 (medium), and 0.44 (high) g PDMS/m2 day, indicating that degradation capacity of the soil was exceeded by the High treatment. Dimethylsilanediol (DMSD), the main degradation product, was detected in most samples at <5% of original PDMS. This is consistent with laboratory data showing biodegradation and volatilization of DMSD. Deeper sampling (to 20 cm) found only trace amounts of DMSD, and minor downward movement of the polymer. Respraying and subsequent analysis of one plot with a medium treatment in late August showed slow PDMS degradation during the cool, wet fall, followed by a 40% decrease over winter and extensive degradation during the summer of 1998. The study thus shows that PDMS will degrade under field conditions as predicted from laboratory experiments.  相似文献   

16.
Level I and II fugacity approaches were used to model the environmental distribution of benzene, anthracene, phenanthrene, 1-methylphenanthrene and benzo[a]pyrene in a four phase biopile system, accounting for air, water, mineral soil and non-aqueous phase liquid (oil) phase. The non-aqueous phase liquid (NAPL) and soil phases were the dominant partition media for the contaminants in each biopile and the contaminants differed markedly in their individual fugacities. Comparison of three soils with different percentage of organic carbon (% org C) showed that the % org C influenced contaminant partitioning behaviour. While benzene showed an aqueous concentration worthy of note for leachate control during biopiling, other organic chemicals showed that insignificant amount of chemicals leached into the water, greatly reducing the potential extent of groundwater contamination. Level II fugacity model showed that degradation was the dominant removal process except for benzene. In all three biopile systems, the rate of degradation of benzo(a)pyrene was low, requiring more than 12 years for soil concentrations from a spill of about 25 kg (100 mol) to be reduced to a concentration of 0.001 microgg(-1). The removal time of 1-methylphenanthrene and either anthracene or phenanthrene was about 1 and 3 years, respectively. In contrast, benzene showed the highest degradation rate and was removed after 136 days in all biopile systems. Overall, this study confirms the association of risk critical contaminants with the residual saturation in treated soils and reinforces the importance of accounting for the partitioning behaviour of both NAPL and soil phases during the risk assessment of oil-contaminated sites.  相似文献   

17.
We studied the relation of trace element concentrations in soil to those in house mice (Mus musculus), common reed (Phragmites australis) and ladybugs (Coccinella septempunctata at five disposal facilities for dredged material. The sites had a wide range of soil trace element concentrations, acid soils and a depauperate fauna. They were very poor wildlife habitat because they were dominated by the common reed. Bioassay earthworms exposed to surface soils from three of the five sites died, whereas those exposed to four of five soils collected a meter deep survived, presumably because the deeper, unoxidized soil, was not as acid. Concentrations of Ni and Cr in the biota from each of the sites did not seem to be related to the concentrations of the same elements in soil. Although Pb, Zn and Cu concentrations in biota were correlated with those in soil, the range of concentrations in the biota was quite small compared to that in soil. The concentrations of Pb detected in mice were about as high as the concentrations previously reported in control mice from other studies. Mice from the most contaminated site (530 ppm Pb in soil) contained only slightly more Pb (8 ppm dry wt) than did mice (2-6 ppm dry wt) from sites containing much less Pb (22-92 ppm in soil). Despite the acid soil conditions, very little Cd was incorporated into food chains. Rather, Cd was leaching from the surface soil. We concluded that even the relatively high concentrations of trace elements in the acid dredged material studied did not cause high concentrations of trace elements in the biota.  相似文献   

18.
The influence of organic matter and clay contents on headspace solid phase microextraction (HS-SPME) determination of triazine and organophosphorus pesticides in different soils was studied. The results of the study showed that content of soil organic matter dominantly participated in sorption of triazines (simazine, atrazine and prometryn) to soil, while sorption of organophosphorus pesticides (phorate and tebupirimfos) could not be explained only by contents of dominant soil sorption components (soil organic matter and clay). Sorption of all pesticides studied to different soil types was similar at their lower concentrations while the influence of soil composition was expressed at higher concentration levels. Except for phorate, the obtained sorption trends were different from those obtained by direct SPME mode (DM-SPME) and exhaustive liquid-solid extraction (LSE) method. These results indicated that most likely co-extractants from the analyzed medium complicated evaporation and diffusion of the pesticides to the PDMS fiber during HS-SPME sampling.  相似文献   

19.
A pot experiment was conducted to investigate the influence of EDTA on the extractability of Cd in the soil and uptake of Cd by Indian mustard (Brassica juncea). Twenty levels of soil Cd concentration ranging from 10 to 200 mg kg(-1) were produced by spiking aliquots of a clay loam paddy soil with Cd(NO3)2. One week before the plants were harvested EDTA was applied to pots in which the soil had been spiked with 20, 40, 60...200 mg Cd kg(-1). The EDTA was added at the rate calculated to complex with all of the Cd added at the 200 mg kg(-1) level. Control pots spiked with 10, 30, 50... 190 mg Cd kg(-1) received no EDTA. The plants were harvested after 42 days' growth. Soil water- and NH4NO3-extractable Cd fractions increased rapidly following EDTA application. Root Cd concentrations decreased after EDTA application, but shoot concentrations increased when the soil Cd levels were >130 mg kg(-1) and Cd toxicity symptoms were observed. The increases in soil solution Cd induced by EDTA did not increase plant total Cd uptake but appeared to stimulate the translocation of the metal from roots to shoots when the plants appeared to be under Cd toxicity stress. The results are discussed in relation to the possible mechanisms by which EDTA may change the solubility and bioavailability of Cd in the soil and the potential for plant uptake and environmental risk due to leaching losses to groundwater.  相似文献   

20.
《Chemosphere》1987,16(5):953-962
Uptake rate constants of 10 chloroanisoles by fish are comparable to those of other hydrophobic chemicals. Since fast elimination is found for all congeners the resulting bioconcentration factors are lower than those predicted from their hydrophobicities. Elimination is mainly due to metabolism at the ether bond and the rate constants are independent of hydrophobicity. The presence of the ether bonds does not influence the octan-1-ol/water partition coefficient of the chlorinated aromatic hydrocarbons significantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号