首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
To meet the increasing need for practical life-cycle thinking in manufacturing, this paper proposes a method that includes the life-cycle perspective in manufacturing decision making. This method combines discrete-event simulation (DES) – commonly used for the conceptual evaluation of manufacturing systems – with life-cycle assessment (LCA). This combination captures the dynamic interrelationships between manufacturing processes in order to analyse systemic responses to configuration changes, something static LCA modelling cannot do. The method evolved when a bearing production line at SKF was being examined to relate manufacturing decision making to environmental consequences. This was done using DES to investigate how parameters normally used to optimize traditional manufacturing system performance influence energy use and material losses in manufacturing systems. The environmental consequences of this material loss and energy use are further calculated using LCA methodology. Results indicate that while the combination of the two methods increases the data collection workload, it uncovers previously hidden environmental consequences of manufacturing decision making and introduces a way to assess an industrial actor’s manufacturing system using relevant LCA scenarios.  相似文献   

2.
The increasing use of recycled materials in asphalt pavements calls for environmental assessment of such impacts as the energy input and CO2 footprint. Life cycle assessment (LCA) is being accepted by the road industry for such purpose. It aims to quantify and collate all the environmental impacts from the life time of the product or process. This paper reviews relevant LCA resources worldwide, identifies the knowledge gap for the road industry, and describes the development of an LCA model for pavement construction and maintenance that accommodates recycling and up-to-date research findings. Details are provided of both the methodology and data acquisition. This is followed by a discussion of the challenges of applying LCA to the pavement construction practice, and recommendations for further work. In the case study, the model is applied to an asphalt paving project at London Heathrow Terminal-5 (LHR), in which natural aggregates were replaced with waste glass, incinerator bottom ash (IBA) and recycled asphalt pavements (RAP). Production of hot mix asphalt and bitumen was found to represent the energy intensive processes. This is followed by data analysis and sensitivity check. Further development of the model includes expanding the database to accommodate the recycling and maintenance practice in the UK, and taking into account the effect that roadwork has on traffic emissions. The LCA model can be further tested and calibrated as a decision support tool for sustainable construction in the road industry.  相似文献   

3.
Modern industrial environmental management encompasses life-cycle thinking. This entails considering not only the emissions and resource use of the company’s production processes, but also the environmental consequences of all processes related to a product’s life cycle. However, no single actor can influence the whole life cycle of a product. To be effective, analysis methods intended to support improvement actions should therefore also consider the decision makers’ power to influence.Regarding the life cycle of a product, there are at least as many perspectives on life-cycle thinking as there are actors. This paper presents an approach with which manufacturing decision makers can sharpen the focus in life-cycle assessment (LCA) from a conventional ‘products or services’ emphasis to a company’s manufacturing processes. The method has been developed by combining knowledge gained from earlier LCA studies with new empirical findings from an LCA study of an SKF manufacturing line.We demonstrate how system boundaries and functional units in an LCA can be defined when adding the perspective of a manufacturing decision maker to the product life-cycle perspective. Such analysis helps manufacturing decision makers identify improvement potentials in their spheres of influence, by focusing on the environmental consequences of energy and material losses in manufacturing rather than merely accounting for the contributions of individual stages of the life cycle to the overall environmental impact. The method identifies and directly relates the environmental consequences of emissions or raw material inputs in the product life cycle to manufacturing processes. In doing so, the holistic systems perspective in LCA is somewhat diminished in favor of the relevance of results to manufacturing decision makers.  相似文献   

4.
This paper presents the findings of a life cycle assessment (LCA) of electricity generated from the combustion of sugar cane bagasse in Mauritian sugar mills. The study arose from the identification of the need for to provide data for the development of an LCA profile for the electricity mix in Mauritius. The system is limited geographically to the island of Mauritius and is intended to be the representative of current agricultural techniques practiced and current manufacturing processes used by Mauritian sugar mills. The unit operations that make up the system are the growing and harvesting of sugar cane, the transport of the harvested cane to sugar mills, the production of bagasse as a by-product from the sugar milling process, and the combustion of bagasse to generate heat and electricity. The functional unit of the study is the generation of 1 GWh of electricity exported to the national electricity grid. The characterised data for 1 GWh of bagasse-derived electricity were compared with data for 1 GWh of coal-derived electricity, using the same set of characterisation factors. The results of this comparison indicate that bagasse-derived electricity performs well in the areas of greenhouse gas emissions, acidification, and non-renewable energy inputs, but performs poorly in relation to water consumption and eutrophication.  相似文献   

5.
The present study analyses the different processes followed during color TV set production along with the energy consumption and the environment emissions in each stage. The purpose is to identify “hot-spots”, i.e. parts of the life cycle important to the total environmental impact. The analysis is performed using life cycle assessment (LCA) methodology, which is a method used to identify and quantify in the environmental performance of a process or a product from “cradle to grave”. LCA methodology provides a quantitative basis for assessing potential improvements in the environmental performance of a system throughout the life cycle. The system investigated includes the production of manufacturing materials, transport of manufacturing materials, color TV set manufacturing, transport of color TV sets, use of color TV sets, discarding color TV sets and partial plastic waste energy utilization. The environmental burdens that arise from color TV sets are mainly due to air emissions derived from fossil fuel utilization.  相似文献   

6.
生命周期评价(Life cycle assessment, LCA)随着其评价对象不断复杂化、系统化,逐渐发展出包含基于清单分析的过程生命周期评价(Process-based LCA, PLCA)、投入产出的生命周期评价(Economic input-output LCA, EIO-LCA)和混合生命周期评价(Hybrid LCA, HLCA)三种方法。论文简述了各类LCA方法的发展过程和特征,并结合实例分析了各自的优势与不足。结果认为:自下而上的PLCA方法针对性较好,其评价结果较为详细,但由于主观边界设定,核算结果存在无法避免的截断误差;自上而下的EIO-LCA方法采用投入产出表进行评价,边界为整个国民经济系统,但存在部门聚合、数据滞后等问题;HLCA结合PLCA与EIO-LCA两种方法,既保持了结果的精准性,又消除了截断误差。研究最后总结并提出未来HLCA的发展方向,以期为LCA方法的进一步发展提供参考。  相似文献   

7.
Major computer and software companies, along with governments and philanthropic organizations have embarked on ambitious plans to put computers in the hands of more than one billion new computer users over the next five to six years in untapped markets in emerging economies. The most frequently proposed solution to overcome the electricity shortfall in communities where new computer users will be located is to use rechargeable lead-acid batteries to provide primary and back-up power for computers. This paper calculates the lead emissions from battery manufacturing and recycling that will result if independent market projections to greatly expand the number, geographic, and socioeconomic distribution of computer users are realized. By examining several possible scenarios, we estimate that between 1250 and 2300 kt of lead – between four and seven times the weight of the Empire State Building – could be released into the environment in the developing world to provide power to computers sold through 2015. Increased lead exposure has a negative impact on children's neurological development as measured by reduced school performance and on standardized tests. In order to realize the educational achievement and economic development benefits of reducing the “digital divide” proponents will need to encourage improvements in lead battery production and recycling in targeted markets.  相似文献   

8.
This paper presents environmental impact of a fluorescent lamp (a long straight tube 36 watts, 200 g and 13,600 h for mean time before failure) when considering different disposal methods (recycle and non-recycle) of its spent fluorescent lamp (SFL). The study was applied for the case in Thailand using life cycle assessment (LCA) as a tool. All materials, energy use, and pollutant emissions to the environment from each related process were identified and analyzed. Impact assessment was conducted for 10 environmental impact potentials: carcinogens, respiratory organics, respiratory inorganics, climate change, radiation, ozone layer, ecotoxicity, acidification/eutrophication, land use and minerals. The analysis followed Eco-Indicator 99 method, individualist version 2.1. The main focus of the study was to compare the impact of SFL recycling with non-recycling before landfilling. The impact intermittent activities, production of raw material and energy used in all the concerned processes were taken into account. However, transportation activities were excluded. The results showed that for all recycling rates, cement production is the main contributor to the environmental impacts, while sodium sulfide production is second and electrical production, the third. Mercury vapor emission showed a small contribution in carcinogens and ecotoxicity. The impacts are reduced when recycling rate is increased. The reduction of cement consumption in disposal processes or the process improvement of cement production may also help to reduce environmental impacts.  相似文献   

9.
This paper aims to evaluate the environmental burdens associated with spray dried soluble coffee over its entire life cycle and compare it with drip filter coffee and capsule espresso coffee. It particularly aims to identify critical environmental issues and responsibilities along the whole life cycle chain of spray dried coffee. This life cycle assessment (LCA) specifically uses foreground data obtained directly from coffee manufacturers and suppliers. Aside from energy consumption and greenhouse gases emissions, water footprint is also studied in detail, including regionalization of water impacts based on the ecological scarcity method 2006. Other impact categories are screened using the IMPACT 2002+ impact assessment method.The overall LCA results for a 1 dl cup of spray dried soluble coffee amounts approximately to 1 MJ of primary non-renewable energy consumption, to emissions of 0.07 kg of CO2-eq, and between 3 and 10 l of non-turbined water use, depending on whether or not the coffee cultivation is irrigated and wet treated. When considering turbined water, use can be up to 400 l of water per cup. Pouch – and to a lesser extent metal can packaging alternatives – show lower environmental burdens than glass or sticks.On average, about one half of the environmental footprint occurs at a life cycle stage under the control of the coffee producer or its suppliers (i.e., during cultivation, treatment, processing, packaging up to distribution, along with advertising) and the other half at a stage controlled by the user (shopping, appliances manufacturing, use and waste disposal). Key environmental parameters of spray dried soluble coffee are the amount of extra water boiled and the efficiency of cup cleaning during use phase, whether the coffee is irrigated or not, as well as the type and amount of fertilizer used in the coffee field. The packaging contributes to 10% of the overall life cycle impacts.Compared to other coffee alternatives, spray dried soluble coffee uses less energy and has a lower environmental footprint than capsule espresso coffee or drip filter coffee, the latter having the highest environmental impacts on a per cup basis. This study shows that a broad LCA approach is needed to help industry to minimize the environmental burdens directly related to their products. Including all processes of the entire system is necessary i) to get a comprehensive environmental footprint of the product system with respect to sustainable production and consumption, ii) to share stakeholders responsibility along the entire product life cycle, and iii) to avoid problem shifting between different life cycle stages.  相似文献   

10.
《Journal of Cleaner Production》2005,13(13-14):1281-1294
Final impact results from an industry-wide environmental life-cycle assessment of cathode ray tube (CRT) and liquid crystal display (LCD) computer monitors are presented for 20 environmental impact categories. Considering the entire life cycle of each monitor, water eutrophication and aquatic ecotoxicity impacts for the baseline analysis were greater for the LCD while all other impact categories (e.g., resource use, energy, ozone depletion, landfill space use, human health toxicity) were greater for the CRT. Energy inputs from CRT glass manufacturing, for which there was some uncertainty in the data, drive many of the CRT impacts. Modifying the glass energy data based on comparison to secondary data resulted in nine of the 20 impact categories having greater relative life-cycle impacts for the LCD than the CRT. When comparing the manufacturing stages of each monitor type in the baseline scenario, the LCD has greater relative burdens on the environment in eight categories. Energy, global warming, and human health toxicity impacts are also presented in greater detail, showing contributions from each life-cycle stage. This study's results can allow industry to focus on frit manufacturing, PWB manufacturingimprovements can be made.  相似文献   

11.
Some emerging technologies are expected to be pivotal for solving many of the environmental challenges faced today, especially those related to energy. However, many of these technologies may incur significant environmental impacts over their life cycle, while having environmental benefits during their use. This paper presents results of a Life Cycle Assessment (LCA) of a proposed type of nanophotovoltaic, quantum dot photovoltaic (QDPV) module. The LCA is confined to the stages of raw materials acquisition, manufacturing, and use. The impacts of QDPV are compared with other types of PV modules and energy sources - both renewable and nonrenewable. To provide a comprehensive comparative assessment, QDPV modules were compared with mature as well as emerging PV types for which data are available. Comparative assessment with other types of energy sources includes coal, oil, lignite, natural gas, diesel, nuclear, wind, and hydropower.QDPV modules may have the potential to overcome two current barriers of solar technology: low efficiencies and high manufacturing costs. If higher efficiencies are realized, QDPV modules could pave the way to large scale implementation of solar energy, helping nations move toward greater energy independence. On the other hand, candidate materials as quantum dots for solar cell applications are mostly compound semiconductors such as cadmium selenide, cadmium telluride, and lead sulfide which may be toxic and for which renewable options are limited. Toxic effects of these materials may be exacerbated by their nanoscale features.The LCA was carried out using the software SimaPro, and the Ecoinvent Life Cycle Inventory (LCI) database supplemented with available literature and patent information. Our results indicate that while QDPV modules have shorter Energy PayBack Time (EPBT), lower Global Warming Potential (GWP), SOx and NOx emissions than other types of PV modules, they have higher heavy metal emissions, underscoring the need for investigation of emerging technologies, especially nano-based ones, from a life cycle perspective. QDPV modules are better in all impact categories assessed than carbon-based energy sources but they have longer EPBT than wind and hydropower and higher GWP.  相似文献   

12.
基于不确定度和敏感度分析的LCA数据质量评估与控制方法   总被引:6,自引:1,他引:5  
通过提出定量评估并控制LCA数据质量的系统化方法(称为CLCD-Q方法),从LCA案例的原始数据和清单数据算法开始评估不确定度;然后通过两次蒙特卡罗模拟,先后得出单元过程清单数据及LCA结果的不确定度;最后结合敏感度分析,辨识出LCA模型中具有高不确定度和高敏感度的关键数据,从而指出控制和改进数据质量的关键点.结果发现,上述方法可在eBalance软件和CLCD数据库中实现.同时,对中国电网电力生命周期的示例研究表明,上述方法将传统的LCA数据质量评估延伸到了原始数据层面,从而为数据收集过程中的原始数据与算法选择提供了直接的支持,同时也可以针对数据质量不达标的LCA结果,指出最有效的改进方向.  相似文献   

13.
The main aim of the study was to explore how LCA can be used to optimize the design of lithium-ion batteries for plug-in hybrid electric vehicles. Two lithium-ion batteries, both based on lithium iron phosphate, but using different solvents during cell manufacturing, were studied by means of life cycle assessment, LCA. The general conclusions are limited to results showing robustness against variation in critical data. The study showed that it is environmentally preferable to use water as a solvent instead of N-methyl-2-pyrrolidone, NMP, in the slurry for casting the cathode and anode of lithium-ion batteries. Recent years’ improvements in battery technology, especially related to cycle life, have decreased production phase environmental impacts almost to the level of use phase impacts. In the use phase, environmental impacts related to internal battery efficiency are two to six times larger than the impact from losses due to battery weight in plug-in hybrid electric vehicles, assuming 90% internal battery efficiency. Thus, internal battery efficiency is a very important parameter; at least as important as battery weight. Areas, in which data is missing or inadequate and the environmental impact is or may be significant, include: production of binders, production of lithium salts, cell manufacturing and assembly, the relationship between weight of vehicle and vehicle energy consumption, information about internal battery efficiency and recycling of lithium-ion batteries based on lithium iron phosphate.  相似文献   

14.
LCAs (life cycle assessments) are often based on average data to produce a generic evaluation of a good or service. However, ignoring variability and induced uncertainty of LCA results reduces their significance, especially when dealing with agricultural processes that present high natural fluctuations. The objective of the study was to explore the robustness of LCA results when accounting for variable emissions data, illustrated by the case of slurry application techniques. Four application techniques were compared: band spreading, broadcast spreading, harrowing after surface application and direct injection.On the basis of the normalisation results, acidification, eutrophication and global warming potentials were selected. To estimate field nitrogen emissions, an original approach was developed based on relative nitrogen loss factors for each technique from a literature review. The calculated field emissions from different soil and climate conditions were considered equally probable and were propagated into a range of LCA result using the Monte Carlo method. Injection and harrowing both showed reduced acidification and eutrophication potentials compared to band spreading and broadcast spreading but had larger global warming potentials, which could be particularly important with injection. Harrowing consequently appeared as the best compromise. Despite the large range of LCA results, robust conclusions could be drawn. To achieve a more refined comparison between the techniques, the use of process-based models in contrasted situations is suggested.  相似文献   

15.
中国工业过程大气铅排放特征   总被引:2,自引:1,他引:1  
依据典型行业活动水平数据和排放因子,采用"自下而上"排放因子法构建了2000—2010年我国有色金属冶炼、钢铁冶炼、建筑材料生产和铅酸电池生产等工业生产过程大气铅(Pb)排放清单.结果显示,我国工业过程大气Pb排放呈逐年递增趋势,年均增长率为12.5%,2010年排放量高达14920.47t;有色金属冶炼过程为大气Pb的主要来源,比重高达66.7%,其中,铅冶炼过程对整个工业过程的Pb排放贡献达到29.0%.钢铁烧结过程大气Pb排放仅次于有色金属冶炼过程,排放贡献率达23.1%,其排放主要来源于粗钢冶炼.另外,由于产业集中度低和控制技术相对落后,导致建材生产行业和铅酸电池生产过程排放对周边的环境影响也不容忽视.受矿产资源分布不均及产业布局等因素影响,我国工业过程大气Pb排放地区分布差异明显,主要集中在湖南、河南、云南、河北和江西等省份.  相似文献   

16.
When evaluating the environmental impacts of finfish production systems, both regional impacts (e.g., eutrophication) and global impacts (e.g., climate change) should be taken into account. The life cycle assessment (LCA) method is well suited for this purpose. Three fish farms that represent contrasting intensive production systems were investigated using LCA: rainbow trout (Oncorhynchus mykiss) in freshwater raceways in France, sea-bass (Dicentrarchus labrax) in sea cages in Greece, and turbot (Scophtalmus maximus) in an inland re-circulating system close to the seashore in France. Two main characteristics differentiated the three farm systems: feed use and energy use. Emission of nitrogen and phosphorus accounted for more than 90% of each farm's potential eutrophication impact. In the trout and sea-bass systems, feed production was the major contributor to potential climate change and acidification impacts and net primary production use (NPPU). In these systems, the main source of variation for environmental impacts was the feed conversion ratio. Results from this study indicate that the sea-bass cage system was less efficient than the trout raceway system, with a higher level of potential eutrophication (65% greater) and NPPU (15% greater). The turbot re-circulating system was a high energy-consumer compared to the trout raceway system (four times higher) and the sea-bass cage system (five times higher). Potential climate change and acidification impacts were largely influenced by energy consumption in the turbot re-circulating system. In the turbot re-circulating system 86% of energy use was due to on-site consumption, while in the sea-bass cage farming system 72% of energy use was due to feed production. These results are discussed in relation to regional contexts of production and focus attention on the sensitivity of each aquatic environment and the use of energy carriers.  相似文献   

17.
《Journal of Cleaner Production》2006,14(12-13):1057-1070
It is common practise in mining Life Cycle Assessment (LCA) studies to use a predefined set of data to represent mining production systems. Besides this, very little is added to improve data quality, and essential mining process details which affect the ultimate environmental impacts is rarely taken into account. Some significant omissions include exploration and development work, mining method used, production, ore losses, location and the mining/processing method dependent factors that govern the nature of discharges to the environment. The mining system is often represented as a black-box, not lending itself to the interpretation of different processes used in minerals production. The generic data used are often inadequate for a mining LCA, and cannot be used as an accurate account of mining environmental burdens contributing to more complex systems “down-stream”, such as metals, building, chemical or food industries. Therefore, the main objective of the mining LCA model presented in this paper was to develop a tool that is able to represent the mining system in a comprehensive way. To attain this objective, the mining system was studied in more detail, as it is commonly practised during mine feasibility and design stages. It (LICYMIN) was developed as part of an international research project led by Imperial College London. The model integrates the mine production, processing, waste treatment and disposal, rehabilitation and aftercare stages of a mine's life within an LCA framework. The development work was carried out in collaboration with several industrial partners in Europe, including Bakonyi Bauxitbánya Kft. in Hungary. The model structure, database development and examples of field applications from industrial sites are presented.  相似文献   

18.
An option for the agriculture and energy sectors in Chile is the cultivation of energy crops, but environmental studies are first needed in the framework of a sustainable national energy policy.In this study, we used a cradle-to-farm gate Life Cycle Assessment (LCA) to compare environmental impacts and energy and water demand of rapeseed (Brassica napus L.) and sunflower (Helianthus annuus L.) in Chile, as potential oleaginous crops for first-generation biodiesel production. National agricultural data are used for the LCA inventory and process data of international databases are adapted to local conditions. The effect of field N2O emissions and land use change is evaluated. The results indicate that, compared to sunflower, rapeseed production has a better environmental performance in 9 out of the 11 impact categories evaluated, and lower water consumption. The energy demand of rapeseed is 4.9 GJ/t seed, 30% less than that of sunflower. Mineral fertilizers cause the highest environmental impact in both crops. The analysis of the life cycle of fertilizers indicates that extraction of raw materials and its production are key stages. Attempts to reduce the environmental impact and energy requirement of both crops should be mainly associated with the evaluation of other types of fertilization. In addition, particularly for sunflower, low impact herbicides should be evaluated, seed yield improved and cultivation practices optimized. If the crops are produced on degraded grasslands, the greenhouse gas emissions may be reduced.  相似文献   

19.
20.
“Cradle to gate” life cycle analysis (LCA) has been used to evaluate the consumption of raw materials and emissions of pollutants from olive oil production in Lythrodontas region in Cyprus, in order to identify the processes which give rise to the most significant environmental burdens. The system investigated includes the production of the chemical inputs used (fertilisers and pesticides), agricultural processes, the industrial processing and the transportation and waste management associated with olive oil production. Raw material and energy use as well as emissions were quantified on the basis of a functional unit of 1 l of extra virgin olive oil. The production of the inorganic fertilisers used in the agricultural stage of olive oil production and the disposal of liquid effluent from olive mills to evaporation ponds were found to be “hot-spot” processes not only in terms of resource consumption but also in terms of emissions into the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号