首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The periodicity of striae formation in the tropical scallop Comptopallium radula (Indo-West Pacific Ocean) was investigated with an in situ marking technique, using the calcein fluorochrome. To minimize scallop stress caused by excessive handling, in situ benthic chambers were used for marking experiments. Once marked, scallops (shell height range: 38.4–75.8 mm) remained on site in a large benthic enclosure and were collected at regular time intervals to count new striae formed after marking, over a period of 3 months. A 3-h exposure period with calcein (150 mg l−1) was sufficiently long to create a detectable mark in nearly all shells. It was, however, impossible to count the striae in 48.2% of the shells (mainly large specimens) because of a very small growth after marking. Lack of significant mortality during the experiments indicated that tested calcein concentrations were not lethal. A decrease in shell growth rate was observed after marking but the respective impacts of calcein toxicity and changes in environmental conditions could not be discriminated. Our results suggest that in situ calcein marking inside benthic chambers is suitable for shell growth studies of scallops, provided the latter are not too old. After marking, the juvenile C. radula formed an average of one stria every 2.1 days in summer. Reports of 2-day periodicity in biological rhythms are rare. Striae formation in C. radula may be controlled by an endogenous oscillator, synchronized by an environmental cue acting as a zeitgeber, such as seawater temperature or sea level pressure, both of which exhibit 2-day variations in the Pacific Ocean. As in many other scallop species, C. radula forms striae periodically under natural conditions, but this study shows that in pectinid juveniles, this periodicity can deviate from a daily cycle. These results suggest that C. radula shells have tremendous potential for recording environmental conditions during periods ranging from months to a few years and with a resolution of 2 days.  相似文献   

2.
This study assesses the potential of the fluorochrome calcein for use as a growth marker in bivalve shell growth studies. Calcein solutions were administered in situ to the brown mussel Perna perna (Linneaus), both by injection and immersion, and the effect of calcein concentrations on fluorescent mark deposition and mussel mortality was investigated in the laboratory. Field investigations showed that, 1 month after administration, calcein injection (125 mg l−l) into the mantle cavity produced superior results to the immersion treatments (150 and 500 mg l−l). Both methods resulted in fluorescent mark incorporation at the growing edge, but during immersion general calcein deposition associated with endolith activity resulted in fluorescence that made identification of a distinct datum point difficult. In contrast, the injection method produced clearly defined growth marks, which were easily distinguished from autofluorescence and persisted without visible degradation for a minimum of 9 months. Shell growth rates estimated using the fluorescent mark as a datum point were similar to those from earlier studies using different methods. Laboratory investigations revealed that at␣calcein concentrations of 80 mg l−l and above, 100% of juvenile (20 to 30 mm) and adult mussels (60 to 70 mm) retained a visible growth mark, while at concentrations >160 mg l−l all marks were bright and clearly defined. No mussel mortality was exhibited at any time, even at calcein concentrations of 640 mg l−l, eight times higher than those required for mark deposition. These results suggest that, compared to traditional methods of bivalve growth determination, the use of fluorochromes presents a relatively inexpensive, non-invasive and rapid alternative. When using calcein as a growth marker, problems associated with some other fluorochromes (e.g. inconsistent mark incorporation, high post-treatment mortality) were not exhibited. Received: 14 July 1998 / Accepted: 23 October 1998  相似文献   

3.
Validation of otolith growth-increment periodicity in tropical gobies   总被引:2,自引:0,他引:2  
 We assessed the efficacy of tetracycline, calcein and strontium chloride for validating the periodicity of otolith growth-increments in eight species of tropical marine gobies (family Gobiidae). We compared the number of fishes in which the otoliths were successfully marked when each of these chemicals was administered by intraperitoneal injection or immersion bath at a range of doses and immersion times. All three chemicals could produce a detectable mark in the otoliths of five reef-flat gobies, Asterropteryx semipunctatus, Amblygobius bynoensis, Istigobius goldmanni, Valenciennea muralis and Amblygobius phalaena; however, tetracycline injection at 50 mg kg−1 is recommended because it produced a brighter otolith mark than calcein and is cheaper and quicker to detect than strontium chloride. Calcein immersion treatment of 125 mg l−1 for 24 h was the most successful treatment for two estuarine gobiids, Favonigobius reichei and Glossogobius biocellatus. No treatment produced a detectable mark in the otoliths of the coral-dwelling goby Gobiodon histrio. Adequate care in the preparation of otoliths was found to be essential for detection of the validation mark produced by tetracycline and calcein. Otolith growth-increments were deposited daily in the seven species of goby for which validation was possible. Received: 15 October 1999 / Accepted: 15 June 2000  相似文献   

4.
Animals that bore into calcareous material can cause considerable damage to molluscan shells. In contrast, smaller microbial phototrophic endoliths have until recently been thought of as relatively benign. Phototrophic endoliths (primarily cyanobacteria) infest the shells of 50 to 80% of midshore populations of the mussel Perna perna (L.) in South Africa. This infestation causes clearly visible shell degradation, and we record here ecologically important lethal and sub-lethal effects (e.g. changes in growth and reproductive output) of the endoliths on their mussel hosts. Endolith infestation reduced the strength of shells significantly and also affected shell growth. In situ marking of shells, using the fluorochrome calcein, showed that infested and non-infested mussels increased in shell length at the same rate. However, the rate of increase in shell thickness (associated with shell repair) was significantly faster in infested than in uninfested individuals. This increase in the rate of shell thickening was not sufficient to compensate for rapid endolith-induced shell degradation and, around the site of adductor muscle attachment, infested shells were thinner than their uninfested counterparts. The shells of 18% of recently dead mussels had holes induced by endolith erosion. This effect was highly size dependent, and the proportion of mortality due to endoliths rose to almost 50% for the largest mussels. The re-routing of energy due to shell repair had important sub-lethal effects on the reproductive rates of mussels. During the reproductive period, mean dried flesh mass for large (>70 mm), non-infested P. perna was substantially higher than for infested individuals. This difference was almost entirely due to differences in gonad mass, which was approximately 100% higher for non-infested mussels. We conclude that, by attacking the shell, phototrophic endoliths reduce both the longevity and reproductive output of large mussels on the midshore. Received: 26 January 1999 / Accepted: 17 August 1999  相似文献   

5.
Shelled molluscs frequently exhibit a record of damage on exterior surfaces that can evidence past predation attempts and may affect survival and growth. In South Carolina populations of the ribbed marsh mussel, Geukensia demissa, >90% of the individuals and up to 60% of the total shell area are damaged. A trend toward greater amounts of damage occurred on mid-marsh compared to oyster reef mussels from the barrier beach side of inlets. Shell damage effects on survivorship and shell and tissue growth were assessed seasonally during multi- and single-season field experiments. Mussels from a common mid-marsh site were divided into size classes (~50 or 70 mm), treated to create two damage levels (undamaged and damaged), and replaced within mid-marsh exclusion cages to minimize additional shell damage. In both multi- and single-season experiments increased shell damage resulted in significantly greater mortality. Linear shell growth was unaffected by increased damage, but 50 mm mussels grew twice as fast. Shell mass increased 16–50% in the multi-season and single-season winter period, but decreased 7–12% during the single-season summer period. Tissue mass significantly decreased 31–43% in 50 mm damaged mussels, but increased by 33% for 70 mm mussels in both multi-season and the single-season winter period experiments. Shell damage did reduce tissue mass 43% in 70 mm single-season summer mussels. Experimental results indicate shell damage from a simulated increase in predation can affect negatively both survival and growth of marsh mussels. Seasonal timing of shell damage and initial mussel size also influenced the effects of sublethal predation on shell and tissue growth. The previously unrecognized importance of sublethal predation and the resultant significant negative effects of shell damage on survival and growth will affect the distribution and population dynamics of G. demissa in coastal marshes and will influence the overall contribution of ribbed mussels to estuarine ecosystems.  相似文献   

6.
Scent-marking in mammals has been frequently related to within-group social and reproductive dominance and to defense of territory and resources. We studied the scent-marking behavior of five wild groups of common marmosets, Callithrix jacchus, during 5 months of the fruiting season in northeastern Brazil. Circumgenital marking was the most common type of marking. Marks were distributed throughout the home range and were deposited mainly during travel and intergroup encounters. Although marks were commonly deposited at gum trees, there was no evidence that the animals used scent marks to label fruiting trees or sleeping sites. Contrary to expectations, reproductively dominant females did not mark more than reproductively subordinate females. Moreover, during intergroup encounters, reproductively subordinate females displayed higher frequencies of scent-marking than the reproductively dominant females of their group. Our results suggest that scent-marking is not strictly tied to reproductive dominance or territorial (or resource) defense in common marmosets. Because marks provide information about individual identity and reproductive condition, scent marks could serve different functions when used by different individuals. The high frequency of marking by reproductively subordinate females during intergroup encounters suggests that scent-marking might be used to signal to individuals of neighboring groups. Our data highlight the importance of social and ecological variables in scent-marking behavior. Received: 26 October 1998 / Received in revised form: 20 May 1999 / Accepted: 30 May 1999  相似文献   

7.
The calcitic and aragonitic shell of the fan mussel Pinna nobilis L. contains a record of the environmental changes experienced during its growth. Stable-isotope analyses of oxygen (18O:16O) in shell carbonate from the calcitic outer shell-layer have been used to validate the periodicity of clearly defined concentric rings on the aragonitic posterior adductor-muscle scar and to estimate the age and growth of fan mussels growing in Posidonia oceanica (L.) meadows at four locations on the south-east Spanish Mediterranean coast. The stable oxygen-isotope records obtained at intervals along a profile across the shell surface enabled seasonal changes in water temperature to be established, and hence seasonal patterns of shell growth to be inferred. Muscle-scar rings were found to be deposited annually in the shell in the spring and early summer (a period of increasing water temperatures), and represent an interruption in the migration of the posterior adductor muscle along the inner surface of the shell. In small pinnids (<25 cm) accretion of the shell is rapid during the first year, but in the second year it is distinctly slower than at the same time the previous year. This slowing down in growth during the second year coincides with the appearance of the “first” distinct muscle-scar ring, indicating that Pinna nobilis does not form a muscle-scar ring during its first year of shell growth. Maximum growth rates were recorded amongst pinnids from Carboneras, where they achieved a length of 59 cm in 8 yr, whilst those from Aguamarga were estimated to be the oldest (attaining a length of 45 cm in 13 yr). Received: 26 January 1998 / Accepted: 8 October 1998  相似文献   

8.
K. Yamaguchi 《Marine Biology》1998,132(4):651-661
The mobility of Anomia chinensis Philippi was studied in relation to its byssal development stage. This species shows high mobility even after it begins cementation in its post-larval stage. Juveniles develop a calcified byssus in the post-larval stage and cement to substrata. However, juveniles up to about 10 mm in shell length can relocate by repeating a sequence of formation of the calcified byssus, abandonment of it, locomotion by crawling, reattachment, and recementation. Juvenile anomiids up to 25 mm in shell length also can move, without breaking their byssal attachments, by shifting the center of byssal calcification dorsally. Even an adult can change its orientation by forming a twisted byssus. These possible methods of movement are closely related to five stages of byssal development. Anomiids can use this mobility to seek a preferable position for attachment after initial cementation, or to adjust their orientation, and thus promote higher survivorship. Received: 18 August 1997 / Accepted: 19 July 1998  相似文献   

9.
Abstract: Marking animals so that they are uniquely identifiable provides information that may assist conservation efforts. Nevertheless, some methods used to mark animals can be harmful. We used mathematical methods to assess the trade‐off between the impact of marking threatened species and the value of the information gained. We considered the case where 2 management strategies, each aiming to improve a species' survival rate, are implemented in an experimental phase. The results of the experiment were applied in a postexperimental management phase. We expressed the expected number of survivors in both phases mathematically, accounting for any mortality caused by the experiment, and determined the proportion of animals to mark to maximize this number. The optimal number of animals to mark increased with the number of individuals available for the experiment and with the number of individuals to be managed in the future. The optimal solution was to mark only 25% of the animals when there were 1000 individuals available for the experiment, the results were used to manage 2000 individuals, and marking caused mortality of 1%. Fewer animals were marked when there were fewer animals in either phase or when marking caused higher mortality. In the case of the Helmeted Honeyeater (Lichenostomus melanops cassidix), the optimal proportion to mark was <1 if the mortality rate was >0.15%–1%, with the threshold depending on the number of animals in the experimental and postexperimental phases. The trade‐off between gaining more information about a species and possibly harming individuals of that species by marking them is difficult to assess subjectively. We show how to determine objectively the optimal proportion of animals to mark to enhance the management of threatened species.  相似文献   

10.
Experiments were conducted to determine the effect of four algal diets (Corallina spp., Gelidium pristoides, Ulva rigida and an equal volume mixture of these seaweeds) on growth and reproduction of the South African gastropod Turbo sarmaticus Linnaeus, 1758. The best growth rate of juveniles (up to 13.8 mm shell length and 34.26 g wet body weight increase in 12 months), reproductive fitness of mature specimens (gonad index up to 33%) and energy reserves (up to 4.76 mg glycogen/100 mg foot tissue) were achieved when T. sarmaticus was fed U. rigida or a mixed diet. In addition, the gonad index of individuals fed these diets was almost twice that of similar-sized field specimens. Juveniles fed Corallina spp. only, grew very little (only 2.4 mm shell length and 4.23 g wet body weight increase in 12 months). The reproductive fitness of adults fed on such a diet was also poor (gonad index <4.5%) and energy reserves were low (<3.5 mg glycogen/100 mg foot tissue). Along the southeastern coast of South Africa, T. sarmaticus has a distinct reproductive cycle with gametogenesis occurring from March/April until August/September, whilst maturity (gonad index = 15%) was maintained until December, after which spawning occurred until March. Received: 6 July 1998 / Accepted: 8 March 1999  相似文献   

11.
The response of the eastern oyster C. virginica to the presence of the oyster drill Urosalpinx cinerea was examined from July to September 2011. Several aspects of oyster growth were measured, including wet weight, shell weight, and dorsal shell area for oysters collected near Groton, Connecticut (41.32036 N, −72.06330 W). Wet weight and shell weight growth were significantly higher in the presence of the predator U. cinerea, while tissue weight showed no difference from the control. The control group showed more shell area growth and a much lower ratio of shell weight growth to shell area growth. Differences in shell weight to area ratio indicated that C. virginica dramatically shifted from lateral shell growth to shell thickening in the presence of U. cinerea. This inducible defense has not been previously shown for C. virginica and could play an important role in the predator–prey interaction between these two species.  相似文献   

12.
This study demonstrates that the timing of larval starvation did not only determine the larval quality (shell length, lipid content, and RNA:DNA ratio) and the juvenile performance (growth and filtration rates), but also determine how the latent effects of larval starvation were mediated in Crepidula onyx. The juveniles developed from larvae that had experienced starvation in the first two days of larval life had reduced growth and lower filtration rates than those developed from larvae that had not been starved. Lower filtration rates explained the observed latent effects of early larval starvation on reduced juvenile growth. Starvation late in larval life caused a reduction in shell length, lipid content, and RNA:DNA ratio of larvae at metamorphosis; juveniles developed from these larvae performed poorly in terms of growth in shell length and total organic carbon content because of “depletion of energy reserves” at metamorphosis. Results of this study indicate that even exposure to the same kind of larval stress (starvation) for the same period of time (2 days) can cause different juvenile responses through different mechanisms if larvae are exposed to the stress at different stages of the larval life.  相似文献   

13.
Allopatric populations of Mytilus species show distinct shell morphology which may be due to genetic and/or environmental effects. Sympatric populations of Mytilus species show similar shell morphology which may be due to hybridization eroding morphological differences and/or the influence of common environmental conditions. The present study examined shell morphology and shell shape from 16 sites in eastern Newfoundland where M. edulis L. and M. trossulus Gould coexist in common environments with limited hybridization. Shell morphology was based on measurements of eight characters, and shell shape was quantified by elliptic Fourier analysis of shell outlines. Significant differences were observed between species for both shell morphology and shell shape across 16 sites sampled. The relatively small differences in morphology and shape between the species were probably due to exposure to common environments rather than hybridization. Shell shape for M. edulis was more eccentric compared to M. trossulus which was more elongated. Shell shape analysis of a range of size classes at one site showed a change from an eccentric to an elongated shape going from the smaller to the larger size classes. Both species showed a similar trend, with the larger M. edulis more eccentric and the larger M. trossulus more elongated. Received: 17 July 1998 / Accepted: 6 January 1999  相似文献   

14.
Learning affects host discrimination behavior in a parasitoid wasp   总被引:4,自引:0,他引:4  
Learning is generally predicted not to be important in host discrimination by parasitoids, because the stimuli involved are less variable than those used in habitat location. However, Anaphes victus (Hymenoptera: Mymaridae), an egg parasitoid of Listronotus oregonensis (Coleoptera: Curculionidae) apparently learns to associate external pheromones with the presence of a conspecific in a host. In this species, females can reject a parasitized host either after antennal drumming (antennal rejection) or after the insertion of their ovipositor (sting rejection). When they encountered a series of parasitized hosts, females A. victus learned to associate the presence of the external pheromone with the presence of the internal one. Learning lasted less than 4 h and occurred earlier in a series when the female marking the egg and the one detecting that mark were close relatives. This behavior could be adaptive because antennal rejection is faster than sting rejection. Received: 11 March 1997 / Accepted after revision: 30 August 1997  相似文献   

15.
In Red Wharf Bay, UK the naticid gastropod, Polinices pulchellus, was more abundant and more highly aggregated during the summer months (June–August 2001) than during the winter (December 2000). Whilst small numbers of juvenile P. pulchellus (4–6 mm shell length) were present throughout the year the population consisted mainly of individuals of 12–14 mm shell length. Juvenile snails grew rapidly in size during the winter and early spring; growth then virtually ceased between May and June, following which there was a further period of rapid growth between August and February. Densities ranged between 57 and 4,073 ha−1 and the largest individual collected during this investigation measured 16.2 mm in shell length. Statoliths from adult P. pulchellus revealed the presence of a settlement ring and two prominent growth rings (rings 1 and 2). A curvilinear relationship exists between statolith diameter and shell length in snails up to 16 mm in length. Settlement rings ranged in diameter from 19.7 to 45.2 μm (mean 29.8 μm; SE=0.41) giving an estimated shell length of the settled juvenile of 1.1 mm. The diameter of ring 1 and ring 2 were significantly correlated indicating that rapid growth during the first year is maintained during year 2. Shell lengths estimated from the diameters of the prominent statolith rings and those obtained from length frequency data analysis (LFDA), were broadly congruent strongly suggesting an annual periodicity to the statolith rings. The largest snails (>15 mm) present within this population were estimated to be between 2 and 3 years old. Von Bertallanfy seasonal growth curves obtained from the LFDA predicted values of L∞, K and t 0 of 14.32 mm, 1.54 and −0.14 years, respectively, suggesting that P. pulchellus rapidly attains its maximum asymptotic size.  相似文献   

16.
Ocean acidification and global warming are occurring concomitantly, yet few studies have investigated how organisms will respond to increases in both temperature and CO2. Intertidal microcosms were used to examine growth, shell mineralogy and survival of two intertidal barnacle post-larvae, Semibalanus balanoides and Elminius modestus, at two temperatures (14 and 19°C) and two CO2 concentrations (380 and 1,000 ppm), fed with a mixed diatom-flagellate diet at 15,000 cells ml−1 with flow rate of 10 ml−1 min−1. Control growth rates, using operculum diameter, were 14 ± 8 μm day−1 and 6 ± 2 μm day−1 for S. balanoides and E. modestus, respectively. Subtle, but significant decreases in E. modestus growth rate were observed in high CO2 but there were no impacts on shell calcium content and survival by either elevated temperature or CO2. S. balanoides exhibited no clear alterations in growth rate but did show a large reduction in shell calcium content and survival under elevated temperature and CO2. These results suggest that a decrease by 0.4 pH(NBS) units alone would not be sufficient to directly impact the survival of barnacles during the first month post-settlement. However, in conjunction with a 4–5°C increase in temperature, it appears that significant changes to the biology of these organisms will ensue.  相似文献   

17.
 Detailed inventories of the benthos and field studies of the settlement and recruitment processes of marine benthic invertebrates require accurate identification of newly settled larvae and early juvenile stages. We provide morphological criteria, visible under a good quality dissecting stereomicroscope, by which to discriminate between species of the settling larval and early postlarval stages (∼250 to 700 μm shell length) of mussels of the genus Mytilus on the west coast of Vancouver Island and Southern California. Compared to the bay mussel (M. trossulus), the sea mussel (M. californianus) has: (i) a shallower and flatter umbo, the latter corresponding to a significantly less pronounced prodissoconch I (PI) curvature and (ii) a greater PI length; as well as (iii) a wider separation between the provincular lateral teeth (PLT). The PLT distance is a new term denoting the separation between the midpoint of two reddish pigment spots of the provinculum (larval hinge apparatus) region of settling larvae and early postlarvae of Mytilus spp. from the East Pacific Coast. These spots mark the larger provincular lateral teeth, situated at either end of the provinculum. We confirmed the validity of morphological criteria by comparing PCR products of genomic DNA of provisionally identified postlarvae. Furthermore, measurements of PI lengths and PLT distance from well-preserved postlarvae of sea mussels (M. californianus) and of bay mussels (M. galloprovincialis) from Southern California indicate that the PI morphology and morphometry, and PLT distance criterion apply for that region as well. The criteria presented here can also apply to the advanced (competent) veliger stages, as the latter may settle (i.e. become the “settling” stage) upon encountering a suitable substrate. Our present and previously published work provide economical and effective identification methods that can be used to discriminate among early life history stages (∼250 μm to 5.0 mm shell length) of Mytilus spp. along the west coast of North America. Received: 10 November 1999 / Accepted: 6 September 2000  相似文献   

18.
In mark-recapture studies, various techniques can be used to uniquely identify individual animals, such as ringing, tagging or photo-identification using natural markings. In some long-term studies more than one type of marking procedure may be implemented during the study period. In these circumstances, ignoring the different mark types can produce biased survival estimates since the assumption that the different mark types are equally catchable (homogeneous capture probability across mark types) may be incorrect. We implement an integrated approach where we simultaneously analyse data obtained using three different marking techniques, assuming that animals can be cross-classified across the different mark types. We discriminate between competing models using the AIC statistic. This technique also allows us to estimate both relative mark-loss probabilities and relative recapture efficiency rates for the different marking methods. We initially perform a simulation study to explore the different biases that can be introduced if we assume a homogeneous recapture probability over mark type, before applying the method to a real dataset. We make use of data obtained from an intensive long-term observational study of UK female grey seals (Halichoerus grypus) at a single breeding colony, where three different methods are used to identify individuals within a single study: branding, tagging and photo-identification based on seal coat pattern or pelage.  相似文献   

19.
Marine organisms are exposed to increasingly acidic oceans, as a result of equilibration of surface ocean water with rising atmospheric CO2 concentrations. In this study, we examined the physiological response of Mytilus edulis from the Baltic Sea, grown for 2 months at 4 seawater pCO2 levels (39, 113, 243 and 405 Pa/385, 1,120, 2,400 and 4,000 μatm). Shell and somatic growth, calcification, oxygen consumption and \textNH4 + {\text{NH}}_{4}^{ + } excretion rates were measured in order to test the hypothesis whether exposure to elevated seawater pCO2 is causally related to metabolic depression. During the experimental period, mussel shell mass and shell-free dry mass (SFDM) increased at least by a factor of two and three, respectively. However, shell length and shell mass growth decreased linearly with increasing pCO2 by 6–20 and 10–34%, while SFDM growth was not significantly affected by hypercapnia. We observed a parabolic change in routine metabolic rates with increasing pCO2 and the highest rates (+60%) at 243 Pa. \textNH4 + {\text{NH}}_{4}^{ + } excretion rose linearly with increasing pCO2. Decreased O:N ratios at the highest seawater pCO2 indicate enhanced protein metabolism which may contribute to intracellular pH regulation. We suggest that reduced shell growth under severe acidification is not caused by (global) metabolic depression but is potentially due to synergistic effects of increased cellular energy demand and nitrogen loss.  相似文献   

20.
Seasonal changes in catch rate, growth and mortality of Nassarius reticulatus from an intertidal lagoon and a wave-exposed beach at Rhosneigr (Anglesey, North Wales, UK) are described. The number of N. reticulatus caught in baited traps from the lagoon was significantly higher (>125 individuals trap−1) during the summer (>18°C), than at <12°C (<65 individuals trap−1), and the numbers caught in the lagoon were an order of magnitude greater than on the beach, >13 individuals trap−1 in July (>16°C), and <5 individuals trap−1 between December and April (<9.5°C). Predictions of shell growth attained by N. reticulatus annually in the lagoon using graphical modal progression analysis (MPA) of length frequency data, were similar to the growth of marked and recaptured lagoon N. reticulatus. Predictions of shell growth using computerised length frequency distribution analysis (LFDA), however, did not reflect the growth as accurately as MPA. Modal progression analysis demonstrated that N. reticulatus from the lagoon achieved a higher asymptotic maximum shell length (L ) and a lower growth constant (K) than animals from the beach. Shell growth was seasonal with growth of the lagoon individuals slowing down towards the end of September and resuming in early April, about a month later than the beach individuals. Mortality of N. reticulatus was greater during the summer, and survival was lower in the lagoon than on the beach. Recruitment patterns were similar in the lagoon and on the beach, and MPA and LFDA predicted that larval N. reticulatus settled between late summer and early autumn, with juveniles (7–8.9 mm) appearing in the population the following year, between February and April. Growth of male and female N. reticulatus in the laboratory was similar and was temperature and size dependent. The different growth patterns between N. reticulatus from the two habitats, predicted using MPA, were maintained when individuals were reared under laboratory conditions for ∼6 months; N. reticulatus <21 mm from the beach grew faster than individuals from the lagoon, although N. reticulatus >21 mm from the lagoon grew faster and attained a larger length (26 mm) than individuals from the beach (24 mm). Low food availability did not affect N. reticulatus survival in the laboratory but significantly suppressed shell growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号