首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sediment accumulation of organic halogen was studied in two forest lakes, one pristine and one which received 30 m3 of biologically purified bleaching wastewater from a kraft pulp mill in 1979 equivalent to ca. 2 kg of adsorbable organic halogen (AOX). Lake sediments were dated with210Pb,134Cs and137Cs and the annual deposition rates of organic halogens and organic matter were calculated. Organic bound halogen contents of the sediment aged 150 years was 180 μg Cl g?1 d.w. in both lakes. The concentration of organic bound halogen at the topmost 6 cm of the sediments (less than 20-years-old) ranged from 45 to 80 μg Cl g?1 d.w. This suggests that solvent extractable halogen had enriched in the older sediment layers. The deposition of extractable organic halogen (EOX) in the lakes in 1950’s was 4 to 5 mg Cl m?2 a?1. Since then, the depositon of EOX doubled in both lakes. The deposition of organic matter increased concomitantly from 50 g m?2 a?1 to 110 g m?2 a?1 in Lake Mustalampi and from 35 g m?2 a?1 to 62 g m?2 a?1 in Lake Pyylampi suggesting that the increase in the deposition of organic halogen followed the increase in the deposition of organic matter. Of the 2 kg of organic halogen discharged into the lake, 5% or less was detected in the sediment in tetrahydrofuran extractable form 15 years later.  相似文献   

2.
Environmental properties of organic matter contained halogen and sulfur were studied in sediments of bleached kraft pulp mill effluent (BKME) recipient lakes and 2 m3 outdoor enclosures (mesocosms). The BKME contributed to 1% (v/v) of the total water flow in the lake downstream of the pulp mill where the sediments contained 1.7 to 4 mg of tetrahydrofuran extractable organic halogen (EOX-Cl) and 0.6 to 0.8 mg of tetrahydrofuran extractable organic sulfur (EOS-S) g−1 of organic matter. Upstream sediment contained 0.03 mg of EOXCl and 0.7 mg of EOS-S g−1 of organic matter. EOX was a better indicator for the influence of BKME in the recipient sediment than EOS. The polarity of BKME contained EOX corresponded to log Kow of < 1, and that of the downstream sediment contained EOX to > 4.5. HP-SEC analysis of the molecular weight distribution (MWD) of the EOX showed a peak between 300 to 600 g mol−1 for the BKME and between 1000 to 2000 g mol−1 for the downstream sediment. The MWD of the BKME contained EOS peaked at 300 to 1000 g mol−1, and that of the downstream sediment contained EOS at 1000 to 5000 g mol−1. These results indicate that BKME contained organic halogen and sulfur undergo major structural transformations when incorporated into sediment. The biota-to-sediment accumulation factor (BSAF) of EOX from sediments formed downstream of the mill and in the mesocosms to the lipids ofLumbriculus variegatus was 0.4 to 0.7. This is of a similar order of magnitude to the BSAF reported for 2,3,7,8-tetrachlorodibenzop-dioxin and 2,3,7,8-tetrachlorodibenzofuran.  相似文献   

3.
This study investigated the anaerobic degradation of five polycyclic aromatic hydrocarbons (PAHs) from Erren River sediment in southern Taiwan. The degradation rates of PAH were in the order: acenaphthene > fluorene > phenanthrene > anthracene > pyrene. The degradation rate was enhanced when the five compounds were present simultaneously in river sediment. Comparison of the PAH degradation rates under three reducing conditions showed the following order: sulfate-reducing conditions > methanogenic conditions > nitrate-reducing conditions. The addition of electron donors (acetate, lactate and pyruvate) enhanced PAH degradation under methanogenic and sulfate-reducing conditions. However, the addition of acetate, lactate or pyruvate inhibited PAH degradation under nitrate-reducing conditions. The addition of heavy metals, nonylphenol and phthalate esters (PAEs) inhibited PAH degradation. Our results show that sulfate-reducing bacteria, methanogen and eubacteria are involved in the degradation of PAH; sulfate-reducing bacteria constitute a major microbial component in PAH degradation. Of the microorganism strains isolated from the sediment samples, we found that strain ER9 expressed the greatest biodegrading ability.  相似文献   

4.
The biogeochemical dynamics of 15 perfluorinated compounds (PFCs) were investigated in a heavily urbanised river (River Seine, Paris, France). The target compounds included C4-C10 sulfonates and C5-C14 acids; eleven PFCs were detected and ∑PFCs ranged between 31 and 91 ng L−1 (median: 47 ng L−1). The molecular pattern was dominated by the perfluoroalkyl sulfonates PFHxS and PFOS (>54% of ∑PFCs), which were the only PFCs quantified in both the dissolved and particulate phases. For these PFCs, the sorbed fraction positively correlated with suspended sediment levels. Total PFC levels negatively correlated with river flow rate, which varied between 150 and 640 m3 s−1. This suggests the predominance of point sources (likely WWTP effluent discharge), but a contribution of non-point sources such as combined sewer overflow could not be excluded. The annual PFC mass flow was estimated at 500 kg, which is less than observed for other large European rivers.  相似文献   

5.
Organophosphorus compounds (OPCs) and stable isotope ratios (δ13C and δ15N) were determined in 58 fishes belonging to 20 species collected from Manila Bay, the Philippines. OPCs were detected in most of the samples and found up to μg/g lw (lipid weight) level, suggesting their ubiquitous presence in the coastal marine environment of the Philippines. Higher levels (>1000 ng/g lw) of total OPCs were determined in yellowstriped goatfish, silver sillago, tripletail wrasse and bumpnose trevally indicates either their active uptake from ambient water or lower metabolic capacity of these species. Levels of triphenyl phosphate (TPhP) in demersal species showed a positive correlation with δ15N, indicating that TPhP was adsorbed onto the particle, settled down to the bottom sediment and accumulated through the benthic food web rather than the pelagic. Estimated dietary intake of OPCs in Manila Bay fishes were four to five orders of magnitude lower than the proposed reference dose (RfD).  相似文献   

6.
Oxidative transformation of organic contaminants by manganese oxides was commonly investigated with pure MnO2 suspension, which deviates from the fact that natural manganese oxides are seldom present as a pure form in the natural environment. In this study, we prepared manganese oxide-coated sand (MOCS) and evaluated its oxidative capacity using bisphenol A (BPA) as the model compound. BPA was transformed by MOCS and the reaction followed an exponential decay model. The reaction was pH dependent and followed the order of pH 4.5?>?pH 5.5?>?pH 6.5?>?pH 7.5?>?pH 8.6?>?pH 9.6, indicating that acidic conditions facilitated BPA transformation while basic conditions disfavored the reaction. Coexisting metal ions exhibited inhibitory effects and followed the order of Fe3+ > Zn2+ > Cu2+ > Ca2+ > Mg2+ > Na+. Transformation of BPA by MOCS was much slower than that by pure MnO2 suspension. However, similar transformation products were identified in both studies, suggesting the same reaction pathways. This work suggests that the reactivity of MnO2 in the environment might be overestimated if extrapolating the result from the pure MnO2 suspension because natural MnO2 is mainly present as coating on the surface of soils and sediments.  相似文献   

7.
From April 2008 to November 2009, a field decomposition experiment was conducted to investigate the effects of sediment burial on macro (C, N) and microelement (Pb, Cr, Cu, Zn, Ni, and Mn) variations in decomposing litter of Phragmites australis in the coastal marsh of the Yellow River estuary. Three one-off sediment burial treatments [no sediment burial (0 mm year?1, S0), current sediment burial (100 mm year?1, S10), and strong sediment burial (200 mm year?1, S20)] were laid in different decomposition sites. Results showed that sediment burials showed significant influence on the decomposition rate of P. australis, in the order of S10 (0.001990 day?1)?≈?S20 (0.001710 day?1)?>?S0 (0.000768 day?1) (p?<?0.05). The macro and microelement in decomposing litters of the three burial depths exhibited different temporal variations except for Cu, Zn, and Ni. No significant differences in C, N, Pb, Cr, Zn, and Mn concentrations were observed among the three burial treatments except for Cu and Ni (p?>?0.05). With increasing burial depth, N, Cr, Cu, Ni, and Mn concentrations generally increased, while C, Pb, and Zn concentrations varied insignificantly. Sediment burial was favorable for C and N release from P. australis, and, with increasing burial depth, the C release from litter significantly increased, and the N in litter shifted from accumulation to release. With a few exceptions, Pb, Cr, Zn, and Mn stocks in P. australis in the three treatments evidenced the export of metals from litter to environment, and, with increasing burial depth, the export amounts increased greatly. Stocks of Cu and Ni in P. australis in the S10 and S20 treatments were generally positive, evidencing incorporation of the two metals in most sampling times. Except for Ni, the variations of C, N, Pb, Cr, Cu, Zn, and Mn stocks in P. australis in the S10 and S20 treatments were approximated, indicating that the strong burial episodes (S20) occurred in P. australis marsh in the future would have little influence on the stocks of these elements. With increasing burial depths, the P. australis was particularly efficient in binding Cu and Ni and releasing C, N, Pb, Cr, Zn, and Mn, implying that the potential eco-toxic risk of Pb, Cr, Zn, and Mn exposure might be very serious. This study emphasized the effects of different burials on nutrient and metal cycling and mass balance in the P. australis marsh of the Yellow River estuary.  相似文献   

8.
Theoretical derivations together with published experimental data on bioaccumulation of lipophilic compounds by certain groups of fish indicates that the uptake and clearance rate constants have a fixed relationship to the octanol to water partition coefficient over the partition coefficient range 102.5 to 106. This allows the calculation of times to establish effective equilibrium, and significant bioaccumulation of compounds in relation to the partition coefficient. By extrapolation superlipophilic compounds (partition coefficients > 106) have been shown to require a minimum period of 0.5 years increasing to 10 years when P = 108 to establish effective equilibrium and compounds with partition coefficients >1013 are not bioaccumulated to any significant extent. In practice then, a direct relationship between the bioaccumulation factor and the partition coefficient will not result with superlipophilic componds.  相似文献   

9.
Abstract

Terbufos, t. sulfoxide and t. sulfone (5 μg ml‐1) were incubated in natural, sterilized natural and distilled water, with initial pH values of 8.8, 8.8 and 6.0, respectively, at 20°C. First‐order disappearance was observed for the three compounds. Rates in natural and sterilized water were similar indicating chemical degradation predominated. Terbufos disappeared rapidly (t½>=3 days) in all systems. T. sulfoxide and t. sulfone were more persistent in the natural (t½>=18–40 days) and distilled water (t½>=280–350 days). Adsorption data for the three compounds in four soil‐water systems showed the decreasing order of adsorption to be terbufos>>t. sulfoxide=t. sulfone. Desorption from soils fortified at 5 μg g‐1 with water was examined for 4 successive 18‐hr cycles. T. sulfoxide and t. sulfone were totally desorbed; terbufos was too unstable to study. The mobility of the compound in soil eluted with water was in the order, t. sulfoxide=t. sulfone>> terbufos, in agreement with adsorption‐desorption results. The octanol‐water partitioning coefficients for terbufos, t. sulfoxide and t. sulfone, at 23°C, were 3:30 x 10 , 164, and 302, respectively.  相似文献   

10.
This paper reports on the partitioning behaviour of 15 perfluorinated compounds (PFCs), including C4-C10 sulfonates and C5-C14 carboxylic acids, between water, sediment and fish (European chub, Leuciscus cephalus) in the Orge River (nearby Paris). Total PFC levels were 73.0 ± 3.0 ng L−1 in water and 8.4 ± 0.5 ng g−1 in sediment. They were in the range 43.1-4997.2 ng g−1 in fish, in which PFC tissue distribution followed the order plasma > liver > gills > gonads > muscle. Sediment-water distribution coefficients (log Kd) and bioaccumulation factors (log BAF) were in the range 0.8-4.3 and 0.9-6.7, respectively. Both distribution coefficients positively correlated with perfluoroalkyl chain length. Field-based biota-sediment accumulation factors (BSAFs) are also reported, for the first time for PFCs other than perfluorooctane sulfonate. log BSAF ranged between −1.3 and 1.5 and was negatively correlated with the perfluoroalkyl chain length in the case of carboxylic acids.  相似文献   

11.
将底泥有机物原地稳定化处理技术中药剂投加法和帽封法结合,研究以煤渣为帽封材料,苏州河底泥中分别投加零价铁(Fe0)及硝酸钙的实验里各体系上覆水体及底泥的pH、氧化还原电位(Eh)、有机含量在60 d的变化情况。结果表明,煤渣帽封下,底泥中投加Fe0或硝酸钙后上覆水体pH均在8左右,Eh呈下降趋势,投加Fe0后对上覆水体COD的影响较硝酸钙小,但均不会对上覆水体水质产生持久、较大的影响。从底泥有机质的去除率上来看,Fe0-煤渣帽封体系在反应周期里有机质的去除率约55%,而硝酸钙-煤渣帽封体系底泥有机质的去除率在27%左右。以Fe0-煤渣帽封材料复合体系运用在底泥原地稳定化帽封技术中降解有机物更为合适。  相似文献   

12.
Laboratory partitioning experiments were conducted to elucidate the sorption behaviour and partitioning of perfluoroalkyl compounds (PFCs). Three different sediment types were used and separately spiked with perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS) and perfluorooctane sulfonamide (PFOSA) at low environmentally realistic concentrations. PFOA, PFOS and PFOSA were mainly distributed in the dissolved phase at low suspended solid concentrations, indicating their long-range transport potential in the marine environment. In all cases, the equilibrium isotherms were linear and the organic carbon normalised partition coefficients (KOC) decreased in the following order: PFOSA (log KOC = 4.1 ± 0.35 cm3 g−1) > PFOS (3.7 ± 0.56 cm3 g−1) > PFOA (2.4 ± 0.12 cm3 g−1). The level of organic content had a significant influence on the partitioning. For the sediment with negligible organic content the density of the sediment became the most important factor influencing the partitioning. Ultimately, data on the partitioning of PFCs between aqueous media and suspended solids are essential for modelling their transport and environmental fate.  相似文献   

13.
The abiotic transformation of the halogenated aliphatic compound, 1,1,1-trichloroethane (TCA), to 1,1-dichloroethylene (1,1-DCE) in groundwater was measured in the laboratory at 20°C and neutral pH. The measured pseudo first-order disappearance rate constant for TCA was 0.11 ± 0.16yr−1 (95% confidence interval). The formation rate constant for 1,1-DCE could be determined with greater precision, and was found to be 0.040 ± 0.003 yr-1. These results indicate the 95% confidence interval for TCA half-life at 20°C and pH 7 in homogeneous solution is 2.8 to 19 yrs. While these results confirm that 1,1-DCE is a product from the abiotic transformation of TCA, other products such as acetic acid are also possible, although they were not measured.  相似文献   

14.
Soil organic matter (SOM) releasing with dissolved organic matter (DOM) formed in solution was confirmed in a sediment/water system, and the effects of SOM releasing on the sorption of phenanthrene on sediments were investigated. Inorganic salt (0–0.1 mol L?1 NaCl) was used to adjust SOM releasing, and two sediments were prepared, the raw sediment (S1) from Weihe River, Shann’xi, China, and the eluted sediments with and without DOM supernatant remained, termed as S2a and S2b, respectively. The FTIR and 1H NMR analysis indicate that the low molecular weight hydrophilic SOM fraction released prior to the high molecular weight hydrophobic fraction. As a response, phenanthrene sorption kinetics on S1 showed atypical and expressed as three stages: rapid sorption, pseudo sorption with partial desorption, and slow sorption, thus a defined “sorption valley” occurred in kinetic curve. In all cases, partition dominates the sorption, and sorption capacity (Kd) ranked as S2b > S1 > S2a. Compared with the alterations of sediment characters, DOM solubilization produced by SOM releasing exhibited a greater inhibitory effect on sorption with a relative contribution of 0.67. Distribution coefficients (Kdoc) of PHE into DOM clusters were 2.10?×?104–4.18?×?104 L kg?1, however a threshold concentration of 6.83 mg L?1 existed in DOM solubilization. The study results will help to clarify PAHs transport and their biological fate in a sediment/water system.  相似文献   

15.
Background, Aims and Scope Sediments of the Spittelwasser creek are highly polluted with organic compounds and heavy metals due to the discharge of untreated waste waters from the industrial region of Bitterfeld-Wolfen, Germany over the course of more than one century. However, relatively few data have been published about the chloroorganic contamination of the sediment. This paper reports on the content of different (chloro)organic compounds with special emphasis on polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F), and chlorobenzenes. Existing concepts for the remediation of Spittelwasser sediment include the investigation of natural attenuation processes, which largely depend on the presence of an intact microbial food web. In order to gain more insight in terms of biological activity, we analyzed the capacity of sediment microflora to degrade organic matter by measuring the activities of extracellular hydrolytic enzymes involved in the biogeochemical cycling of carbon, nitrogen, phosphorus and sulfur. Furthermore, the detection of physiologically active bacteria in the sediment, particularly of those known for their capability to reductively dehalogenate organochlorine compounds, illustrates the potential for intrinsic bioremediation processes. Methods PCDD/F and chlorobenzenes were analyzed by gas chromatography(GC)/mass spectrometry and GC/flame ionization detection, respectively. The activities of hydrolytic enzymes were determined from freshly sampled sediment layers using 4-methylumbelliferyl (MUF) or 7-amino-4-methylcoumarin-conjugated model compounds and kinetic fluorescence measurements. Physiologically active bacteria from different sediment layers were microscopically visualized by fluorescence in situ hybridization (FISH). Specific bacteria were identified by 16S rRNA gene amplification and sequencing. Results and Discussion The PCDD/F congener profile was dominated by dibenzofurans. In addition, the presence of specific tetra and pentachlorinated dibenzofurans supported the assumption that extensive magnesium production was one possible source for the high contamination. A range of other chloroorganic compounds, including several isomers of chlorobenzenes, hexachlorocyclohexane and 1,1,1-trichloro-2,2-bis (p-chloro-phenyl)ethane (DDT), was present in the sediment. Activities of extracellular hydrolytic enzymes showed a strong decrease in those sediment layers that were characterized by high contents of absorbable organic halogen (AOX), indicating disturbed organic matter decay. Interestingly, an abnormal increase of cellulolytic enzyme activities below the organochlorine-rich layers was observed, possibly caused by residual cellulose from discharges of sulfite pulping wastes. FISH revealed physiologically active bacteria in most sediment layers from the surface down to the depth of about 60 cm, including members of Desulfitobacterium (D.) and Sulfurospirillum. The presence of D. dehalogenans was confirmed by its partial 16S rRNA gene sequence. Conclusions Results of chemical sediment analyses demonstrated high loads of organochlorine compounds, particularly of PCDD/F. Several years after stopping the waste water discharge to Spittelwasser creek, this sediment remains a main source for pollution of the downstream river system by way of the ongoing mobilization of sediment during high floods. As indicated by our enzyme activity measurements, the decomposition potential for organic matter is low in organochlorine-rich sediment layers. In contrast, the comparably higher enzyme activities in less organochlorine-polluted sediment layers as well as the presence of physiologically active bacteria suggest a considerable potential for natural attenuation. Recommendations and Perspectives From our data we strongly recommend to explore the degradative capacity of sediment microorganisms and the limits for in situ activity towards specific sediment pollutants in more detail. This will give a sound basis for the integration of bioremediation approaches into general concepts to reduce the risk that permanently radiates from this highly contaminated sediment. Submission Editor: Dr. Henner Hollert (Henner.Hollert@urz.uniheidelberg.de)  相似文献   

16.
In order to screen dioxin pollution in sediment of Three Gorges Dam (TGD) area, three sediment cores were obtained from two sites in 2010~2011; each core was divided into different samples with every 10 cm depth. Sediment dating determined by radiometry (137Cs, 210Pb) and concentrations of dioxins were analyzed by high-resolution gas chromatography/mass spectrometry. The results indicated: Sediment dating showed no significant difference among all the samples from the same core and the two locations (ANOVA, p?>?0.05). The total amount of polychlorinated dibenzo-p-dioxins (PCDD)/Fs in all sample ranged from 30.7 to 371 pg/g dry weight (d.w.), with the mean value of 66.2 pg/g d.w. PCDDs occupied 60.33~85.22 % of dioxins in each sample, and PCDFs contributed to a very small extend. There was no significant difference in the dioxin concentration between 2010 and 2011 and in the two locations (t test, p?>?0.05), but the vertical distribution of dioxins showed significant different in different depths. Toxic equivalent (TEQ) (WHO 2005, Humans) of samples ranged from 0.15 to 1.60 pg/g d.w.; the mean was 0.41 pg/g d.w. No significant difference was found in TEQ between 2010 and 2011(t test, p?>?0.05). It could be concluded that the distribution of dioxins showed the spatial heterogeneous which resulted from the strong mixing and sediment deposition characteristics. Dioxin concentration in sediment cores was low with very low environmental risk potential. Dioxins at the two sites had the same origin, and exogenous input was the main source. It is the first report on the dioxins concentrations in sediment cores in the TGD area.  相似文献   

17.
Yi AX  Leung KM  Lam MH  Lee JS  Giesy JP 《Chemosphere》2012,89(9):1015-1025
The state of scientific knowledge regarding analytical methods, environmental fate, ecotoxicity and ecological risk of triphenyltin (TPT) compounds in marine ecosystems as well as their exposure and health hazard to humans was reviewed. Since the 1960s, TPT compounds have been commonly applied as biocides for diverse industrial and agricultural purposes. For instance, they are used as active ingredients in antifouling systems on marine vessels and mariculture facilities, and as fungicides in agriculture. Due to their intensive use, contamination of coastal waters by TPT and its products of transformation has become a worldwide problem. The proportion of quantified TPT to total phenyltin compounds in the marine environment provides evidence that TPT is photodegradable in water and sediment but resistant to biotransformation. Concentrations of TPT in marine biota are consistently greater than concentrations in water and sediment, which implies potential of TPT to bioaccumulate. TPT is toxic to both marine plants and animals. The predicted no effect concentration (PNEC) for TPT, as determined by use of the species sensitivity distribution approach, is 0.64 ng L−1. In some parts of the world, concentrations of TPT in seawater exceed the PNEC, indicating that TPT can pose risks to marine life. Although there is negligible risk of TPT to average human consumers, TPT has been detected in blood of Finnish people and the concentration was greater in fishermen who ate more seafood. It is, therefore, advocated to initiate regular monitoring of TPT in blood and breast milk of populations that consume greater amounts of seafood.  相似文献   

18.
In this study, an Alcaligenes sp. strain DG-5 that can effectively degrade dichlorodiphenyltrichloro-ethanes (DDTs) under aerobic conditions was isolated from DDTs-contaminated sediment. Various factors that affect the biodegradation of DDTs by DG-5 were investigated. About 88 %, 65 % and 45 % of the total DDTs were consumed within 120 h when their initial concentrations were 0.5, 5 and 15 mg L?1, respectively. However, almost no degradation was observed when their concentration was increased to 30 mg L?1, but the addition of nutrients significantly improved the degradation, and 66 % and 90 % of the total DDTs were degraded at 336 h in the presence of 5 g L?1 peptone and yeast extract, respectively. Moreover, the addition of 20 mM formate also enhanced the ability of DG-5 to transform DDTs, and its DDT transformation capacity (Tc) value was increased by 1.8 - 2.7 fold for the pure (p,p’-DDT or o,p’-DDT only) and mixed systems (p,p’-DDT, o,p’-DDT, p,p’-DDD and p,p’-DDE). Furthermore, it was found that competitive inhibition in the biodegradation by DDT compounds occurred in the mixed system.  相似文献   

19.
The contamination of aquatic systems by endocrine disrupting chemicals (EDCs) is now a widely established fact. Nevertheless, there is still a scarcity of knowledge concerning the source, transport, fate and bioavailability of such active compounds. In the present study we assessed the distribution of estrogenic, (anti-)androgenic, pregnane X receptor-like (PXR) and dioxin-like activities between sediment and water compartments using a polar organic compound integrative sampler (POCIS) and a semi-permeable membrane device (SPMD) passive sampler in a river where sediment has been previously described as highly and multi-contaminated. We first confirmed the contamination pattern of this river sediment between 2004, 2009 and 2010 samples, suggesting that this river is subject to a constant high contamination level. However, we showed a different distribution pattern of these activities between compartments: estrogenic activity was mainly detected in POCIS extracts and to a lesser extent in sediment and SPMD extracts; anti-androgenic activities were mainly detected in SPMD and sediment extracts while no activity was detected in POCIS extracts; PXR-like activity was detected in all three investigated compartments, with POCIS > SPMD > sediment; dioxin-like activity was mainly found in the sediment and the SPMD extracts. Overall, partitioning of the biological activities was in accordance with physicochemical properties (e.g., log K ow) of typical known active chemicals in each bioassay. Furthermore, in order to establish whether the chemicals involved in these activities were similar between the compartments, we fractionated sediment, POCIS and SPMD extracts using a multi-step fractionation procedure. This highlighted differences in the nature of active chemicals between compartments. Altogether, our results support the need to consider different compartments in order to enhance exposure assessment.  相似文献   

20.
In this study, the 30-day aerobic microorganism-mediated biodegradation of polycyclic aromatic hydrocarbons (PAHs) was investigated in four size fractions (i.e., <0.002, 0.002–0.031, 0.031–0.063 and >0.063 mm) of sand-dominated sediment S1 and mud-dominated S2 collected from intertidal zones in Bohai Bay (China). Prior to biodegradation, the total quantity of phenanthrene, fluoranthene and pyrene comprised more than 80 % of the total quantity of 16 EPA-priority PAHs in each size fraction, with the exception of 70.33 % found in the >0.063 mm fraction of sediment S1. Among the three dominant compounds, the intermediate size fraction (0.031–0.063 mm) showed higher levels of biodegradation than other size fractions in sediment S1 and S2. After pooling data from sediment S1 and S2 for joint analysis, it was observed that the biodegraded portion of the three dominant compounds showed negative correlations with both total organic carbon (TOC) and humic coverage index (HCI) in the size fractions. The observed negative correlation with TOC was in agreement with findings in many other studies, but the negative correlation with HCI had not been observed in early studies, which only investigated aged sediment/soil samples. The findings in this study indicated that the greatest bioavailability of PAHs in intertidal surface sediment may be present in sediment particles of intermediate size and mobility, and that intertidal sediment particles are less likely to experience sufficient ageing given periodical tidal disturbance. These findings have important implications for the assessment of the environmental fate of PAHs in intertidal regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号