首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Polynuclear aromatic hydrocarbons (PAHs) constitute a group of priority pollutants which are present at high concentrations in the soils of many industrially contaminated sites. Criteria established for the removal or treatment or both of soils contaminated with PAHs vary widely within and between nations. The bioremediation of contaminated soils with in-situ, on-site, and bioreactor techniques is reviewed, together with the factors affecting PAH degradation. Current in-situ remediation techniques are considered ineffective for the removal of most PAHs from contaminated soil. On-site 'landforming' methods have been used successfully (and within a reasonable period of time) to degrade only those PAHs with three or fewer aromatic rings. Bioreactors have proved most effective for soil remediation, since conditions for enhanced degradation can be achieved most readily. However, bioreactors are still at the development stage, and further research is required to optimise their efficiency and economy for routine use. Degradation of the more recalcitrant high-molecular-weight PAHs is contaminated soil has not been particularly successful to date. Further research needs are identified to help develop bioremediation into a most cost-effective technology. The importance of full site assessments and treatability studies for successful application in the field is emphasised.  相似文献   

2.
Mulder H  Breure AM  Rulkens WH 《Chemosphere》2001,43(8):1085-1094
Mass-transfer models and biodegradation models were developed for three theoretical physical states of polycyclic aromatic hydrocarbons (PAHs) in soil. These mechanistic models were used to calculate the treatment periods necessary for complete removal of the PAH pollutants from the soil under batch conditions. Results indicate that the bioremediation of PAHs in such systems is mainly mass-transfer limited. The potential for bioremediation as a treatment technique for PAH contaminated soils is therefore mainly determined by the mass-transfer dynamics of PAHs. Under mass-transfer limited conditions simplified mathematical models, based on the assumption of a zero dissolved PAH concentrations, can be used to predict the period of time needed for complete bioremediation.  相似文献   

3.
A study was conducted using two pilot-scale land-treatment units (LTUs) to evaluate the efficacy of different cultivation and maintenance schedules during bioremediation of contaminated soil from a wood treatment facility using landfarming technology. The soil contained high concentrations of polycyclic aromatic hydrocarbons (PAHs, approximately 13000 ppm) as well as of pentachlorophenol (PCP, approximately 1500 ppm). An initial 6-month intensive-treatment phase was followed by 24 months of less-intensive treatment. During the first phase, traditional landfarming practice of regular cultivation was compared with a gas-phase composition based cultivation strategy, and both the landfarming units were intensively monitored and maintained with respect to moisture control and delivery of nutrients. The two strategies resulted in similar contaminant concentration profiles with time during this phase, although different microbial populations developed in the two-landfarming units. The second (less-intensive) treatment phase involved no moisture control and nutrient delivery beyond the initial adjustments, and compared natural attenuation (no cultivation) with quarterly cultivation of soil. Both the strategies showed similar behavior again. GC/MS analysis of the soil samples showed PAH removal including four-ring homologues. Leachability tests at zero time and after 6 and 22 months of operation showed significant reductions in leaching of PCP and low molecular weight PAHs. Extended treatment resulted in some leaching of high molecular weight PAHs. Significant biological activity was demonstrated, even at the high contaminant concentrations. Phospholipid ester-linked fatty acid (PLFA) analysis showed an increase in biomass and a divergence in community composition in soils depending on the treatment conducted.  相似文献   

4.
The natural biodegradation of seven polycyclic aromatic hydrocarbons (PAHs) by native microorganisms was studied in five soils from Normandy (France) from diffusely polluted areas, which can also pose a problem in terms of surfaces and amounts of contaminated soils. Bioavailability tests using cyclodextrin-based extractions were performed. The natural degradation of low molecular weight (LMW) PAHs was not strongly correlated to their bioavailability due to their sorption to geosorbents. Conversely, the very low degradation of high molecular weight (HMW) PAHs was partly correlated to their poor availability, due to their sorption on complexes of organic matter and kaolinites or smectites. A principal component analysis allowed us to distinguish between the respective degradation behaviors of LMW and HMW PAHs. LMW PAHs were degraded in less than 2–3 months and were strongly influenced by the relative percentage of phenanthrene-degrading bacteria over total bacteria in soils. HMW PAHs were not significantly degraded, not only because they were less bioavailable but also because of a lack of degrading microorganisms. Benzo[a]pyrene stood apart since it was partly degraded in acidic soils, probably because of a catabolic cooperation between bacteria and fungi.  相似文献   

5.
Polycyclic aromatic hydrocarbons (PAHs) have been widely studied due to their presence in all the environmental media and toxicity to life. These molecules are strongly adsorbed on the particulate matters of soils, sludges or sediments because of their strong hydrophobicity which makes them less bioavailability, thus limiting their bioremediation. Different sludge treatment processes were tested to evaluate their performances for PAH removal from sludge prealably doped with 11 PAHs (5.5mg each PAH kg(-1) of dry matter (DM)): two biological processes (mesophilic aerobic digestion (MAD) and simultaneous sewage sludge digestion and metal leaching (METIX-BS)) were tested to evaluate PAH biodegradation in sewage sludge. In parallel, two chemical processes (quite similar Fenton processes: chemical metal leaching (METIX-AC) and chemical stabilization (STABIOX)) and one electrochemical process (electrochemical stabilization (ELECSTAB)) were tested to measure PAH removal by these oxidative processes. Moreover, PAH solubilisation from sludge by addition of a nonionic surfactant Tween 80 (Tw80) was also tested. The best yields of PAH removal were obtained by MAD and METIX-BS with more than 95% 3-ring PAH removal after a 21-day treatment period. Tw80 addition during MAD treatment increased 4-ring PAHs removal rate. In addition, more than 45% of 3-ring PAHs were removed from sludge by METIX-AC and during ELECSTAB process were quiet good with approximately 62% of 3-ring PAHs removal. However, little weaker removal of 3-ring PAHs (<35%) by STABIOX. None of the tested processes were efficient for the elimination of high molecular weight (> or = 5-ring) PAHs from sludge.  相似文献   

6.
Mesocosm studies using sub-Antarctic soil artificially contaminated with diesel or crude oil were conducted in Kerguelen Archipelago (49 degrees 21' S, 70 degrees 13' E) in an attempt to evaluate the potential of a bioremediation approach in high latitude environments. All mesocosms were sampled on a regular basis over six months period. Soils responded positively to temperature increase from 4 degrees C to 20 degrees C, and to the addition of a commercial oleophilic fertilizer containing N and P. Both factors increased the hydrocarbon-degrading microbial abundance and total petroleum hydrocarbons (TPH) degradation. In general, alkanes were faster degraded than polyaromatic hydrocarbons (PAHs). After 180 days, total alkane losses of both oils reached 77-95% whereas total PAHs never exceeded 80% with optimal conditions at 10 degrees C and fertilizer added. Detailed analysis of naphthalenes, dibenzothiophenes, phenanthrenes, and pyrenes showed a clear decrease of their degradation rate as a function of the size of the PAH molecules. During the experiment there was only a slight decrease in the toxicity, whereas the concentration of TPH decreased significantly during the same time. The most significant reduction in toxicity occurred at 4 degrees C. Therefore, bioremediation of hydrocarbon-contaminated sub-Antarctic soil appears to be feasible, and various engineering strategies, such as heating or amending the soil can accelerate hydrocarbon degradation. However, the residual toxicity of contaminated soil remained drastically high before the desired cleanup is complete and it can represent a limiting factor in the bioremediation of sub-Antarctic soil.  相似文献   

7.
The removal of polycyclic aromatic hydrocarbons (PAHs) from soil using water as flushing agent is relatively ineffective due to their low aqueous solubility. However, addition of cyclodextrin (CD) in washing solutions has been shown to increase the removal efficiency several times. Herein are investigated the effectiveness of cyclodextrin to remove PAH occurring in industrially aged-contaminated soil. Beta-cyclodextrin (BCD), hydroxypropyl-beta-cyclodextrin (HPCD) and methyl-beta-cyclodextrin (MCD) solutions were used for soil flushing in column test to evaluate some influent parameters that can significantly increase the removal efficiency. The process parameters chosen were CD concentration, ratio of washing solution volume to soil weight, and temperature of washing solution. These parameters were found to have a significant and almost linear effect on PAH removal from the contaminated soil, except the temperature where no significant enhancement in PAH extraction was observed for temperature range from 5 to 35 degrees C. The PAHs extraction enhancement factor compared to water was about 200.  相似文献   

8.
Remediation of soils contaminated with petroleum is a challenging task. Four different bioremediation strategies, including natural attenuation, biochar amendment, phytoremediation with ryegrass, and a combination of biochar and ryegrass, were investigated with greenhouse pot experiments over a 90-day period. The results showed that planting ryegrass in soil can significantly improve the removal rate of total petroleum hydrocarbons (TPHs) and the number of microorganisms. Within TPHs, the removal rate of total n-alkanes (45.83 %) was higher than that of polycyclic aromatic hydrocarbons (30.34 %). The amendment of biochar did not result in significant improvement of TPH removal. In contrast, it showed a clear negative impact on the growth of ryegrass and the removal of TPHs by ryegrass. The removal rate of TPHs was significantly lower after the amendment of biochar. The results indicated that planting ryegrass is an effective remediation strategy, while the amendment of biochar may not be suitable for the phytoremediation of soil contaminated with petroleum hydrocarbons.  相似文献   

9.
《Environmental Forensics》2013,14(4):313-317
Supercritical fluid extraction (SFE) was investigated to evaluate its potential for obtaining high quality chromatographic fingerprints from soils encountered in environmental investigations. While the volatile and semivolatile fractions of light nonaqueous phase liquid (LNAPL) samples can be “fingerprinted” in a single chromatographic run, it is commonly not possible to obtain samples of LNAPL in the locations of interest. For this and other reasons, it was desirable to develop this method (SFE) of soil extraction, which allows chromatographic fingerprinting of the same quality routinely obtained with LNAPL so that environmental forensic investigations could be extended to areas beyond those containing LNAPL in monitoring wells. In this study, SFE was compared to conventional dichloromethane extraction. Both artificially spiked soil and soil from petroleum release sites were tested. Since water can be a problem when using the SFE method, particular attention was given to handling soils with high moisture contents. The SFE extracts showed excellent retention of low molecular components, including pentanes. Gas chromatography of SFE extracts yielded molecular distributions that showed no significant bias toward either low or high molecular weight components. These results show that SFE can be used to obtain an unbiased, single-run chromatographic “fingerprint” of both volatile and semivolatile hydrocarbons in contaminated soil samples.  相似文献   

10.
Supercritical fluid extraction (SFE) was used to extract polycyclic aromatic hydrocarbons (PAH) from a certified sample of marine sediment. This sample contains a great number of organic pollutants that are present in low concentrations. The extractions were carried out at 50 and 80 degrees C, at a pressure varying from 230 to 600 bar and using CO2 in the supercritical phase and the effect of three organic modifiers (methanol, n-hexane and toluene), added at 5%/vol, at the same temperature and pressure conditions, were then considered. PAHs were characterized by GC-MS and the recover yield was estimated for 6 PAHs that were representative of those present in the sample, according to their molecular weight and to the number of condensed rings. The analytical conditions giving the best recovery efficiency were used on an unpolluted soil sample spiked with 11 PAHs of environmental importance at a concentration similar to that certified for the sediment sample. An increase in the yield of recovered PAHs, using methanol as co-solvent, was observed while higher temperatures caused a negative effect on the quantity of recovered pollutants. The recovery yield for PAHs from the spiked soil sample was measured and found to be greater than 90%. Better recoveries were obtained for those compounds with higher molecular weight.  相似文献   

11.
Smith KE  Schwab AP  Banks MK 《Chemosphere》2008,72(10):1614-1619
Sediments dredged from navigable rivers often contain elevated concentrations of recalcitrant, potentially toxic organic compounds such as polychlorinated biphenyls (PCBs) and polyaromatic hydrocarbons (PAHs). The presence of these compounds often requires that the sediments be stored in fully contained disposal facilities. A 3-year field study was conducted at the Jones Island disposal facility in Milwaukee, Wisconsin, to compare bioremediation of PAHs in contaminated dredged sediments in the absence of plants to phytoremediation with Salix nigra (black willow) (SX61), Spartina pectinata (prairie cord grass), Carex aquatalis (lake sedge), Lolium multiflorum (annual rye), and Scirpus fluviatilis (bulrush). Nine PAHs were detected initially in the sediments. Over the 3-year experiment, acenaphthene dissipation ranged from 94% to 100%, whereas anthracene, benzo[a]pyrene and indo[1,2,3-cd]pyrene generally had modest decreases in concentration (0-30% decrease). The remaining five PAHs ranged in degree of disappearance from 23% to 82%. Planted treatments did not enhance PAH dissipation relative to those without plants, but treatments with high biomass yield and high transpiration plant species had significantly less removal of PAHs than unplanted controls. Significant, negative correlations between nitrogen removal and decreases in PAH concentration suggest that competition for nutrients between plants and microorganisms may have impeded the microbial degradation of PAHs in the rhizosphere of the more rapidly growing plant species.  相似文献   

12.
To improve phytoremediation processes, multiple techniques that comprise different aspects of contaminant removal from soils have been combined. Using creosote as a test contaminant, a multi-process phytoremediation system composed of physical (volatilization), photochemical (photooxidation) and microbial remediation, and phytoremediation (plant-assisted remediation) processes was developed. The techniques applied to realize these processes were land-farming (aeration and light exposure), introduction of contaminant degrading bacteria, plant growth promoting rhizobacteria (PGPR), and plant growth of contaminant-tolerant tall fescue (Festuca arundinacea). Over a 4-month period, the average efficiency of removal of 16 priority PAHs by the multi-process remediation system was twice that of land-farming, 50% more than bioremediation alone, and 45% more than phytoremediation by itself. Importantly, the multi-process system was capable of removing most of the highly hydrophobic, soil-bound PAHs from soil. The key elements for successful phytoremediation were the use of plant species that have the ability to proliferate in the presence of high levels of contaminants and strains of PGPR that increase plant tolerance to contaminants and accelerate plant growth in heavily contaminated soils. The synergistic use of these approaches resulted in rapid and massive biomass accumulation of plant tissue in contaminated soil, putatively providing more active metabolic processes, leading to more rapid and more complete removal of PAHs.  相似文献   

13.
Cyclodextrins, especially random methylated betaCD (RAMEB) and hydroxypropyl betaCD (HPbetaCD), are becoming common enhancing additives in the bioremediation of soils formerly contaminated by hydrocarbons and/or other poorly bioavailable organic pollutants. Therefore, their degradation in the soil, particularly the most persistent RAMEB, has been of great concern. Like oil contaminants, these additives should be biodegradable via an environmentally safe technology. Hence, in this paper, the biodegradability of eight different cyclodextrins (CDs) in four different soils was examined under various treatment conditions in laboratory and pilot scale field experiments. This paper is the first report on the potential biological fate of CDs studied under a large variety of environmental conditions and in different soil ecosystems. Data on the potential relationship between CD biodegradation and the biological removal of hydrocarbons in the CD-amended contaminated soils are also given. All CDs were found to be more or less biodegradable; even the most persistent RAMEB was depleted from soils under favourable conditions. In the field experiments, the depletion of RAMEB to about 40% of its initial level was observed for a period of 2 years in hydrocarbon-contaminated soils of high organic matter and cell concentration.  相似文献   

14.
Liao W  Liu HW  Chen HJ  Chang WY  Chiu KH  Wai CM 《Chemosphere》2011,82(4):573-580
Catalytic hydrogenation of polycyclic aromatic hydrocarbons (PAHs) with up to four fused benzene rings over high-density-polyethylene-stabilized palladium nanoparticles in supercritical carbon dioxide via in situ UV/Vis spectroscopy is presented. PAHs can be efficiently converted to saturated polycyclic hydrocarbons using this green technique under mild conditions at 20 MPa of CO2 containing 1 MPa of H2 at 40-50 °C. Kinetic studies based on in situ UV/Vis spectra of the CO2 phase reveal that the initial hydrogenation of a given PAH and the subsequent hydrogenations of its intermediates are pseudo-first-order. The hydrogenation rate of the latter is always much smaller than that of the former probably due to increasing steric hindrance introduced by the hydrogenated benzene rings of PAHs which impedes the adsorption process and hydrogen access to PAHs on catalyst surfaces.  相似文献   

15.
本文比较系统地讨论了空气中多环芳烃(PAHs)的研究现状。重点介绍了空气颗粒物及气相中多环芳烃的采样分析新办法,城市大气及居民室内外空气中多环芳烃的污染状况及其来源,简单介绍了人体接触多环芳烃的水平,指标及空气中多环芳烃的健康风险评价的研究概况。共引文献129篇。  相似文献   

16.

Background, aim, and scope  

Polycyclic aromatic hydrocarbons (PAHs) are often found in oily wastewaters. Their presence is usually the result of human activities and has a negative effect on the environment. One important step in addressing this problem is to evaluate the effectiveness of PAH removal by biological processes since these are the most cost-effective treatments known today. Many techniques are presently available for PAH determination in wastewaters. Solid phase microextracion (SPME) is known to be one of the most effective techniques for this purpose. When analyzing complex matrices with substances such as natural organic matter (NOM) and non-aqueous phase liquids (NAPL), it is important to differentiate the free dissolved PAH from matrix-bonded PAH. PAHs associated with the bonded fraction are less susceptible to biological treatment. The present study concerns the development of a simple and suitable methodology for the determination of the freely dissolved and the total fraction of PAHs present in oily wastewaters. The methodology was then applied to an oily wastewater from a fuel station retention basin.  相似文献   

17.
Polycyclic aromatic hydrocarbons (PAHs) are of environmental concern because many PAHs are either carcinogens or potential carcinogens. Petroleum products are a major source of PAHs. The occurrence of PAH contamination is widespread and novel treatment technologies for the remediation of contaminated soils are necessary.Ozone has been found to be extremely useful for the degradation of PAHs in soils. For these compounds, the reaction with molecular ozone appears to be the more important degradation pathway. Greater than 95% removal of phenanthrene was achieved with an ozonation time of 2.3 h at an ozone flux of 250 mg h−1. After 4.0 h of treatment at an ozone flux of 600 mg h−1, 91 % of the pyrene was removed. We have also found that the more hydrophobic PAHs (e.g. chrysene) react more slowly than would be expected on the basis of their reactivity with ozone, suggesting that partitioning of the contaminant into soil organic matter may reduce the reactivity of the compound. Even so, after 4 h of exposure to ozone, the chrysene concentration in a contaminated Metea soil was reduced from 100 to 50 mg kg−1 .Ozone has been found to be readily transported through columns packed with a number of geological materials, including Ottawa sand, Metea soil, Borden aquifer material and Wurtsmith aquifer material. All of these geological materials exerted a limited (finite) ozone demand, i.e. the rate of ozone degradation in soil columns is very slow after the ozone demand is met. Moisture content was found to increase the ozone demand, most likely owing to the dissolution of gaseous ozone into the pore water. As once the initial ozone demand is met, little degradation of ozone is observed, it should be possible to achieve ozone penetration to a considerable distance away from the injection well, suggesting that in-situ ozonation is a feasible means of treating uncontaminated unsaturated soils. This is substantiated by two field studies where in-situ ozonation was apparently successful at remediating the sites.  相似文献   

18.
Liste HH  Prutz I 《Chemosphere》2006,62(9):1411-1420
Two greenhouse pot experiments were conducted to investigate the potential of 13 plant species (grasses, cruciferes, legumes, herbs) to thrive in a long-term contaminated soil from a former manufactured gas plant (MGP) site, to promote the proliferation of total and aromatic ring dioxygenase-expressing bacteria (ARDB) in the root zone, and to foster the biodegradation of petrol hydrocarbons (PHCs) and polycyclic aromatic hydrocarbons (PAHs). PHCs at 23200 mg kg(-1) and PAHs at 2194 mg kg(-1) reduced seed germination, plant survival, and shoot yields for most plants. Total bacteria and ARDB were generally more abundant in contaminated soil and were most numerous in the rhizosphere of mustard. During 68 d, the loss of total petrol hydrocarbons (TPHs) and total US EPA priority PAHs (TPAHs) was greatest in soil planted with hemp and mustard. Pea, cress, and pansy increased the amounts of PAHs extracted from soil, including an almost 60% increase for dibenzo(ah)anthracene. Plants may enhance the chemical extractability and perhaps biological availability of initially unextractable molecules.  相似文献   

19.
Rhizoremediation is a significant form of bioremediation for polycyclic aromatic hydrocarbons (PAHs). This study examined the role of molecular structure in determining the rhizosphere effect on PAHs dissipation. Effect size in meta-analysis was employed as activity dataset for building quantitative structure-activity relationship (QSAR) models and accumulative effect sizes of 16 PAHs were used for validation of these models. Based on the genetic algorithm combined with partial least square regression, models for comprehensive dataset, Poaceae dataset, and Fabaceae dataset were built. The results showed that information indices, calculated as information content of molecules based on the calculation of equivalence classes from the molecular graph, were the most important molecular structural indices for QSAR models of rhizosphere effect on PAHs dissipation. The QSAR model, based on the molecular structure indices and effect size, has potential to be used in studying and predicting the rhizosphere effect of PAHs dissipation.  相似文献   

20.
Hong PK  Nakra S  Jimmy Kao CM  Hayes DF 《Chemosphere》2008,73(11):1757-1764
Sediment contamination by recalcitrant organics such as polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) is prevalent and of a great concern. Remediation efforts are hampered by the hydrophobic nature of the contaminants that limits their availability as well as by the sediment matrix that limits their exposure to treatment agents. Using contaminated sediment samples from the Passaic River, St. Louis River, Waukegan Harbor, and Wells National Estuarine Research Reserve, this research demonstrated a new ozonation technique that incorporates rapid, successive cycles of pressurization (690 kPa) and depressurization, enabling more effective treatment than conventional ozonation would. Conventional ozonation reached maximum 60% and 40% removal of PAHs from the Passaic River (40 mg kg(-1) initially) and St. Louis River sediment (520 mg kg(-1) initially), respectively, in 1h; however, removals ceased despite prolonged treatment for 2h. The pressure-assisted technique removed 96% of PAHs from both river sediments within 1h; it completely removed both PAHs (16 mg kg(-1) initially) and PCBs (5.1 mg kg(-1) initially) from the Waukegan Harbor sediment in 0.5 h. The heightened treatment is explained by soil aggregate fracturing upon pressure cycles that exposes the contaminants as well as by the confluence of hydrophobic contaminants and O(3) at the gas-liquid interface in the presence of microbubbles. The technique is expected to accelerate O(3) treatment of a wide range of organic contaminants, and it may provide treatment to dredged and stored contaminated sediment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号